Masayuki Tanaka
Aug. 24, 2016
ADMM algorithm in ProxImaL [1]
Proximal operator [2]
prox 𝑓,𝜌 𝒗 = arg min
𝒙
𝑓 𝒙 +
𝜌
2
𝒙 − 𝒗 2
2
1
Alternating Direction Method of Multipliers
[2]
 ADMM problem
Minimize 𝐼 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔(𝒛) subject to 𝑨𝒙 + 𝑩𝒛 = 𝒄
 Augmented Lagrangian
𝐿 𝜌 𝒙, 𝒛, 𝒚 = 𝑓 𝒙 + 𝑔 𝒛 + 𝒚 𝑇
𝑨𝒙 + 𝑩𝒛 − 𝒄 +
𝜌
2
𝑨𝒙 + 𝑩𝒛 − 𝒄 2
2
= 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2
𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝑢 2
2
+ const. with scaled dual variables 𝒖 =
1
𝜌
𝒚
𝐿 𝜌 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2
𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2
2
 ADMM algorithm
𝒙 𝑘+1 = arg min
𝒙
𝐿 𝜌 (𝒙, 𝒛 𝑘, 𝒖 𝑘) = arg min
𝒙
𝑓 𝒙 +
𝜌
2
𝑨𝒙 + 𝑩𝒛 𝑘 − 𝒄 + 𝒖 𝑘
2
2
𝒛 𝑘+1 = arg min
𝒛
𝐿 𝜌 (𝒙 𝑘+1, 𝒛, 𝒖 𝑘) = arg min
𝒛
𝑔 𝒛 +
𝜌
2
𝑨𝒙 𝑘+1 + 𝑩𝒛 − 𝒄 + 𝒖 𝑘
2
2
𝒖 𝑘+1 = 𝒖 𝑘 + 𝑨𝒙 𝑘+1 + 𝑩𝒛 𝑘+1 − 𝒄
2
Problem of Image Processing
 Example of Cost Function in Image Processing
𝐼 𝒙 = 𝒚 − 𝑫𝒙 2
2
+ 𝛼 𝛻𝒙 1
 General Formulation of Cost Function in Image Proces
𝐼 𝒙 =
𝑖
𝑓𝑖(𝒙) +
𝑗
𝑔𝑗(𝑲𝑗 𝒙)
Quadratic form Non-quadratic form
𝐼 𝒙 =
𝑖
𝑓𝑖(𝒙) +
𝑗
𝑔𝑗(𝒛𝑗) 𝑲𝑗 𝒙 − 𝒛𝑗 = 𝟎
𝐼 𝒙 = 𝑓(𝒙) + 𝑔(𝒛) 𝑲𝒙 − 𝒛 = 𝟎 𝑲 =
𝑲1
𝑲2
⋮
𝒛 =
𝒛1
𝒛2
⋮
𝒛𝑗 = 𝑹𝑗 𝒛
3
𝑔 𝒛 =
𝑗
𝑔𝑗(𝑹𝑗 𝒛 )𝑓 𝒙 =
𝑖
𝑓𝑖(𝒙)
ADMM problem formulation
Augmented Lagrangian
4
𝐼 𝒙 = 𝑓(𝒙) + 𝑔(𝒛) 𝑲𝒙 − 𝒛 = 𝟎 𝑲 =
𝑲1
𝑲2
⋮
𝒛 =
𝒛1
𝒛2
⋮
𝒛𝑗 = 𝑹𝑗 𝒛𝑔 𝒛 =
𝑗
𝑔𝑗(𝑹𝑗 𝒛 )𝑓 𝒙 =
𝑖
𝑓𝑖(𝒙)
ADMM problem formulation
𝐿 𝜌 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2
𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2
2
𝒖𝑗 = 𝑹𝑗 𝒖
𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2
2
= 𝑲𝒙 − 𝒛 + 𝒖 2
2
=
𝑲1
𝑲2
⋮
𝒙 −
𝒛1
𝒛2
⋮
+
𝒖1
𝒖2
⋮ 2
2
=
𝑗
𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2
2
𝐿 𝜌 𝒙, 𝒛, 𝒖 =
𝑖
𝑓𝑖(𝒙) +
𝑗
𝑔𝑗(𝒛𝑗 ) +
𝜌
2
𝑗
𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2
