SlideShare a Scribd company logo
1 of 46
Download to read offline
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 1/20 
Un taxi pour Euclide (et non Tobrouk) : 
d´econvolution aveugle parcimonieuse, 
un algorithme pr´econditionn´e 
avec ratio de normes ℓ1/ℓ2 
Laurent Duval 
IFP Energies nouvelles 
GdR ISIS — Probl`emes inverses ; approches myopes et 
aveugles, semi- et non-supervis´ees — 6 novembre 2014
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 2/20 
Taxi passengers 
A. Repetti M. Q. Pham E. Chouzenoux J.-C. Pesquet
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 3/20 
Motivations on blind deconvolution 
Blind deconvolution y = h ∗ s + w, with sparse latent signals 
Ultrasonic NDT/NDE Mass spectrometry/chromatography 
0.4 
0 
−0.4 
−0.8 
1 100 200 300 400 500 600 700 
Seismic deconvolution Others (medical, comm., etc.)
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 3/20 
Motivations on blind deconvolution 
Blind deconvolution y = h ∗ s + w, with sparse latent signals 
◮ h: (unknown) impulse response 
◮ blur, linear sensor response, point spread function, seismic 
wavelet, spectral broadening 
◮ Objective: find estimates (bs,bh 
) ∈ RN1 × RN2 using an 
optimization approach 
◮ Many works on Euclidean (ℓ2) and Taxicab (ℓ1) penalties 
Scale-ambiguity   focus on a scale-invariant contrast function
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
◮ Taxicab-Euclidean norm ratio 
◮ ℓ2 ≤ ℓ1 ≤ √Nℓ2 
◮ Scale-invariant “measure” of sparsity 
◮ Used in the last decade in: 
◮ Non-negative Matrix Factorization (NMF, Hoyer, 2004) 
◮ Sharpness constraint on wavelet coefficients in images 
◮ Non-destructive testing/evaluation (NDT/NDE) 
◮ Sparse recovery 
◮ Bonuses: 
◮ Potential avoidance of pitfalls (Benichoux et al., 2013) 
◮ Earlier mentions in geophysics (Variable norm decon., 1978)
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
Comparison of different measures 
◮ an = 1/N for n ∈ {0, . . . ,N − 1} 
◮ b0 = 1 and bn = 0 for n ∈ {1, . . . ,N − 1} 
◮ Same ℓ1 norm: kak1 = kbk1 = 1 
◮ kak0 = N ≥ kbk0 = 1 
◮ kak1/kak2 = √N ≥ kbk1/kbk2 = 1 
◮ Evaluation of ℓ1/ℓ2 for power laws x → xp, (p > 0)
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
0.2 0.4 0.6 0.8 1 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Time 
Amplitude 
ℓ1 
ℓ2 
= 3.9803 
p = 128 
Power law p = 128
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
p = 0.0078125 
0.2 0.4 0.6 0.8 1 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Time 
Amplitude 
ℓ1 
ℓ2 
= 31.9991 
Power law p = 1/128
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
0.2 0.4 0.6 0.8 1 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Time 
Amplitude 
xp 
Power law series
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
50 100 150 200 250 
30 
25 
20 
15 
10 
5 
0 
p 
ℓ1/ℓ2 
ℓ1/ℓ2 ratios vs power law p
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 
Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 
ℓ0 quasi-norm ℓ1 norm 
ℓ 1 
2 
quasi-norm SOOT ℓ1/ℓ2 norm ratio
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 5/20 
Formulation 
Inverse problem: Estimation of an object of interest x ∈ RN 
obtained by minimizing an objective function 
G = F + R 
where 
◮ F is a data-fidelity term related to the observation model 
◮ R is a regularization term related to some a priori assumptions 
on the target solution 
  e.g. an a priori on the smoothness of a signal, 
  e.g. a support constraint, 
  e.g. a sparsity/sparseness enforcement, 
  e.g. amplitude/energy bounds.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 5/20 
Formulation 
Inverse problem: Estimation of an object of interest x ∈ RN 
obtained by minimizing an objective function 
G = F + R 
where 
◮ F is a data-fidelity term related to the observation model 
◮ R is a regularization term related to some a priori assumptions 
on the target solution 
In the context of large scale problems, how to find an optimization 
algorithm able to deliver a reliable numerical solution 
in a reasonable time, with low memory requirement ? 
⇒ Block alternating minimization. 
⇒ Variable metric.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 6/20 
Minimization problem 
Problem 
Find ˆx ∈ Argmin{G = F + R}, 
where: 
• F : RN → R is differentiable , 
and has an L-Lipschitz gradient on domR, i.e. 
 
∀(x, y) ∈ (domR)2 
k∇F(x) − ∇F(y)k ≤ Lkx − yk, 
• R : RN →] −∞,+∞] is proper, lower semicontinuous. 
• G is coercive, i.e. limkxk→+∞ G(x) = +∞, 
and is non necessarily convex .
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 
Forward-Backward algorithm 
FB Algorithm 
Let x0 ∈ RN 
For ℓ = 0, 1, . . . 
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F(xℓ)) , γℓ ∈]0,+∞[. 
◮ Let x ∈ RN. The proximity operator is defined by 
proxγℓ R(x) = Argmin 
y∈RN 
R(y) + 
1 
2γℓ ky − xk2. 
  When R is nonconvex: 
• Non necessarily uniquely defined. 
• Existence guaranteed if R is bounded from below by an affine 
function.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 
Forward-Backward algorithm 
FB Algorithm 
Let x0 ∈ RN 
For ℓ = 0, 1, . . . 
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F(xℓ)) , γℓ ∈]0,+∞[. 
◮ Let x ∈ RN. The proximity operator is defined by 
proxγℓ R(x) = Argmin 
y∈RN 
R(y) + 
1 
2γℓ ky − xk2. 
  When R is nonconvex: 
• Non necessarily uniquely defined. 
• Existence guaranteed if R is bounded from below by an affine 
function. 
◮ Slow convergence.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 
Variable Metric Forward-Backward algorithm 
 
VMFB Algorithm 
Let x0 ∈ RN 
For ℓ = 0, 1, . . . xℓ+1 ∈ prox 
γ−1 
ℓ Aℓ(xℓ) , R 
 
xℓ − γℓ Aℓ(xℓ) −1∇F(xℓ) 
 
