SlideShare a Scribd company logo
1 of 47
1
Key Points
1. Principals of EM Radiation
2. Introduction to Propagation & Antennas
3. Antenna Characterization
2
1. Principals of Radiated electromagentic (EM) fields
two laws (from Maxwell Equation)
1. A Moving Electric Field Creates a Magnetic (H) field
2. A Moving Magnetic Field Creates an Electric (E) field
3
c ≈ 3 ×108
m/s
l = λ/2: wave will complete one cycle from A to B and back to A
λ = distance a wave travels during 1 cycle
f = c/λ = c/2l
l = λ/2
A B
Assume i(t) applied at A with length l = λ/2
• EM wave will travel along the wire until it reaches the B
• B is a point of high impedence  wave reflects toward A and is reflected
back again
• resistance gradually dissipates the energy of the wave
• wave is reinforced at A
 results in continuous oscillations of energy along the wire and a high
voltage at the A end of the wire.
An AC current i(t), flowing in a wire produces an EM field
4
Dipole antenna: 2 wires each with length l = λ/4
• attach ends to terminals of a high frequency AC generator
• at time t, the generator’s right side = ‘+’ and the left side = ‘−’
• electrons flow away from the ‘−’ terminal and towards the ‘+’ terminal
• most current flows in the center and none flows at the ends
• i(t) at any point will vary directly with v(t)
current distribution at time t
− +
i(t) l = λ/4
A B
− +
++++
+++++++
+++++++++++
+++++++++++++++
+++++++++++++++
-----
-----------
----------------
--------------------
------------------------
voltage distribution at time t
A B
¼ cycle after electrons have begun to flow  max number of electrons will
be at A and min number at B
vmax(t) is developed
i(t) = 0
5
EM patterns on Dipole Antenna:
• sinusoidal distribution of charge exists on the antenna that reverses
polarity every ½ cycle
• sinusoidal variation in charge magnitude lags the sinusoidal variation in
current by ¼ cycle.
• Electic field E and magnetic field H 90° out of phase with each other
• fields add and produce a single EM field
• total energy in the radiated wave is constant, except for some absorption
• as the wave advances, the energy density decreases
Standing Wave
• center of the antenna is at a low impedance: v(t) ≈ 0, imax(t)
• ends of antenna are at high impedence: i(t) ≈ 0, vmax(t)
• maximum movement of electrons is in the center of the antenna at all
times
 Resonance condition in the antenna
• waves travel back and forth reinforcin
• maximum EM waves are transmitted into at maximum radiation
6
POLARIZATION
• EM field is composed of electric & magnetic lines of force that are
orthogonal to each other
• E determines the direction of polarization of the wave
vertical polarization: electric force lines lie in a vertical direction
horizontal polarization : electric force lines lie in a horizontal direction
circular polarization: electric force lines rotate 360° every cycle
An antenna extracts maximumenergy from a passing EM wave when it is
oriented in the same direction as E
• use vertical antenna for the efficient reception of vertically polarized
waves
• use horizontal antenna for the reception of horizontally polarized waves
if E rotates as the wave travels through space  wave has. horizontal and
vertical components
7
Ground wave transmissions missions at lower frequencies use vertical
polarization
• horizontal polarization E force lines are parallel to and touch the earth.
earth acts as a fairly good conductor at low frequencies  shorts out
• vertical electric lines of force are bothered very little by the earth.
8
Types of antennas
• simple antennas: dipole, long wire
• complex antennas: additional components to
shape radiated field
provide high gain for long distances or weak signal reception
size ≈ frequency of operation
• combinations of identical antennas
phased arrays electrically shape and steer antenna
2. Introduction to Antennas and Propagation
transmit antenna: radiate maximum energy into surroundings
receive antenna: capture maximum energy from surrounding
• radiating transmission line is technically an antenna
• good transmission line = poor antenna
9
Major Difference Between Antennas And Transmission Lines
• transmission line uses conductor to carry voltage & current
• radio signal travels through air (insulator)
• antennas are transducers
- convert voltage & current into electric & magnetic field
- bridges transmission line & air
- similar to speaker/microphone with acoustic energy
Transmission Line
• voltage & current variations  produce EM field around conductor
• EM field expands & contracts at same frequency as variations
• EM field contractions return energy to the source (conductor)
• Nearly all the energy in the transmission line remains in the system
10
Antenna
• Designed to Prevent most of the Energy from returning to Conductor
• Specific Dimensions & EM wavelengths cause field to radiate
several λ before the Cycle Reversal
- Cycle Reversal - Field Collapses  Energy returns to Conductor
- Produces 3-Dimensional EM field
- Electric Field ⊥ Magnetic Field
- Wave Energy Propagation ⊥ Electric Field & Magnetic Field
11
transmit & receive antennas
theoretically are the same (e.g. radiation fields, antenna gain)
practical implementation issue:
transmit antenna handles high power signal (W-MW)
- large conductors & high power connectors,
receive antenna handles low power signal (mW-uW)
Antenna Performance depends heavily on
• Channel Characteristics: obstacles, distances temperature,…
• Signal Frequency
• Antenna Dimensions
12
Propagation Modes – five types
(1) Ground or Surface wave: follow earths contour
• affected by natural and man-made terrain
• salt water forms low loss path
• several hundred mile range
• 2-3 MHz signal
(2) Space Wave
• Line of Sight (LOS) wave
• Ground Diffraction allows for greater distance
• Approximate Maximum Distance, D in miles is
(antenna height in ft)
• No Strict Signal Frequency Limitations
rxtx hh 22 +D =
hrx
htx
13
(3) Sky Waves
ionosphere
transmitted
wave
reflected
wave
refracted
wave
skip distance
• reflected off ionosphere (20-250 miles high)
• large ranges possible with single hop or multi-hop
• transmit angle affects distance, coverage, refracted energy
14
Ionosphere
• is a layer of partially ionized gasses below troposphere
- ionization caused by ultra-violet radiation from the sun
- affected by: available sunlight, season, weather, terrain
- free ions & electrons reflect radiated energy
• consists of several ionized layers with varying ion density
- each layer has a central region of dense ionization
Layer altitude
(miles)
Frequency
Range
Availability
D 20-25 several MHz day only
E 55-90 20MHz day, partially
at night
F1 90-140 30MHz 24 hours
F2 200-250 30MHz 24 hours
F1 & F2 separate during daylight, merge at night
15
Usable Frequency and Angles
Critical Frequency: frequency that won’t reflect vertical transmission
- critical frequency is relative to each layer of ionosphere
- as frequency increases  eventually signal will not reflect
Maximum Usable Frequency (MUF): highest frequency useful for
reflected transmissions
- absorption by ionosphere decreases at higher frequencies
- absorption of signal energy = signal loss
- best results when MUF is used
Frequency Trade-Off
• high frequency signals eventually will not reflect back to ground
• lower frequency signals are attenuated more in the ionosphere
16
angle of radiation: transmitted energy relative to surface tangent
- smaller angle requires less ionospheric refraction to return to earth
- too large an angle results in no reflection
- 3o
-60o
are common angles
critical angle: maximum angle of radiation that will reflect energy
to earth
Determination of minimum skip distance:
- critical angle - small critical angle  long skip distance
- height of ionosphere - higher layers give longer skip distances
for a fixed angle
multipath: signal takes different paths to the destination
angle of radiation
ionosphere
Critical Angle
17
(4) Satellite Waves
Designed to pass through ionosphere into space
• uplink (ground to space)
• down link (space to ground)
• LOS link
Frequencies >> critical frequency
• penetrates ionosphere without reflection
• high frequencies provide bandwidth
Geosynchronous orbit ≈ 23k miles (synchronized with earth’s orbit)
• long distances  result in high path loss
• EM energy disperses over distances
• intensely focused beam improves efficiency
18
total loss = Gt + Gr – path loss (dB)
Free Space Path Loss equation used to determine signal levels
over distance
G = antenna gain: projection of energy in specific direction
• can magnify transmit power
• increase effective signal level at receiver
2
4