2
ADMM Algorithm
5
𝐿 𝜌 𝒙, 𝒛, 𝒖 =
𝑖
𝑓𝑖(𝒙) +
𝑗
𝑔𝑗(𝒛𝑗 ) +
𝜌
2
𝑗
𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2
2
𝒙 𝑘+1 = arg min
𝒙
𝐿 𝜌 (𝒙, 𝒛 𝑘, 𝒖 𝑘) = arg min
𝒙
𝑖
𝑓𝑖(𝒙) +
𝜌
2
𝑗
𝑲𝑗 𝒙 − 𝒛𝑗
𝑘
+ 𝒖𝑗
𝑘
2
2
𝒛𝑗
𝑘+1
= arg min
𝒛 𝑗
𝐿 𝜌 (𝒙 𝑘+1, 𝒛, 𝒖 𝑘) = arg min
𝒛 𝑗
𝑔𝑗(𝒛𝑗 ) +
𝜌
2
𝑲𝑗 𝒙 𝑘+1 − 𝒛𝑗 + 𝒖𝑗
𝑘
2
2
𝒖𝑗
𝑘+1
= 𝒖𝑗
𝑘
+ 𝑲𝑗 𝒙 𝑘+1 − 𝒛𝑗
𝑘+1
𝒛𝑗, 𝒖𝑗 can be independently calculated.
= prox 𝑔 𝑗,𝜌 (𝑲𝑗 𝒙 𝑘+1
+ 𝒖𝑗
𝑘
)
It usually has the closed form solution in the frequency
domain.
References
[1] F. Heide et al, ProxImaL: Efficient Image Optimization using Proximal
Algorithms, SIGGRAPH 2016.
https://graphics.stanford.edu/~niessner/heide2016proximal.html
[2] S. Boyd et al, Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers, Foundations and Trends in
Machine Learning 2011.
http://web.stanford.edu/~boyd/papers/admm_distr_stats.html
6

ADMM algorithm in ProxImaL

  • 1.
    Masayuki Tanaka Aug. 24,2016 ADMM algorithm in ProxImaL [1]
  • 2.
    Proximal operator [2] prox𝑓,𝜌 𝒗 = arg min 𝒙 𝑓 𝒙 + 𝜌 2 𝒙 − 𝒗 2 2 1
  • 3.
    Alternating Direction Methodof Multipliers [2]  ADMM problem Minimize 𝐼 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔(𝒛) subject to 𝑨𝒙 + 𝑩𝒛 = 𝒄  Augmented Lagrangian 𝐿 𝜌 𝒙, 𝒛, 𝒚 = 𝑓 𝒙 + 𝑔 𝒛 + 𝒚 𝑇 𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝜌 2 𝑨𝒙 + 𝑩𝒛 − 𝒄 2 2 = 𝑓 𝒙 + 𝑔 𝒛 + 𝜌 2 𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝑢 2 2 + const. with scaled dual variables 𝒖 = 1 𝜌 𝒚 𝐿 𝜌 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 + 𝜌 2 𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2 2  ADMM algorithm 𝒙 𝑘+1 = arg min 𝒙 𝐿 𝜌 (𝒙, 𝒛 𝑘, 𝒖 𝑘) = arg min 𝒙 𝑓 𝒙 + 𝜌 2 𝑨𝒙 + 𝑩𝒛 𝑘 − 𝒄 + 𝒖 𝑘 2 2 𝒛 𝑘+1 = arg min 𝒛 𝐿 𝜌 (𝒙 𝑘+1, 𝒛, 𝒖 𝑘) = arg min 𝒛 𝑔 𝒛 + 𝜌 2 𝑨𝒙 𝑘+1 + 𝑩𝒛 − 𝒄 + 𝒖 𝑘 2 2 𝒖 𝑘+1 = 𝒖 𝑘 + 𝑨𝒙 𝑘+1 + 𝑩𝒛 𝑘+1 − 𝒄 2
  • 4.