, 
with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix. 
◮ Let x ∈ RN. The proximity operator relative to the metric 
induced by Aℓ(xℓ) is defined by 
proxγ−1 
ℓ Aℓ(xℓ) , R(x) = Argmin 
y∈RN 
R(y) + 
1 
2γℓ ky − xk2 
Aℓ(xℓ).
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 
Variable Metric Forward-Backward algorithm 
 
VMFB Algorithm 
Let x0 ∈ RN 
For ℓ = 0, 1, . . . xℓ+1 ∈ prox 
γ−1 
ℓ Aℓ(xℓ) , R 
 
xℓ − γℓ Aℓ(xℓ) −1∇F(xℓ) 
 
, 
with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix. 
◮ Let x ∈ RN. The proximity operator relative to the metric 
induced by Aℓ(xℓ) is defined by 
proxγ−1 
ℓ Aℓ(xℓ) , R(x) = Argmin 
y∈RN 
R(y) + 
1 
2γℓ ky − xk2 
Aℓ(xℓ). 
◮ Convergence is established for a wide class of nonconvex 
functions G and (Aℓ(xℓ))ℓ∈N are general SDP matrices in 
[Chouzenoux et al., 2013]
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 
Block separable structure 
◮ R is an additively block separable function.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 
Block separable structure 
◮ R is an additively block separable function. 
x ∈ RN 
x(1)∈ RN1 
x(2)∈ RN2 
x(J)∈ RNJ 
N = 
PJ 
˙ =1 
N˙ 
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 
Block separable structure 
◮ R is an additively block separable function. 
x(1) 
x(2) 
R x = R = 
PJ 
˙ =1 
R˙ (x( ˙ )) 
x(J) 
(∀˙ ∈ {1, . . . , J}) R˙ : RN˙ →] −∞,+∞] is a lsc, proper function, 
continuous on its domain and bounded from below by an affine function.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 9/20 
BC Forward-Backward algorithm 
 
BC-FB Algorithm [Bolte et al., 2013] 
Let x0 ∈ RN 
For ℓ = 0, 1, . . . Let ˙ ℓ ∈ {1, . . . , J}, 
x 
( ˙ ℓ) 
ℓ+1 ∈ proxγℓ R˙ℓ 
 
x 
( ˙ ℓ) 
ℓ − γℓ∇˙ ℓF(xℓ) 
 
, γℓ ∈]0,+∞[, 
x 
(ℓ) 
ℓ+1 = x 
(ℓ) 
ℓ . 
◮ Advantages of a block coordinate strategy: 
• more flexibility, 
• reduce computational cost at each iteration, 
• reduce memory requirement.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 10/20 
BC Variable Metric Forward-Backward algorithm 
BC-VMFB Algorithm 
Let x0 ∈ RN 
For ℓ = 0, 1, . . .  
Let ˙ ℓ ∈ {1, . . . , J}, 
x 
( ˙ ℓ) 
ℓ+1 ∈ prox 
γ−1 
ℓ A˙ℓ (xℓ), R˙ℓ 
 
x 
( ˙ ℓ) 
ℓ − γℓ A˙ ℓ(xℓ) −1∇˙ ℓF(xℓ) 
 