=
c
fd
P
P
r
t π






c
fdπ4
log20 10 (dB)
19
(5) radar: requires
• high gain antenna
• sensitive low noise receiver
• requires reflected signal from object – distances are doubled
• only small fraction of transmitted signal reflects back
20
3. Antenna Characterization
antennas generate EM field pattern
• not always possible to model mathematically
• difficult to account for obstacles
• antennas are studied in EM isolated rooms to extract key
performance characteristics
absolute value of signal intensity varies for given antenna design
- at the transmitter this is related to power applied at transmitter
- at the receiver this is related to power in surrounding space
antenna design & relative signal intensity determines relative field
pattern
21
forward gain = 10dB
backward gain = 7dB
+10dB
+7dB
+ 4dB
0o
270o
180o
90o
Polar Plot of relative signal strength of radiated field
• shows how field strength is shaped
• generally 0o
aligned with major physical axis of antenna
• most plots are relative scale (dB)
- maximum signal strength location is 0 dB reference
- closer to center represents weaker signals
22
radiated field shaping ≈ lens & visible light
• application determines required direction & focus of signal
• antenna characteristics
(i) radiation field pattern
(ii) gain
(iii) lobes, beamwidth, nulls
(iv) directivity
far-field measurements measured many wavelengths away from
antenna
near-field measurement involves complex interactions of decaying
electrical and magnetic fields - many details of antenna construction
(i) antenna field pattern = general shape of signal intensity in far-field
23
Measuring Antenna Field Pattern
field strength meter used to measure field pattern
• indicates amplitude of received signal
• calibrated to receiving antenna
• relationship between meter and receive antenna known
measured strength in uV/meter
received power is in uW/meter
• directly indicates EM field strength
24
0o
270o
180o
90o
Determination of overall Antenna Field Pattern
form Radiation Polar Plot Pattern
• use nominal field strength value (e.g. 100uV/m)
• measure points for 360o
around antenna
• record distance & angle from antenna
• connect points of equal field strength
100 uV/m
practically
• distance between meter & antenna kept constant
• antenna is rotated
• plot of field strength versus angle is made
25
Why Shape the Antenna Field Pattern ?
• transmit antennas: produce higher effective power in direction of
intended receiver
• receive antennas: concentrate energy collecting ability in
direction of transmitter
- reduced noise levels - receiver only picks up intended signal
• avoid unwanted receivers (multiple access interference = MAI):
- security
- multi-access systems
• locate target direction & distance – e.g. radar
not always necessary to shape field pattern, standard broadcast is
often omnidirectional - 360o
26
Gain is Measured Specific to a Reference Antenna
• isotropic antenna often used - gain over isotropic
- isotropic antenna – radiates power ideally in all directions
- gain measured in dBi
- test antenna’s field strength relative to reference isotropic antenna
- at same power, distance, and angle
- isotropic antenna cannot be practically realized
• ½ wave dipole often used as reference antenna
- easy to build
- simple field pattern
(ii) Antenna Gain
27
Antenna Gain ≠ Amplifier Gain
• antenna power output = power input – transmission line loss
• antenna shapes radiated field pattern
• power measured at a point is greater/less than that using
reference antenna
• total power output doesn’t increase
• power output in given direction increases/decreases relative to
reference antenna
e.g.
a lamp is similar to an isotropic antenna
a lens is similar to a directional antenna
- provides a gain/loss of visible light in a specific direction
- doesn’t change actual power radiated by lamp
28
Rotational Antennas can vary direction of antenna gain
Directional Antennas focus antenna gain in primary direction
• transmit antenna with 6dB gain in specific direction over isotropic
antenna  4× transmit power in that direction
• receive antenna with 3dB gain is some direction receives 2× as
much power than reference antenna
Antenna Gain
often a cost effective means to
(i) increase effective transmit power
(ii) effectively improve receiver sensitivity
may be only technically viable means
• more power may not be available (batteries)
• front end noise determines maximum receiver sensitivity
29
(iii) Beamwidth, Lobes & Nulls
Lobe: area of high signal strength
- main lobe
- secondary lobes
Nulls: area of very low signal strength
Beamwidth: total angle where relative signal power is 3dB
below peak value of main lobe
- can range from 1o
to 360o
Beamwidth & Lobes indicate sharpness of pattern focus
0o
270o
180o
90o
beam
width
null
30
Center Frequency = optimum operating frequency
Antenna Bandwidth ≡ -3dB points of antenna performance
Bandwidth Ratio: Bandwidth/Center Frequency
e.g. fc = 100MHz with 10MHz bandwidth
- radiated power at 95MHz & 105MHz = ½ radiated power at fc
- bandwidth ratio = 10/100 = 10%
31
Main Trade-offs for Antenna Design
• directivity & beam width
• acceptable lobes
• maximum gain
• bandwidth
• radiation angle
Bandwidth Issues
High Bandwidth Antennas tend to have less gain than
narrowband antennas
Narrowband Receive Antenna reduces interference from adjacent
signals & reduce received noise power
Antenna Design Basics
Antenna Dimensions
• operating frequencies determine physical size of antenna elements
• design often uses λ as a variable (e.g. 1.5 λ length, 0.25 λ spacing)
32
Testing & Adjusting Transmitter  use antenna’s electrical load
• Testing required for
- proper modulation
- amplifier operation
- frequency accuracy
• using actual antenna may cause significant interference
• dummy antenna used for transmitter design (not antenna design)
- same impedance & electrical characteristics
- dissipates energy vs radiate energy
- isolates antenna from problem of testing transmitter