    Problem of ImageProcessing  Example of Cost Function in Image Processing 𝐼 𝒙 = 𝒚 − 𝑫𝒙 2 2 + 𝛼 𝛻𝒙 1  General Formulation of Cost Function in Image Proces 𝐼 𝒙 = 𝑖 𝑓𝑖(𝒙) + 𝑗 𝑔𝑗(𝑲𝑗 𝒙) Quadratic form Non-quadratic form 𝐼 𝒙 = 𝑖 𝑓𝑖(𝒙) + 𝑗 𝑔𝑗(𝒛𝑗) 𝑲𝑗 𝒙 − 𝒛𝑗 = 𝟎 𝐼 𝒙 = 𝑓(𝒙) + 𝑔(𝒛) 𝑲𝒙 − 𝒛 = 𝟎 𝑲 = 𝑲1 𝑲2 ⋮ 𝒛 = 𝒛1 𝒛2 ⋮ 𝒛𝑗 = 𝑹𝑗 𝒛 3 𝑔 𝒛 = 𝑗 𝑔𝑗(𝑹𝑗 𝒛 )𝑓 𝒙 = 𝑖 𝑓𝑖(𝒙) ADMM problem formulation
  • 5.
    Augmented Lagrangian 4 𝐼 𝒙= 𝑓(𝒙) + 𝑔(𝒛) 𝑲𝒙 − 𝒛 = 𝟎 𝑲 = 𝑲1 𝑲2 ⋮ 𝒛 = 𝒛1 𝒛2 ⋮ 𝒛𝑗 = 𝑹𝑗 𝒛𝑔 𝒛 = 𝑗 𝑔𝑗(𝑹𝑗 𝒛 )𝑓 𝒙 = 𝑖 𝑓𝑖(𝒙) ADMM problem formulation 𝐿 𝜌 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 + 𝜌 2 𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2 2 𝒖𝑗 = 𝑹𝑗 𝒖 𝑨𝒙 + 𝑩𝒛 − 𝒄 + 𝒖 2 2 = 𝑲𝒙 − 𝒛 + 𝒖 2 2 = 𝑲1 𝑲2 ⋮ 𝒙 − 𝒛1 𝒛2 ⋮ + 𝒖1 𝒖2 ⋮ 2 2 = 𝑗 𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2 2 𝐿 𝜌 𝒙, 𝒛, 𝒖 = 𝑖 𝑓𝑖(𝒙) + 𝑗 𝑔𝑗(𝒛𝑗 ) + 𝜌 2 𝑗 𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2 2
  • 6.
    ADMM Algorithm 5 𝐿 𝜌𝒙, 𝒛, 𝒖 = 𝑖 𝑓𝑖(𝒙) + 𝑗 𝑔𝑗(𝒛𝑗 ) + 𝜌 2 𝑗 𝑲𝑗 𝒙 − 𝒛𝑗 + 𝒖𝑗 2 2 𝒙 𝑘+1 = arg min 𝒙 𝐿 𝜌 (𝒙, 𝒛 𝑘, 𝒖 𝑘) = arg min 𝒙 𝑖 𝑓𝑖(𝒙) + 𝜌 2 𝑗 𝑲𝑗 𝒙 − 𝒛𝑗 𝑘 + 𝒖𝑗 𝑘 2 2 𝒛𝑗 𝑘+1 = arg min 𝒛 𝑗 𝐿 𝜌 (𝒙 𝑘+1, 𝒛, 𝒖 𝑘) = arg min 𝒛 𝑗 𝑔𝑗(𝒛𝑗 ) + 𝜌 2 𝑲𝑗 𝒙 𝑘+1 − 𝒛𝑗 + 𝒖𝑗 𝑘 2 2 𝒖𝑗 𝑘+1 = 𝒖𝑗 𝑘 + 𝑲𝑗 𝒙 𝑘+1 − 𝒛𝑗 𝑘+1 𝒛𝑗, 𝒖𝑗 can be independently calculated. = prox 𝑔 𝑗,𝜌 (𝑲𝑗 𝒙 𝑘+1 + 𝒖𝑗 𝑘 ) It usually has the closed form solution in the frequency domain.
  • 7.
    References [1] F. Heideet al, ProxImaL: Efficient Image Optimization using Proximal Algorithms, SIGGRAPH 2016. https://graphics.stanford.edu/~niessner/heide2016proximal.html [2] S. Boyd et al, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning 2011. http://web.stanford.edu/~boyd/papers/admm_distr_stats.html 6