, 
x 
(ℓ) 
ℓ+1 = x 
(ℓ) 
ℓ , 
with γℓ ∈]0,+∞[, and A˙ ℓ(xℓ) a SDP matrix. 
Our contributions: 
• How to choose the preconditioning matrices (A˙ ℓ(xℓ))ℓ∈N? 
  Majorize-Minimize principle. 
• How to define a general update rule for ( ˙ ℓ)ℓ∈N? 
  Quasi-cyclic rule.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 11/20 
Majorize-Minimize assumption [Jacobson et al., 2007] 
MM Assumption 
(∀ℓ ∈ N) there exists a lower and upper 
bounded SDP matrix ARN˙×N˙˙(xℓ) ∈ ℓ 
ℓ 
ℓ such that (∀y ∈ RN˙ℓ ) 
Q˙ℓ (y | xℓ) = F(xℓ) + (y − x(˙ℓ) 
ℓ )⊤∇˙ℓF(xℓ) 
2 ky − x(˙ℓ) 
+1 
ℓ k2 
A˙ℓ 
(xℓ), 
is a majorant function on domR˙ℓ of the 
restriction of F to its jℓ-th block at x(˙ℓ) 
ℓ , i.e., 
(∀y ∈ domR˙ℓ ) 
ℓ , . . . , x(˙ℓ−1) 
ℓ , y, x(˙ℓ+1) 
ℓ , . . . , x(J) 
ℓ  
F x(1) 
≤ Q˙ℓ (y | xℓ). 
F (x(1) 
ℓ , . . . , x( ˙ ℓ−1) 
ℓ , ·, x( ˙ ℓ+1) 
ℓ , . . . , x(J) 
ℓ ) 
Q˙ ℓ(· | xℓ) 
x( ˙ ℓ) 
ℓ
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 11/20 
Majorize-Minimize assumption [Jacobson et al., 2007] 
MM Assumption 
(∀ℓ ∈ N) there exists a lower and upper 
bounded SDP matrix ARN˙×N˙˙(xℓ) ∈ ℓ 
ℓ 
ℓ such that (∀y ∈ RN˙ℓ ) 
Q˙ℓ (y | xℓ) = F(xℓ) + (y − x(˙ℓ) 
ℓ )⊤∇˙ℓF(xℓ) 
2 ky − x(˙ℓ) 
+1 
ℓ k2 
A˙ℓ 
(xℓ), 
is a majorant function on domR˙ℓ of the 
restriction of F to its jℓ-th block at x(˙ℓ) 
ℓ , i.e., 
(∀y ∈ domR˙ℓ ) 
ℓ , . . . , x(˙ℓ−1) 
ℓ , y, x(˙ℓ+1) 
ℓ , . . . , x(J) 
ℓ  
F x(1) 
≤ Q˙ℓ (y | xℓ). 
F (x(1) 
ℓ , . . . , x( ˙ ℓ−1) 
ℓ , ·, x( ˙ ℓ+1) 
ℓ , . . . , x(J) 
ℓ ) 
Q˙ ℓ(· | xℓ) 
x( ˙ ℓ) 
ℓ 
domR is convex and F is 
L-Lipschitz differentiable ⇒ 
The above assumption holds if 
(∀ℓ ∈ N) A˙ℓ (xℓ) ≡ L IN˙ℓ
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
• semi-algebraic functions 
• real analytic functions 
• ...
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
• semi-algebraic functions 
• real analytic functions 
• ... 
  So far, almost every practically useful function imagined
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists 
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists 
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. 
Example: J = 3 blocks denoted {1, 2, 3} 
• K = 3: 
• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .} 
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists 
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. 
Example: J = 3 blocks denoted {1, 2, 3} 
• K = 3: 
• cyclic updating order: {1, 2, 3, 1, 2, 3, . . .} 
• example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .} 
• K = 4: possibility to update some blocks more than once every K 
iteration 
• {1, 3, 2, 2, 2, 2, 1, 3, . . .}
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 
Convergence results 
Additional assumptions 
◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: 
For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ  0 and 
θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, 
∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. 
Technical assumption satisfied for a wide class of nonconvex functions 
◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists 
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. 
◮ The step-size is chosen such that: 
• ∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 1 − γ. 
• For every ˙ ∈ {1, . . . , J}, R˙ is a convex function and 
∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 2 − γ.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 13/20 
Convergence results 
Convergence theorem 
Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm. 
◮ Global convergence: 
  (xℓ)ℓ∈N converges to a critical point bx of G. 
  (G(xℓ))ℓ∈N is a nonincreasing sequence converging to 
G(bx). 
◮ Local convergence: 
If (∃υ  0) such that G(x0) ≤ infx∈RN G(x) + υ, 
then (xℓ)ℓ∈N converges to a solution bx to the minimization 
problem.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 13/20 
Convergence results 
Convergence theorem 
Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm. 
◮ Global convergence: 
  (xℓ)ℓ∈N converges to a critical point bx of G. 
  (G(xℓ))ℓ∈N is a nonincreasing sequence converging to 
G(bx). 
◮ Local convergence: 
If (∃υ  0) such that G(x0) ≤ infx∈RN G(x) + υ, 
then (xℓ)ℓ∈N converges to a solution bx to the minimization 
problem. 
  Similar results in [Frankel et al., 2014] 
restricted to a cyclic updating rule for ( ˙ ℓ)ℓ∈N.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 14/20 
Seismic blind deconvolution problem 
0.4 
0 
−0.4 
−0.8 
1 100 200 300 400 500 600 700 
y 
= 
0.4 
0 
−0.4 
−0.8 
1 100 200 300 400 500 600 700 
h ∗ s 
+ 
0.2 
0.1 
0 
−0.1 
−0.2 
1 100 200 300 400 500 600 700 
w 
where 
◮ y ∈ RN1 observed signal (N1 = 784) 
◮ s ∈ RN1 unknown sparse original seismic signal 
◮ h ∈ RN2 unknown original blur kernel (N2 = 41) 
◮ w ∈ RN1 additive noise: realization of a zero-mean white 
Gaussian noise with variance σ2
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 
Proposed criterion 
Observation model: y = h ∗ s + w 
minimize 
s∈RN1 ,h∈RN2 
(G(s, h) = F(s, h) + R1(s) + R2(h)) 
• F(s, h) = 
1 
2kh ∗ s − yk2 
| {z } 
data fidelity term 
+ λ log 
 
ℓ1,α(s) + β 
ℓ2,η(s) 
 
| {z } 
smooth regularization term 
with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), 
for (α, β, η, λ) ∈]0,+∞[4.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 
Proposed criterion 
Observation model: y = h ∗ s + w 
minimize 
s∈RN1 ,h∈RN2 
(G(s, h) = F(s, h) + R1(s) + R2(h)) 
• F(s, h) = 
1 
2kh ∗ s − yk2 
| {z } 
data fidelity term 
+ λ log 
 
ℓ1,α(s) + β 
ℓ2,η(s) 
 
| {z } 
smooth regularization term 
with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), 
for (α, β, η, λ) ∈]0,+∞[4. 
Pp 
 
• ℓ(s) = 
N 
1,s2 
+ α2 n − α 
. 
n=1 
• ℓ2,(s) = 
qPN 
n=1 s2 
n + η2.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 
Proposed criterion 
Observation model: y = h ∗ s + w 
minimize 
s∈RN1 ,h∈RN2 
(G(s, h) = F(s, h) + R1(s) + R2(h)) 
• F(s, h) = 
1 
2kh ∗ s − yk2 
| {z } 
data fidelity term 
+ λ log 
 
ℓ1,α(s) + β 
ℓ2,η(s) 
 
| {z } 
smooth regularization term 
with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), 
for (α, β, η, λ) ∈]0,+∞[4. 
• R1(s) = ι[smin,smax]N1 (s), with (smin, smax) ∈]0,+∞[2. 
• R2(h) = ιC(h), with C = {h ∈ [hmin, hmax]N2 | khk ≤ δ}, for 
(hmin, hmax, δ) ∈]0,+∞[3.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 16/20 
SOOT algorithm: propositions 
Convergence 
Let (sk )k∈N and (hk )k∈N be sequences generated by SOOT. If: 
1. There exists (ν, ν) ∈]0,+∞[2 such that, for all k ∈ N, 
(∀j ∈ {0, . . . , Jk − 1}) ν IN  A1(sk,j , hk )  ν IN, 
(∀i ∈ {0, . . . , Ik − 1}) ν IS  A2(sk+1, hk,i )  ν IS . 
2. Step-sizes γℓ for s and h are chosen in the interval [γ, 2 − γ]. 
3. G is a semi-algebraic function. 
Then (sk , hk )k∈N converges to a critical point (bs,bh 
 ) of G(s, h). 
G(sk , hk ) 
 
k∈N is a nonincreasing sequence converging to G(bs,bh 
).
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 16/20 
SOOT algorithm: propositions 
Construction of the quadratic majorants 
For every (s, h) ∈ RN1 × RN2 , let 
A1(s, h) = 
 