33
Testing Receiver
• test & adjust receiver and transmission line without antenna
• use single known signal from RF generator
• follow on test with several signals present
• verify receiver operation first  then connect antenna to
verify antenna operation
Polarization
• EM field has specific orientation of E-field & M field
• Polarization Direction determined by antenna & physical orientation
• Classification of E-field polarization
- horizontal polarization : E-field parallel to horizon
- vertical polarization: E-field vertical to horizon
- circular polarization: constantly rotating
34
Transmit & Receive Antenna must have same Polarization for
maximum signal energy induction
• if polarizations aren’t same  E-field of radiated signal will try to
induce E-field into wire ⊥ to correct orientation
- theoretically no induced voltage
- practically – small amount of induced voltage
Circular Polarization
• compatible with any polarization field from horizontal to vertical
• maximum gain is 3dB less than correctly oriented horizontal or
vertically polarized antenna
35
Antenna Fundamentals
Dipole Antennas (Hertz): simple, old, widely used
- root of many advance antennas
• consists of 2 spread conductors of 2 wire transmission lines
• each conductor is ¼ λ in length
• total span = ½ λ + small center gap
Distinct voltage & current patterns
driven by transmission line at midpoint
• i = 0 at end, maximum at midpoint
• v = 0 at midpoint, ±vmax at ends
• purely resistive impedance = 73Ω
• easily matched to many transmission lines
gap
¼ λ¼ λ
½ λ
Transmission
Line
+v
-v
i
High Impedance 2k-3kΩ
Low Impedance 73Ω
36
E-field (E) & M-field (B) used to determine radiation pattern
• E goes through antenna ends & spreads out in increasing loops
• B is a series of concentric circles centered at midpoint gap
E B
37
Azimuth Pattern
Elevation Pattern
Polar Radiation Pattern
3-dimensional field pattern is donut shaped
antenna is shaft through donut center
radiation pattern determined by taking slice of donut
- if antenna is horizontal  slice reveals figure 8
- maximum radiation is broadside to antenna’s arms
38
½λ dipole performance – isotropic reference antenna
• in free space  beamwidth = 78o
• maximum gain = 2.1dB
• dipole often used as reference antenna
- feed same signal power through ½ λ dipole & test antenna
- compare field strength in all directions
Actual Construction
(i) propagation velocity in wire < propagation velocity in air
(ii) fields have ‘fringe effects’ at end of antenna arms
- affected by capacitance of antenna elements
1st
estimate: make real length 5% less than ideal - otherwise
introduce reactive parameter
Useful Bandwidth: 5%-15% of fc
• major factor for determining bandwidth is diameter of conductor
• smaller diameter  narrow bandwidth
39
Multi-Band Dipole Antennas
Transmission
Line
λ1/4C
L
C
L
λ1/4
λ2/4λ2/4
use 1 antenna  support several widely separated frequency bands
e.g. HAM Radio - 3.75MHz-29MHz
Traps: L,C elements inserted into dipole arms
• arms appear to have different lengths at different frequencies
• traps must be suitable for outdoor use
• 2ndry
affects of trap impact effective dipole arm length-adjustable
• not useful over 30MHz
40
Transmit Receive Switches
• allows use of single antenna for transmit & receive
• alternately connects antenna to transmitter & receiver
• high transmit power must be isolated from high gain receiver
• isolation measured in dB
e.g. 100dB isolation 10W transmit signal ≈ 10nW receive signal
41
Elementary Antennas
low cost – flexible solutions
Long Wire Antenna
• effective wideband antenna
• length l = several wavelengths
- used for signals with 0.1l < λ < 0.5l
- frequency span = 5:1
• drawback for band limited systems - unavoidable interference
• near end driven by ungrounded transmitter output
• far end terminated by resistor
- typically several hundred Ω
- impedance matched to antenna Z0
• transmitter electrical circuit ground connected to earth
Antenna
Transmission
Line
earth ground
R=Z0
42
practically - long wire is a lossy transmission line
- terminating resistor prevent standing waves
Polar radiation pattern
• 2 main lobes
- on either side of antenna
- pointed towards antenna termination
• smaller lobes on each side of antenna – pointing forward & back
• radiation angle 45o
(depending on height)  useful for sky waves
angular radiation pattern
horizon
feed
polar ration pattern
43
poor efficiency:
transmit power
- 50% of transmit power radiated
- 50% dissapated in termination resistor
receive power
- 50% captured EM energy converted to signal for reciever
- 50% absorbed by terminating resistor
44
Folded Dipole Antenna
- basic ½λ dipole folded to form complete circuit
- core to many advanced antennas
- mechanically more rugged than dipole
- 10% more bandwidth than dipole
- input impedance ≈ 292 Ω
- close match to std 300Ω twin lead wire transmission line
- use of different diameter upper & lower arms  allows
variable impedance
λ/2
45
Loop & Patch Antenna – wire bent into loops
Patch Antenna: rectangular conducting area with || ground plane
Area A
N-turns
V = maximum voltage induced in receiver by EM field
B = magnetic field strength flux of EM field
A = area of loop
N = number of turns
f = signal frequency
k = physical proportionality factor
V = k(2πf)BAN
Antenna
Plane
46
• Loop & Patch Antennas are easy to embed in a product (e.g. pager)
• Broadband antenna - 500k-1600k Hz bandwidth
• Not as efficient as larger antennas
Radiation Pattern
• maximum ⊥ to center axis through loop
• very low broadside to the loop
• useful for direction finding
- rotate loop until signal null (minimum) observed
- transmitter is on either side of loop
- intersection with 2nd
reading pinpoints transmitter
47
552.14 dB
Dipole
3600 dBIsotropic
Beamwidth
-3 dB
Gain (over
isotropic)
ShapeName Radiation Pattern
20
30
50
200
25
14.7 dB
10.1 dB
-0.86 dB
3.14 dB
7.14 dB
Parabolic
Dipole
Helical
Turnstile
Full Wave
Loop
Yagi
Biconical
Horn
1515 dBHorn
360x20014 dB