L1(h) + 
9λ 
8η2 
 
IN1 + 
λ 
ℓ1,α(s) + β 
Aℓ1,α(s), 
A2(s, h) = L2(s) IN2 , 
where 
Aℓ1,α(s) = Diag 
 
(s2 
n + α2)−1/2 
 
1≤n≤N1 
 
, 
and L1(h) (resp. L2(s)) is a Lipschitz constant for ∇1ρ(·, h) (resp. 
∇2ρ(s, ·)). Then, A1(s, h) (resp. A2(s, h)) satisfies the majoration 
condition for F(·, h) at s (resp. F(s, ·) at h).
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 
Numerical results 
Effect of the quasi-cyclic rule on convergence speed 
180 
120 
60 
30 
15 
0 100 200 300 400 500 
Ks 
Time (s.) 
Ks : number of iterations on s for one iteration on h
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 
Numerical results 
Noise level (σ) 0.01 0.02 0.03 
Observation error 
ℓ2 (×10−2) 7.14 7.35 7.68 
ℓ1 (×10−2) 2.85 3.44 4.09 
Signal error 
Krishnan et al., 2011 
ℓ2 (×10−2) 1.23 1.66 1.84 
ℓ1 (×10−3) 3.79 4.69 5.30 
SOOT 
ℓ2 (×10−2) 1.09 1.63 1.83 
ℓ1 (×10−3) 3.42 4.30 4.85 
Kernel error 
Krishnan et al., 2011 
ℓ2 (×10−2) 1.88 2.51 3.21 
ℓ1 (×10−2) 1.44 1.96 2.53 
SOOT 
ℓ2 (×10−2) 1.62 2.26 2.93 
ℓ1 (×10−2) 1.22 1.77 2.31 
Time (s.) 
Krishnan et al., 2011 106 61 56 
SOOT 56 22 18
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 
Numerical results 
Sparse seismic reflectivity signal recovery 
• Continuous red line: s 
• Dashed black line: bs 
0.4 
0 
−0.4 
−0.8 
1 100 200 300 400 500 600 700
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 
Numerical results 
Band-pass seismic “wavelet” recovery 
• Continuous red line: h 
• Dashed black line: bh 
1 
0.5 
0 
−0.5 
1 10 20 30 40
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 18/20 
Conclusion 
  Proposition of the SOOT algorithm based on a new 
BC-VMFB algorithm for minimizing the sum of 
• a nonconvex smooth function F, 
• a nonconvex non necessarily smooth function R. 
  Smooth parametric approximations to the ℓ1/ℓ2 norm ratio 
  Convergence results both on iterates and function values. 
  Blocks updated according to a flexible quasi-cyclic rule. 
  Acceleration of the convergence thanks to the choice of 
matrices (A˙ ℓ(xℓ))ℓ∈N based on MM principle. 
  Application to sparse blind deconvolution 
  Results demonstrated on sparse seismic reflectivity series
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 19/20 
Some references 
E. Chouzenoux, J.-C. Pesquet and A. Repetti. 
A block coordinate variable metric Forward-Backward algorithm. 
Tech. Rep., 2013. Available on 
http://www.optimization-online.org/DB HTML/2013/12/4178.html. 
E. Chouzenoux, J.-C. Pesquet and A. Repetti. 
Variable metric Forward-Backward algorithm for minimizing the sum of a 
differentiable function and a convex function. 
J. Optim. Theory and Appl., vol.162, no. 1, pp. 107-132, Jul. 2014. 
E. Chouzenoux, J.-C. Pesquet and A. Repetti. 
A preconditioned Forward-Backward approach with application to 
large-scale nonconvex spectral unmixing problems. 
ICASSP 2014, Florence, Italie, 4-9 May 2014. 
A. Repetti, M.Q. Pham, L. Duval, E. Chouzenoux and J.-C. Pesquet. 
Euclid in a taxicab: sparse blind deconvolution with smoothed ℓ1/ℓ2 
regularization. 
IEEE Signal Processing Letters, May 2015.
Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion  bonuses 
Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 20/20 
So, why Tobrouk (or Tobruk)? 
A bunker named Tobruk 
or a concrete ℓ1 ⊂ ℓ2 embedding

More Related Content

What's hot

Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theoryjfrchicanog
 
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...Reza Rahimi
 
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...Deepak Malani
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problemjfrchicanog
 
2-Approximation Vertex Cover
2-Approximation Vertex Cover2-Approximation Vertex Cover
2-Approximation Vertex CoverKowshik Roy
 
LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15Karen Pao
 
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...PadmaGadiyar
 
lecture 30
lecture 30lecture 30
lecture 30sajinsc
 
Convex optimization methods
Convex optimization methodsConvex optimization methods
Convex optimization methodsDong Guo
 
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-ArtDynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-ArtJinho Choi
 
Fractional calculus and applications
Fractional calculus and applicationsFractional calculus and applications
Fractional calculus and applicationsPlusOrMinusZero
 
Linear Discriminant Analysis and Its Generalization
Linear Discriminant Analysis and Its GeneralizationLinear Discriminant Analysis and Its Generalization
Linear Discriminant Analysis and Its Generalization일상 온
 
Submodularity slides
Submodularity slidesSubmodularity slides
Submodularity slidesdragonthu
 

What's hot (20)

IWSDA2015-talk-16Sept2015
IWSDA2015-talk-16Sept2015IWSDA2015-talk-16Sept2015
IWSDA2015-talk-16Sept2015
 
Np cooks theorem
Np cooks theoremNp cooks theorem
Np cooks theorem
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
 
Spectral factorization
Spectral factorizationSpectral factorization
Spectral factorization
 
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
Linear Programming and its Usage in Approximation Algorithms for NP Hard Opti...
 