More Related Content

What's hot

What's hot (20)

Radio Wave propagation
Radio Wave propagationRadio Wave propagation
Radio Wave propagation
 
Microwave link budget
Microwave link budgetMicrowave link budget
Microwave link budget
 
Training on microwave communication
Training on microwave communicationTraining on microwave communication
Training on microwave communication
 
Radar communication
Radar communicationRadar communication
Radar communication
 
Basics of RF
Basics of RFBasics of RF
Basics of RF
 
Microwave Link Design - PTP Transmission
Microwave  Link Design - PTP TransmissionMicrowave  Link Design - PTP Transmission
Microwave Link Design - PTP Transmission
 
Cellular Network -Ground Reflectio (Two Ray) Model.pdf
Cellular Network -Ground Reflectio (Two Ray) Model.pdfCellular Network -Ground Reflectio (Two Ray) Model.pdf
Cellular Network -Ground Reflectio (Two Ray) Model.pdf
 
microwave-fundamentals
microwave-fundamentalsmicrowave-fundamentals
microwave-fundamentals
 
Wmc diversity
Wmc diversityWmc diversity
Wmc diversity
 
Fading Seminar
Fading SeminarFading Seminar
Fading Seminar
 
Satellite communication
Satellite communicationSatellite communication
Satellite communication
 
Orthogonal frequency division multiplexing (ofdm)
Orthogonal frequency division multiplexing (ofdm)Orthogonal frequency division multiplexing (ofdm)
Orthogonal frequency division multiplexing (ofdm)
 
microwave-systems-1
microwave-systems-1microwave-systems-1
microwave-systems-1
 
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler RadarsRadar Systems- Unit-III : MTI and Pulse Doppler Radars
Radar Systems- Unit-III : MTI and Pulse Doppler Radars
 
GSM Link Budget
GSM Link BudgetGSM Link Budget
GSM Link Budget
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
radar
 radar radar
radar
 
Mimo
MimoMimo
Mimo
 
Calculos-de-Trayectoria-en-Radioenlaces-LOS.pdf
Calculos-de-Trayectoria-en-Radioenlaces-LOS.pdfCalculos-de-Trayectoria-en-Radioenlaces-LOS.pdf
Calculos-de-Trayectoria-en-Radioenlaces-LOS.pdf
 