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
 
5 csp
5 csp5 csp
5 csp
 
2-Approximation Vertex Cover
2-Approximation Vertex Cover2-Approximation Vertex Cover
2-Approximation Vertex Cover
 
LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15LupoPasini_SIAMCSE15
LupoPasini_SIAMCSE15
 
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...
Discrete Logarithm Problem over Prime Fields, Non-canonical Lifts and Logarit...
 
lecture 30
lecture 30lecture 30
lecture 30
 
Convex optimization methods
Convex optimization methodsConvex optimization methods
Convex optimization methods
 
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-ArtDynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
 
18.1 combining models
18.1 combining models18.1 combining models
18.1 combining models
 
Fractional calculus and applications
Fractional calculus and applicationsFractional calculus and applications
Fractional calculus and applications
 
Linear Discriminant Analysis and Its Generalization
Linear Discriminant Analysis and Its GeneralizationLinear Discriminant Analysis and Its Generalization
Linear Discriminant Analysis and Its Generalization
 
Submodularity slides
Submodularity slidesSubmodularity slides
Submodularity slides
 
PMF BPMF and BPTF
PMF BPMF and BPTFPMF BPMF and BPTF
PMF BPMF and BPTF
 
Boyd 4.6, 4.7
Boyd 4.6, 4.7Boyd 4.6, 4.7
Boyd 4.6, 4.7
 

Similar to Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l_1/l_2 Regularization

lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdfAnaNeacsu5
 
slides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadslides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadFarhad Gholami
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationTasuku Soma
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defenseMarco Ceze
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Taiji Suzuki
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeTasuku Soma
 
Linear Programming (graphical method)
Linear Programming (graphical method)Linear Programming (graphical method)
Linear Programming (graphical method)Kamel Attar
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Yandex
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Wavelets and Other Adaptive Methods
Wavelets and Other Adaptive MethodsWavelets and Other Adaptive Methods
Wavelets and Other Adaptive MethodsKamrul Hasan
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
Building Compatible Bases on Graphs, Images, and Manifolds
Building Compatible Bases on Graphs, Images, and ManifoldsBuilding Compatible Bases on Graphs, Images, and Manifolds
Building Compatible Bases on Graphs, Images, and ManifoldsDavide Eynard
 

Similar to Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l_1/l_2 Regularization (20)

lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
 
slides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhadslides_low_rank_matrix_optim_farhad
slides_low_rank_matrix_optim_farhad
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
 
MarcoCeze_defense
MarcoCeze_defenseMarcoCeze_defense
MarcoCeze_defense
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
Mohammad Sabawi ICETS-2018 Presentation
Mohammad Sabawi ICETS-2018 PresentationMohammad Sabawi ICETS-2018 Presentation
Mohammad Sabawi ICETS-2018 Presentation
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
 
Linear Programming (graphical method)
Linear Programming (graphical method)Linear Programming (graphical method)
Linear Programming (graphical method)
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Presentation OCIP 2015
Presentation OCIP 2015Presentation OCIP 2015
Presentation OCIP 2015
 
Recursive Compressed Sensing
Recursive Compressed SensingRecursive Compressed Sensing
Recursive Compressed Sensing
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Wavelets and Other Adaptive Methods
Wavelets and Other Adaptive MethodsWavelets and Other Adaptive Methods
Wavelets and Other Adaptive Methods
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
Building Compatible Bases on Graphs, Images, and Manifolds
Building Compatible Bases on Graphs, Images, and ManifoldsBuilding Compatible Bases on Graphs, Images, and Manifolds
Building Compatible Bases on Graphs, Images, and Manifolds
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
Deep Learning Opening Workshop - ProxSARAH Algorithms for Stochastic Composit...
 
Pycon openlcdfdm
Pycon openlcdfdmPycon openlcdfdm
Pycon openlcdfdm
 

More from Laurent Duval

Reconstruction and Clustering with Graph optimization and Priors on Gene netw...
Reconstruction and Clustering with Graph optimization and Priors on Gene netw...Reconstruction and Clustering with Graph optimization and Priors on Gene netw...
Reconstruction and Clustering with Graph optimization and Priors on Gene netw...Laurent Duval
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...Laurent Duval
 
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsDuval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsLaurent Duval
 
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...Laurent Duval
 
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-wavelets
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-waveletsDuval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-wavelets
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-waveletsLaurent Duval
 
Transformations en ondelettes 2D directionnelles - Un panorama
Transformations en ondelettes 2D directionnelles - Un panoramaTransformations en ondelettes 2D directionnelles - Un panorama
Transformations en ondelettes 2D directionnelles - Un panoramaLaurent Duval
 
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...Laurent Duval
 

More from Laurent Duval (7)

Reconstruction and Clustering with Graph optimization and Priors on Gene netw...
Reconstruction and Clustering with Graph optimization and Priors on Gene netw...Reconstruction and Clustering with Graph optimization and Priors on Gene netw...
Reconstruction and Clustering with Graph optimization and Priors on Gene netw...
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
 
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-waveletsDuval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
Duval l 20140318_s-journee-signal-image_adaptive-multiple-complex-wavelets
 
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...
Curvelets, contourlets, shearlets, *lets, etc.: multiscale analysis and direc...
 
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-wavelets
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-waveletsDuval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-wavelets
Duval l 20130523_lect_nyu-poly_tech-newyork_tutorial-2d-wavelets
 
Transformations en ondelettes 2D directionnelles - Un panorama
Transformations en ondelettes 2D directionnelles - Un panoramaTransformations en ondelettes 2D directionnelles - Un panorama
Transformations en ondelettes 2D directionnelles - Un panorama
 
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...
Ondelettes, représentations bidimensionnelles, multi-échelles et géométriques...
 

Recently uploaded

dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 

Recently uploaded (20)

dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 

Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l_1/l_2 Regularization

  • 1. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 1/20 Un taxi pour Euclide (et non Tobrouk) : d´econvolution aveugle parcimonieuse, un algorithme pr´econditionn´e avec ratio de normes ℓ1/ℓ2 Laurent Duval IFP Energies nouvelles GdR ISIS — Probl`emes inverses ; approches myopes et aveugles, semi- et non-supervis´ees — 6 novembre 2014
  • 2. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 2/20 Taxi passengers A. Repetti M. Q. Pham E. Chouzenoux J.-C. Pesquet
  • 3. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 3/20 Motivations on blind deconvolution Blind deconvolution y = h ∗ s + w, with sparse latent signals Ultrasonic NDT/NDE Mass spectrometry/chromatography 0.4 0 −0.4 −0.8 1 100 200 300 400 500 600 700 Seismic deconvolution Others (medical, comm., etc.)
  • 4. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 3/20 Motivations on blind deconvolution Blind deconvolution y = h ∗ s + w, with sparse latent signals ◮ h: (unknown) impulse response ◮ blur, linear sensor response, point spread function, seismic wavelet, spectral broadening ◮ Objective: find estimates (bs,bh ) ∈ RN1 × RN2 using an optimization approach ◮ Many works on Euclidean (ℓ2) and Taxicab (ℓ1) penalties Scale-ambiguity focus on a scale-invariant contrast function
  • 5. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) ◮ Taxicab-Euclidean norm ratio ◮ ℓ2 ≤ ℓ1 ≤ √Nℓ2 ◮ Scale-invariant “measure” of sparsity ◮ Used in the last decade in: ◮ Non-negative Matrix Factorization (NMF, Hoyer, 2004) ◮ Sharpness constraint on wavelet coefficients in images ◮ Non-destructive testing/evaluation (NDT/NDE) ◮ Sparse recovery ◮ Bonuses: ◮ Potential avoidance of pitfalls (Benichoux et al., 2013) ◮ Earlier mentions in geophysics (Variable norm decon., 1978)
  • 6. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) Comparison of different measures ◮ an = 1/N for n ∈ {0, . . . ,N − 1} ◮ b0 = 1 and bn = 0 for n ∈ {1, . . . ,N − 1} ◮ Same ℓ1 norm: kak1 = kbk1 = 1 ◮ kak0 = N ≥ kbk0 = 1 ◮ kak1/kak2 = √N ≥ kbk1/kbk2 = 1 ◮ Evaluation of ℓ1/ℓ2 for power laws x → xp, (p > 0)
  • 7. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 0.2 0.4 0.6 0.8 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Time Amplitude ℓ1 ℓ2 = 3.9803 p = 128 Power law p = 128
  • 8. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) p = 0.0078125 0.2 0.4 0.6 0.8 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Time Amplitude ℓ1 ℓ2 = 31.9991 Power law p = 1/128
  • 9. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 0.2 0.4 0.6 0.8 1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Time Amplitude xp Power law series
  • 10. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) 50 100 150 200 250 30 25 20 15 10 5 0 p ℓ1/ℓ2 ℓ1/ℓ2 ratios vs power law p
  • 11. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 4/20 Motivations on ℓ1/ℓ2 (Taxicab-Euclidean ratio) ℓ0 quasi-norm ℓ1 norm ℓ 1 2 quasi-norm SOOT ℓ1/ℓ2 norm ratio
  • 12. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 5/20 Formulation Inverse problem: Estimation of an object of interest x ∈ RN obtained by minimizing an objective function G = F + R where ◮ F is a data-fidelity term related to the observation model ◮ R is a regularization term related to some a priori assumptions on the target solution e.g. an a priori on the smoothness of a signal, e.g. a support constraint, e.g. a sparsity/sparseness enforcement, e.g. amplitude/energy bounds.
  • 13. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 5/20 Formulation Inverse problem: Estimation of an object of interest x ∈ RN obtained by minimizing an objective function G = F + R where ◮ F is a data-fidelity term related to the observation model ◮ R is a regularization term related to some a priori assumptions on the target solution In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement ? ⇒ Block alternating minimization. ⇒ Variable metric.
  • 14. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion & bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 6/20 Minimization problem Problem Find ˆx ∈ Argmin{G = F + R}, where: • F : RN → R is differentiable , and has an L-Lipschitz gradient on domR, i.e. ∀(x, y) ∈ (domR)2 k∇F(x) − ∇F(y)k ≤ Lkx − yk, • R : RN →] −∞,+∞] is proper, lower semicontinuous. • G is coercive, i.e. limkxk→+∞ G(x) = +∞, and is non necessarily convex .
  • 15. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 Forward-Backward algorithm FB Algorithm Let x0 ∈ RN For ℓ = 0, 1, . . . xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F(xℓ)) , γℓ ∈]0,+∞[. ◮ Let x ∈ RN. The proximity operator is defined by proxγℓ R(x) = Argmin y∈RN R(y) + 1 2γℓ ky − xk2. When R is nonconvex: • Non necessarily uniquely defined. • Existence guaranteed if R is bounded from below by an affine function.
  • 16. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 Forward-Backward algorithm FB Algorithm Let x0 ∈ RN For ℓ = 0, 1, . . . xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F(xℓ)) , γℓ ∈]0,+∞[. ◮ Let x ∈ RN. The proximity operator is defined by proxγℓ R(x) = Argmin y∈RN R(y) + 1 2γℓ ky − xk2. When R is nonconvex: • Non necessarily uniquely defined. • Existence guaranteed if R is bounded from below by an affine function. ◮ Slow convergence.