Wireless communication
Wireless communicationWireless communication
Wireless communication
 

Similar to 3 basic antenas1

Group 5 Wireless Oower
Group 5 Wireless OowerGroup 5 Wireless Oower
Group 5 Wireless Oower
Lalit Garg
 
N 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentalsN 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentals
15010192
 

Similar to 3 basic antenas1 (20)

Basic antenas
Basic antenasBasic antenas
Basic antenas
 
Transmission lines, Waveguide, Antennas
Transmission lines, Waveguide, AntennasTransmission lines, Waveguide, Antennas
Transmission lines, Waveguide, Antennas
 
wave-propagation
wave-propagationwave-propagation
wave-propagation
 
Advance wireless network
Advance wireless networkAdvance wireless network
Advance wireless network
 
lecture 2.ppt
lecture 2.pptlecture 2.ppt
lecture 2.ppt
 
Anten_theor_basics.pptx
Anten_theor_basics.pptxAnten_theor_basics.pptx
Anten_theor_basics.pptx
 
Group 5 Wireless Oower
Group 5 Wireless OowerGroup 5 Wireless Oower
Group 5 Wireless Oower
 
antenna book.pdf
antenna book.pdfantenna book.pdf
antenna book.pdf
 
AntBrief123A12-6-07.pptMaxwell’s Equations & EM Waves
AntBrief123A12-6-07.pptMaxwell’s Equations & EM WavesAntBrief123A12-6-07.pptMaxwell’s Equations & EM Waves
AntBrief123A12-6-07.pptMaxwell’s Equations & EM Waves
 
Antenna all units
Antenna all unitsAntenna all units
Antenna all units
 
Antenna wrt frequency
Antenna wrt frequencyAntenna wrt frequency
Antenna wrt frequency
 
Signals and Antennas in mobile computing
Signals and Antennas in mobile computingSignals and Antennas in mobile computing
Signals and Antennas in mobile computing
 
Presentation
PresentationPresentation
Presentation
 
Fundamentals of cellular antenna creating magic in the air
Fundamentals of cellular antenna creating magic in the airFundamentals of cellular antenna creating magic in the air
Fundamentals of cellular antenna creating magic in the air
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
LECT_Chap2_AntPar1.pdf
LECT_Chap2_AntPar1.pdfLECT_Chap2_AntPar1.pdf
LECT_Chap2_AntPar1.pdf
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
N 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentalsN 6-ee302-lesson-13-antenna-fundamentals
N 6-ee302-lesson-13-antenna-fundamentals
 
13_radio.ppt
13_radio.ppt13_radio.ppt
13_radio.ppt
 

Recently uploaded

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 

3 basic antenas1

  • 1. 1 Key Points 1. Principals of EM Radiation 2. Introduction to Propagation & Antennas 3. Antenna Characterization
  • 2. 2 1. Principals of Radiated electromagentic (EM) fields two laws (from Maxwell Equation) 1. A Moving Electric Field Creates a Magnetic (H) field 2. A Moving Magnetic Field Creates an Electric (E) field
  • 3. 3 c ≈ 3 ×108 m/s l = λ/2: wave will complete one cycle from A to B and back to A λ = distance a wave travels during 1 cycle f = c/λ = c/2l l = λ/2 A B Assume i(t) applied at A with length l = λ/2 • EM wave will travel along the wire until it reaches the B • B is a point of high impedence  wave reflects toward A and is reflected back again • resistance gradually dissipates the energy of the wave • wave is reinforced at A  results in continuous oscillations of energy along the wire and a high voltage at the A end of the wire. An AC current i(t), flowing in a wire produces an EM field
  • 4. 4 Dipole antenna: 2 wires each with length l = λ/4 • attach ends to terminals of a high frequency AC generator • at time t, the generator’s right side = ‘+’ and the left side = ‘−’ • electrons flow away from the ‘−’ terminal and towards the ‘+’ terminal • most current flows in the center and none flows at the ends • i(t) at any point will vary directly with v(t) current distribution at time t − + i(t) l = λ/4 A B − + ++++ +++++++ +++++++++++ +++++++++++++++ +++++++++++++++ ----- ----------- ---------------- -------------------- ------------------------ voltage distribution at time t A B ¼ cycle after electrons have begun to flow  max number of electrons will be at A and min number at B vmax(t) is developed i(t) = 0
  • 5. 5 EM patterns on Dipole Antenna: • sinusoidal distribution of charge exists on the antenna that reverses polarity every ½ cycle • sinusoidal variation in charge magnitude lags the sinusoidal variation in current by ¼ cycle. • Electic field E and magnetic field H 90° out of phase with each other • fields add and produce a single EM field • total energy in the radiated wave is constant, except for some absorption • as the wave advances, the energy density decreases Standing Wave • center of the antenna is at a low impedance: v(t) ≈ 0, imax(t) • ends of antenna are at high impedence: i(t) ≈ 0, vmax(t) • maximum movement of electrons is in the center of the antenna at all times  Resonance condition in the antenna • waves travel back and forth reinforcin • maximum EM waves are transmitted into at maximum radiation
  • 6. 6 POLARIZATION • EM field is composed of electric & magnetic lines of force that are orthogonal to each other • E determines the direction of polarization of the wave vertical polarization: electric force lines lie in a vertical direction horizontal polarization : electric force lines lie in a horizontal direction circular polarization: electric force lines rotate 360° every cycle An antenna extracts maximumenergy from a passing EM wave when it is oriented in the same direction as E • use vertical antenna for the efficient reception of vertically polarized waves • use horizontal antenna for the reception of horizontally polarized waves if E rotates as the wave travels through space  wave has. horizontal and vertical components
  • 7. 7 Ground wave transmissions missions at lower frequencies use vertical polarization • horizontal polarization E force lines are parallel to and touch the earth. earth acts as a fairly good conductor at low frequencies  shorts out • vertical electric lines of force are bothered very little by the earth.
  • 8. 8 Types of antennas • simple antennas: dipole, long wire • complex antennas: additional components to shape radiated field provide high gain for long distances or weak signal reception size ≈ frequency of operation • combinations of identical antennas phased arrays electrically shape and steer antenna 2. Introduction to Antennas and Propagation transmit antenna: radiate maximum energy into surroundings receive antenna: capture maximum energy from surrounding • radiating transmission line is technically an antenna • good transmission line = poor antenna
  • 9. 9 Major Difference Between Antennas And Transmission Lines • transmission line uses conductor to carry voltage & current • radio signal travels through air (insulator) • antennas are transducers - convert voltage & current into electric & magnetic field - bridges transmission line & air - similar to speaker/microphone with acoustic energy Transmission Line • voltage & current variations  produce EM field around conductor • EM field expands & contracts at same frequency as variations • EM field contractions return energy to the source (conductor) • Nearly all the energy in the transmission line remains in the system
  • 10. 10 Antenna • Designed to Prevent most of the Energy from returning to Conductor • Specific Dimensions & EM wavelengths cause field to radiate several λ before the Cycle Reversal - Cycle Reversal - Field Collapses  Energy returns to Conductor - Produces 3-Dimensional EM field - Electric Field ⊥ Magnetic Field - Wave Energy Propagation ⊥ Electric Field & Magnetic Field
  • 11. 11 transmit & receive antennas theoretically are the same (e.g. radiation fields, antenna gain) practical implementation issue: transmit antenna handles high power signal (W-MW) - large conductors & high power connectors, receive antenna handles low power signal (mW-uW) Antenna Performance depends heavily on • Channel Characteristics: obstacles, distances temperature,… • Signal Frequency • Antenna Dimensions
  • 12. 12 Propagation Modes – five types (1) Ground or Surface wave: follow earths contour • affected by natural and man-made terrain • salt water forms low loss path • several hundred mile range • 2-3 MHz signal (2) Space Wave • Line of Sight (LOS) wave • Ground Diffraction allows for greater distance • Approximate Maximum Distance, D in miles is (antenna height in ft) • No Strict Signal Frequency Limitations rxtx hh 22 +D = hrx htx
  • 13. 13 (3) Sky Waves ionosphere transmitted wave reflected wave refracted wave skip distance • reflected off ionosphere (20-250 miles high) • large ranges possible with single hop or multi-hop • transmit angle affects distance, coverage, refracted energy
  • 14. 14 Ionosphere • is a layer of partially ionized gasses below troposphere - ionization caused by ultra-violet radiation from the sun - affected by: available sunlight, season, weather, terrain - free ions & electrons reflect radiated energy • consists of several ionized layers with varying ion density - each layer has a central region of dense ionization Layer altitude (miles) Frequency Range Availability D 20-25 several MHz day only E 55-90 20MHz day, partially at night F1 90-140 30MHz 24 hours F2 200-250 30MHz 24 hours F1 & F2 separate during daylight, merge at night