  • 17. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 Variable Metric Forward-Backward algorithm  VMFB Algorithm Let x0 ∈ RN For ℓ = 0, 1, . . . xℓ+1 ∈ prox γ−1 ℓ Aℓ(xℓ) , R xℓ − γℓ Aℓ(xℓ) −1∇F(xℓ) , with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix. ◮ Let x ∈ RN. The proximity operator relative to the metric induced by Aℓ(xℓ) is defined by proxγ−1 ℓ Aℓ(xℓ) , R(x) = Argmin y∈RN R(y) + 1 2γℓ ky − xk2 Aℓ(xℓ).
  • 18. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 7/20 Variable Metric Forward-Backward algorithm  VMFB Algorithm Let x0 ∈ RN For ℓ = 0, 1, . . . xℓ+1 ∈ prox γ−1 ℓ Aℓ(xℓ) , R xℓ − γℓ Aℓ(xℓ) −1∇F(xℓ) , with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SDP matrix. ◮ Let x ∈ RN. The proximity operator relative to the metric induced by Aℓ(xℓ) is defined by proxγ−1 ℓ Aℓ(xℓ) , R(x) = Argmin y∈RN R(y) + 1 2γℓ ky − xk2 Aℓ(xℓ). ◮ Convergence is established for a wide class of nonconvex functions G and (Aℓ(xℓ))ℓ∈N are general SDP matrices in [Chouzenoux et al., 2013]
  • 19. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 Block separable structure ◮ R is an additively block separable function.
  • 20. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 Block separable structure ◮ R is an additively block separable function. x ∈ RN x(1)∈ RN1 x(2)∈ RN2 x(J)∈ RNJ N = PJ ˙ =1 N˙ 
  • 21. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 8/20 Block separable structure ◮ R is an additively block separable function. x(1) x(2) R x = R = PJ ˙ =1 R˙ (x( ˙ )) x(J) (∀˙ ∈ {1, . . . , J}) R˙ : RN˙ →] −∞,+∞] is a lsc, proper function, continuous on its domain and bounded from below by an affine function.
  • 22. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 9/20 BC Forward-Backward algorithm  BC-FB Algorithm [Bolte et al., 2013] Let x0 ∈ RN For ℓ = 0, 1, . . . Let ˙ ℓ ∈ {1, . . . , J}, x ( ˙ ℓ) ℓ+1 ∈ proxγℓ R˙ℓ x ( ˙ ℓ) ℓ − γℓ∇˙ ℓF(xℓ) , γℓ ∈]0,+∞[, x (ℓ) ℓ+1 = x (ℓ) ℓ . ◮ Advantages of a block coordinate strategy: • more flexibility, • reduce computational cost at each iteration, • reduce memory requirement.
  • 23. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 10/20 BC Variable Metric Forward-Backward algorithm BC-VMFB Algorithm Let x0 ∈ RN For ℓ = 0, 1, . . .  Let ˙ ℓ ∈ {1, . . . , J}, x ( ˙ ℓ) ℓ+1 ∈ prox γ−1 ℓ A˙ℓ (xℓ), R˙ℓ x ( ˙ ℓ) ℓ − γℓ A˙ ℓ(xℓ) −1∇˙ ℓF(xℓ) , x (ℓ) ℓ+1 = x (ℓ) ℓ , with γℓ ∈]0,+∞[, and A˙ ℓ(xℓ) a SDP matrix. Our contributions: • How to choose the preconditioning matrices (A˙ ℓ(xℓ))ℓ∈N? Majorize-Minimize principle. • How to define a general update rule for ( ˙ ℓ)ℓ∈N? Quasi-cyclic rule.
  • 24. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 11/20 Majorize-Minimize assumption [Jacobson et al., 2007] MM Assumption (∀ℓ ∈ N) there exists a lower and upper bounded SDP matrix ARN˙×N˙˙(xℓ) ∈ ℓ ℓ ℓ such that (∀y ∈ RN˙ℓ ) Q˙ℓ (y | xℓ) = F(xℓ) + (y − x(˙ℓ) ℓ )⊤∇˙ℓF(xℓ) 2 ky − x(˙ℓ) +1 ℓ k2 A˙ℓ (xℓ), is a majorant function on domR˙ℓ of the restriction of F to its jℓ-th block at x(˙ℓ) ℓ , i.e., (∀y ∈ domR˙ℓ ) ℓ , . . . , x(˙ℓ−1) ℓ , y, x(˙ℓ+1) ℓ , . . . , x(J) ℓ F x(1) ≤ Q˙ℓ (y | xℓ). F (x(1) ℓ , . . . , x( ˙ ℓ−1) ℓ , ·, x( ˙ ℓ+1) ℓ , . . . , x(J) ℓ ) Q˙ ℓ(· | xℓ) x( ˙ ℓ) ℓ
  • 25. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 11/20 Majorize-Minimize assumption [Jacobson et al., 2007] MM Assumption (∀ℓ ∈ N) there exists a lower and upper bounded SDP matrix ARN˙×N˙˙(xℓ) ∈ ℓ ℓ ℓ such that (∀y ∈ RN˙ℓ ) Q˙ℓ (y | xℓ) = F(xℓ) + (y − x(˙ℓ) ℓ )⊤∇˙ℓF(xℓ) 2 ky − x(˙ℓ) +1 ℓ k2 A˙ℓ (xℓ), is a majorant function on domR˙ℓ of the restriction of F to its jℓ-th block at x(˙ℓ) ℓ , i.e., (∀y ∈ domR˙ℓ ) ℓ , . . . , x(˙ℓ−1) ℓ , y, x(˙ℓ+1) ℓ , . . . , x(J) ℓ F x(1) ≤ Q˙ℓ (y | xℓ). F (x(1) ℓ , . . . , x( ˙ ℓ−1) ℓ , ·, x( ˙ ℓ+1) ℓ , . . . , x(J) ℓ ) Q˙ ℓ(· | xℓ) x( ˙ ℓ) ℓ domR is convex and F is L-Lipschitz differentiable ⇒ The above assumption holds if (∀ℓ ∈ N) A˙ℓ (xℓ) ≡ L IN˙ℓ
  • 26. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions • semi-algebraic functions • real analytic functions • ...
  • 27. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions • semi-algebraic functions • real analytic functions • ... So far, almost every practically useful function imagined
  • 28. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions ◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}.
  • 29. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions ◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. Example: J = 3 blocks denoted {1, 2, 3} • K = 3: • cyclic updating order: {1, 2, 3, 1, 2, 3, . . .} • example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .}
  • 30. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions ◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. Example: J = 3 blocks denoted {1, 2, 3} • K = 3: • cyclic updating order: {1, 2, 3, 1, 2, 3, . . .} • example of quasi-cyclic updating order: {1, 3, 2, 2, 1, 3, . . .} • K = 4: possibility to update some blocks more than once every K iteration • {1, 3, 2, 2, 2, 2, 1, 3, . . .}
  • 31. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 12/20 Convergence results Additional assumptions ◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al., 2011]: For every ξ ∈ R, for every bounded E ⊂ RN, there exist κ, ζ 0 and θ ∈ [0, 1) such that, for every x ∈ E such that |G(x) − ξ| ≤ ζ, ∀r ∈ ∂R(x) k∇F(x) + rk ≥ κ|G(x) − ξ|θ. Technical assumption satisfied for a wide class of nonconvex functions ◮ Blocks ( ˙ ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ { ˙ ℓ, . . . , ˙ ℓ+K−1}. ◮ The step-size is chosen such that: • ∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 1 − γ. • For every ˙ ∈ {1, . . . , J}, R˙ is a convex function and ∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 2 − γ.