  • 15. 15 Usable Frequency and Angles Critical Frequency: frequency that won’t reflect vertical transmission - critical frequency is relative to each layer of ionosphere - as frequency increases  eventually signal will not reflect Maximum Usable Frequency (MUF): highest frequency useful for reflected transmissions - absorption by ionosphere decreases at higher frequencies - absorption of signal energy = signal loss - best results when MUF is used Frequency Trade-Off • high frequency signals eventually will not reflect back to ground • lower frequency signals are attenuated more in the ionosphere
  • 16. 16 angle of radiation: transmitted energy relative to surface tangent - smaller angle requires less ionospheric refraction to return to earth - too large an angle results in no reflection - 3o -60o are common angles critical angle: maximum angle of radiation that will reflect energy to earth Determination of minimum skip distance: - critical angle - small critical angle  long skip distance - height of ionosphere - higher layers give longer skip distances for a fixed angle multipath: signal takes different paths to the destination angle of radiation ionosphere Critical Angle
  • 17. 17 (4) Satellite Waves Designed to pass through ionosphere into space • uplink (ground to space) • down link (space to ground) • LOS link Frequencies >> critical frequency • penetrates ionosphere without reflection • high frequencies provide bandwidth Geosynchronous orbit ≈ 23k miles (synchronized with earth’s orbit) • long distances  result in high path loss • EM energy disperses over distances • intensely focused beam improves efficiency
  • 18. 18 total loss = Gt + Gr – path loss (dB) Free Space Path Loss equation used to determine signal levels over distance G = antenna gain: projection of energy in specific direction • can magnify transmit power • increase effective signal level at receiver 2 4       = c fd P P r t π       c fdπ4 log20 10 (dB)
  • 19. 19 (5) radar: requires • high gain antenna • sensitive low noise receiver • requires reflected signal from object – distances are doubled • only small fraction of transmitted signal reflects back
  • 20. 20 3. Antenna Characterization antennas generate EM field pattern • not always possible to model mathematically • difficult to account for obstacles • antennas are studied in EM isolated rooms to extract key performance characteristics absolute value of signal intensity varies for given antenna design - at the transmitter this is related to power applied at transmitter - at the receiver this is related to power in surrounding space antenna design & relative signal intensity determines relative field pattern
  • 21. 21 forward gain = 10dB backward gain = 7dB +10dB +7dB + 4dB 0o 270o 180o 90o Polar Plot of relative signal strength of radiated field • shows how field strength is shaped • generally 0o aligned with major physical axis of antenna • most plots are relative scale (dB) - maximum signal strength location is 0 dB reference - closer to center represents weaker signals
  • 22. 22 radiated field shaping ≈ lens & visible light • application determines required direction & focus of signal • antenna characteristics (i) radiation field pattern (ii) gain (iii) lobes, beamwidth, nulls (iv) directivity far-field measurements measured many wavelengths away from antenna near-field measurement involves complex interactions of decaying electrical and magnetic fields - many details of antenna construction (i) antenna field pattern = general shape of signal intensity in far-field
  • 23. 23 Measuring Antenna Field Pattern field strength meter used to measure field pattern • indicates amplitude of received signal • calibrated to receiving antenna • relationship between meter and receive antenna known measured strength in uV/meter received power is in uW/meter • directly indicates EM field strength
  • 24. 24 0o 270o 180o 90o Determination of overall Antenna Field Pattern form Radiation Polar Plot Pattern • use nominal field strength value (e.g. 100uV/m) • measure points for 360o around antenna • record distance & angle from antenna • connect points of equal field strength 100 uV/m practically • distance between meter & antenna kept constant • antenna is rotated • plot of field strength versus angle is made
  • 25. 25 Why Shape the Antenna Field Pattern ? • transmit antennas: produce higher effective power in direction of intended receiver • receive antennas: concentrate energy collecting ability in direction of transmitter - reduced noise levels - receiver only picks up intended signal • avoid unwanted receivers (multiple access interference = MAI): - security - multi-access systems • locate target direction & distance – e.g. radar not always necessary to shape field pattern, standard broadcast is often omnidirectional - 360o
  • 26. 26 Gain is Measured Specific to a Reference Antenna • isotropic antenna often used - gain over isotropic - isotropic antenna – radiates power ideally in all directions - gain measured in dBi - test antenna’s field strength relative to reference isotropic antenna - at same power, distance, and angle - isotropic antenna cannot be practically realized • ½ wave dipole often used as reference antenna - easy to build - simple field pattern (ii) Antenna Gain
  • 27. 27 Antenna Gain ≠ Amplifier Gain • antenna power output = power input – transmission line loss • antenna shapes radiated field pattern • power measured at a point is greater/less than that using reference antenna • total power output doesn’t increase • power output in given direction increases/decreases relative to reference antenna e.g. a lamp is similar to an isotropic antenna a lens is similar to a directional antenna - provides a gain/loss of visible light in a specific direction - doesn’t change actual power radiated by lamp
  • 28. 28 Rotational Antennas can vary direction of antenna gain Directional Antennas focus antenna gain in primary direction • transmit antenna with 6dB gain in specific direction over isotropic antenna  4× transmit power in that direction • receive antenna with 3dB gain is some direction receives 2× as much power than reference antenna Antenna Gain often a cost effective means to (i) increase effective transmit power (ii) effectively improve receiver sensitivity may be only technically viable means • more power may not be available (batteries) • front end noise determines maximum receiver sensitivity
  • 29. 29 (iii) Beamwidth, Lobes & Nulls Lobe: area of high signal strength - main lobe - secondary lobes Nulls: area of very low signal strength Beamwidth: total angle where relative signal power is 3dB below peak value of main lobe - can range from 1o to 360o Beamwidth & Lobes indicate sharpness of pattern focus 0o 270o 180o 90o beam width null
  • 30. 30 Center Frequency = optimum operating frequency Antenna Bandwidth ≡ -3dB points of antenna performance Bandwidth Ratio: Bandwidth/Center Frequency e.g. fc = 100MHz with 10MHz bandwidth - radiated power at 95MHz & 105MHz = ½ radiated power at fc - bandwidth ratio = 10/100 = 10%
  • 31. 31 Main Trade-offs for Antenna Design • directivity & beam width • acceptable lobes • maximum gain • bandwidth • radiation angle Bandwidth Issues High Bandwidth Antennas tend to have less gain than narrowband antennas Narrowband Receive Antenna reduces interference from adjacent signals & reduce received noise power Antenna Design Basics Antenna Dimensions • operating frequencies determine physical size of antenna elements • design often uses λ as a variable (e.g. 1.5 λ length, 0.25 λ spacing)
  • 32. 32 Testing & Adjusting Transmitter  use antenna’s electrical load • Testing required for - proper modulation - amplifier operation - frequency accuracy • using actual antenna may cause significant interference • dummy antenna used for transmitter design (not antenna design) - same impedance & electrical characteristics - dissipates energy vs radiate energy - isolates antenna from problem of testing transmitter
  • 33. 33 Testing Receiver • test & adjust receiver and transmission line without antenna • use single known signal from RF generator • follow on test with several signals present • verify receiver operation first  then connect antenna to verify antenna operation Polarization • EM field has specific orientation of E-field & M field • Polarization Direction determined by antenna & physical orientation • Classification of E-field polarization - horizontal polarization : E-field parallel to horizon - vertical polarization: E-field vertical to horizon - circular polarization: constantly rotating
  • 34. 34 Transmit & Receive Antenna must have same Polarization for maximum signal energy induction • if polarizations aren’t same  E-field of radiated signal will try to induce E-field into wire ⊥ to correct orientation - theoretically no induced voltage - practically – small amount of induced voltage Circular Polarization • compatible with any polarization field from horizontal to vertical • maximum gain is 3dB less than correctly oriented horizontal or vertically polarized antenna
  • 35. 35 Antenna Fundamentals Dipole Antennas (Hertz): simple, old, widely used - root of many advance antennas • consists of 2 spread conductors of 2 wire transmission lines • each conductor is ¼ λ in length • total span = ½ λ + small center gap Distinct voltage & current patterns driven by transmission line at midpoint • i = 0 at end, maximum at midpoint • v = 0 at midpoint, ±vmax at ends • purely resistive impedance = 73Ω • easily matched to many transmission lines gap ¼ λ¼ λ ½ λ Transmission Line +v -v i High Impedance 2k-3kΩ Low Impedance 73Ω
  • 36. 36 E-field (E) & M-field (B) used to determine radiation pattern • E goes through antenna ends & spreads out in increasing loops • B is a series of concentric circles centered at midpoint gap E B
  • 37. 37 Azimuth Pattern Elevation Pattern Polar Radiation Pattern 3-dimensional field pattern is donut shaped antenna is shaft through donut center radiation pattern determined by taking slice of donut - if antenna is horizontal  slice reveals figure 8 - maximum radiation is broadside to antenna’s arms
  • 38. 38 ½λ dipole performance – isotropic reference antenna • in free space  beamwidth = 78o • maximum gain = 2.1dB • dipole often used as reference antenna - feed same signal power through ½ λ dipole & test antenna - compare field strength in all directions Actual Construction (i) propagation velocity in wire < propagation velocity in air (ii) fields have ‘fringe effects’ at end of antenna arms - affected by capacitance of antenna elements 1st estimate: make real length 5% less than ideal - otherwise introduce reactive parameter Useful Bandwidth: 5%-15% of fc • major factor for determining bandwidth is diameter of conductor • smaller diameter  narrow bandwidth
  • 39. 39 Multi-Band Dipole Antennas Transmission Line λ1/4C L C L λ1/4 λ2/4λ2/4 use 1 antenna  support several widely separated frequency bands e.g. HAM Radio - 3.75MHz-29MHz Traps: L,C elements inserted into dipole arms • arms appear to have different lengths at different frequencies • traps must be suitable for outdoor use • 2ndry affects of trap impact effective dipole arm length-adjustable • not useful over 30MHz
  • 40. 40 Transmit Receive Switches • allows use of single antenna for transmit & receive • alternately connects antenna to transmitter & receiver • high transmit power must be isolated from high gain receiver • isolation measured in dB e.g. 100dB isolation 10W transmit signal ≈ 10nW receive signal
  • 41. 41 Elementary Antennas low cost – flexible solutions Long Wire Antenna • effective wideband antenna • length l = several wavelengths - used for signals with 0.1l < λ < 0.5l - frequency span = 5:1 • drawback for band limited systems - unavoidable interference • near end driven by ungrounded transmitter output • far end terminated by resistor - typically several hundred Ω - impedance matched to antenna Z0 • transmitter electrical circuit ground connected to earth Antenna Transmission Line earth ground R=Z0
  • 42. 42 practically - long wire is a lossy transmission line - terminating resistor prevent standing waves Polar radiation pattern • 2 main lobes - on either side of antenna - pointed towards antenna termination • smaller lobes on each side of antenna – pointing forward & back • radiation angle 45o (depending on height)  useful for sky waves angular radiation pattern horizon feed polar ration pattern
  • 43. 43 poor efficiency: transmit power - 50% of transmit power radiated - 50% dissapated in termination resistor receive power - 50% captured EM energy converted to signal for reciever - 50% absorbed by terminating resistor
  • 44. 44 Folded Dipole Antenna - basic ½λ dipole folded to form complete circuit - core to many advanced antennas - mechanically more rugged than dipole - 10% more bandwidth than dipole - input impedance ≈ 292 Ω - close match to std 300Ω twin lead wire transmission line - use of different diameter upper & lower arms  allows variable impedance λ/2
  • 45. 45 Loop & Patch Antenna – wire bent into loops Patch Antenna: rectangular conducting area with || ground plane Area A N-turns V = maximum voltage induced in receiver by EM field B = magnetic field strength flux of EM field A = area of loop N = number of turns f = signal frequency k = physical proportionality factor V = k(2πf)BAN Antenna Plane
  • 46. 46 • Loop & Patch Antennas are easy to embed in a product (e.g. pager) • Broadband antenna - 500k-1600k Hz bandwidth • Not as efficient as larger antennas Radiation Pattern • maximum ⊥ to center axis through loop • very low broadside to the loop • useful for direction finding - rotate loop until signal null (minimum) observed - transmitter is on either side of loop - intersection with 2nd reading pinpoints transmitter
  • 47. 47 552.14 dB Dipole 3600 dBIsotropic Beamwidth -3 dB Gain (over isotropic) ShapeName Radiation Pattern 20 30 50 200 25 14.7 dB 10.1 dB -0.86 dB 3.14 dB 7.14 dB Parabolic Dipole Helical Turnstile Full Wave Loop Yagi Biconical Horn 1515 dBHorn 360x20014 dB