  • 32. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 13/20 Convergence results Convergence theorem Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm. ◮ Global convergence: (xℓ)ℓ∈N converges to a critical point bx of G. (G(xℓ))ℓ∈N is a nonincreasing sequence converging to G(bx). ◮ Local convergence: If (∃υ 0) such that G(x0) ≤ infx∈RN G(x) + υ, then (xℓ)ℓ∈N converges to a solution bx to the minimization problem.
  • 33. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 13/20 Convergence results Convergence theorem Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm. ◮ Global convergence: (xℓ)ℓ∈N converges to a critical point bx of G. (G(xℓ))ℓ∈N is a nonincreasing sequence converging to G(bx). ◮ Local convergence: If (∃υ 0) such that G(x0) ≤ infx∈RN G(x) + υ, then (xℓ)ℓ∈N converges to a solution bx to the minimization problem. Similar results in [Frankel et al., 2014] restricted to a cyclic updating rule for ( ˙ ℓ)ℓ∈N.
  • 34. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 14/20 Seismic blind deconvolution problem 0.4 0 −0.4 −0.8 1 100 200 300 400 500 600 700 y = 0.4 0 −0.4 −0.8 1 100 200 300 400 500 600 700 h ∗ s + 0.2 0.1 0 −0.1 −0.2 1 100 200 300 400 500 600 700 w where ◮ y ∈ RN1 observed signal (N1 = 784) ◮ s ∈ RN1 unknown sparse original seismic signal ◮ h ∈ RN2 unknown original blur kernel (N2 = 41) ◮ w ∈ RN1 additive noise: realization of a zero-mean white Gaussian noise with variance σ2
  • 35. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 Proposed criterion Observation model: y = h ∗ s + w minimize s∈RN1 ,h∈RN2 (G(s, h) = F(s, h) + R1(s) + R2(h)) • F(s, h) = 1 2kh ∗ s − yk2 | {z } data fidelity term + λ log ℓ1,α(s) + β ℓ2,η(s) | {z } smooth regularization term with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4.
  • 36. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 Proposed criterion Observation model: y = h ∗ s + w minimize s∈RN1 ,h∈RN2 (G(s, h) = F(s, h) + R1(s) + R2(h)) • F(s, h) = 1 2kh ∗ s − yk2 | {z } data fidelity term + λ log ℓ1,α(s) + β ℓ2,η(s) | {z } smooth regularization term with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4. Pp • ℓ(s) = N 1,s2 + α2 n − α . n=1 • ℓ2,(s) = qPN n=1 s2 n + η2.
  • 37. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 15/20 Proposed criterion Observation model: y = h ∗ s + w minimize s∈RN1 ,h∈RN2 (G(s, h) = F(s, h) + R1(s) + R2(h)) • F(s, h) = 1 2kh ∗ s − yk2 | {z } data fidelity term + λ log ℓ1,α(s) + β ℓ2,η(s) | {z } smooth regularization term with ℓ1,α (resp. ℓ2,η) smooth approximation of ℓ1-norm (resp. ℓ2-norm), for (α, β, η, λ) ∈]0,+∞[4. • R1(s) = ι[smin,smax]N1 (s), with (smin, smax) ∈]0,+∞[2. • R2(h) = ιC(h), with C = {h ∈ [hmin, hmax]N2 | khk ≤ δ}, for (hmin, hmax, δ) ∈]0,+∞[3.
  • 38. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 16/20 SOOT algorithm: propositions Convergence Let (sk )k∈N and (hk )k∈N be sequences generated by SOOT. If: 1. There exists (ν, ν) ∈]0,+∞[2 such that, for all k ∈ N, (∀j ∈ {0, . . . , Jk − 1}) ν IN A1(sk,j , hk ) ν IN, (∀i ∈ {0, . . . , Ik − 1}) ν IS A2(sk+1, hk,i ) ν IS . 2. Step-sizes γℓ for s and h are chosen in the interval [γ, 2 − γ]. 3. G is a semi-algebraic function. Then (sk , hk )k∈N converges to a critical point (bs,bh ) of G(s, h). G(sk , hk ) k∈N is a nonincreasing sequence converging to G(bs,bh ).
  • 39. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 16/20 SOOT algorithm: propositions Construction of the quadratic majorants For every (s, h) ∈ RN1 × RN2 , let A1(s, h) = L1(h) + 9λ 8η2 IN1 + λ ℓ1,α(s) + β Aℓ1,α(s), A2(s, h) = L2(s) IN2 , where Aℓ1,α(s) = Diag (s2 n + α2)−1/2 1≤n≤N1 , and L1(h) (resp. L2(s)) is a Lipschitz constant for ∇1ρ(·, h) (resp. ∇2ρ(s, ·)). Then, A1(s, h) (resp. A2(s, h)) satisfies the majoration condition for F(·, h) at s (resp. F(s, ·) at h).
  • 40. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 Numerical results Effect of the quasi-cyclic rule on convergence speed 180 120 60 30 15 0 100 200 300 400 500 Ks Time (s.) Ks : number of iterations on s for one iteration on h
  • 41. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 Numerical results Noise level (σ) 0.01 0.02 0.03 Observation error ℓ2 (×10−2) 7.14 7.35 7.68 ℓ1 (×10−2) 2.85 3.44 4.09 Signal error Krishnan et al., 2011 ℓ2 (×10−2) 1.23 1.66 1.84 ℓ1 (×10−3) 3.79 4.69 5.30 SOOT ℓ2 (×10−2) 1.09 1.63 1.83 ℓ1 (×10−3) 3.42 4.30 4.85 Kernel error Krishnan et al., 2011 ℓ2 (×10−2) 1.88 2.51 3.21 ℓ1 (×10−2) 1.44 1.96 2.53 SOOT ℓ2 (×10−2) 1.62 2.26 2.93 ℓ1 (×10−2) 1.22 1.77 2.31 Time (s.) Krishnan et al., 2011 106 61 56 SOOT 56 22 18
  • 42. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 Numerical results Sparse seismic reflectivity signal recovery • Continuous red line: s • Dashed black line: bs 0.4 0 −0.4 −0.8 1 100 200 300 400 500 600 700
  • 43. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 17/20 Numerical results Band-pass seismic “wavelet” recovery • Continuous red line: h • Dashed black line: bh 1 0.5 0 −0.5 1 10 20 30 40
  • 44. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 18/20 Conclusion Proposition of the SOOT algorithm based on a new BC-VMFB algorithm for minimizing the sum of • a nonconvex smooth function F, • a nonconvex non necessarily smooth function R. Smooth parametric approximations to the ℓ1/ℓ2 norm ratio Convergence results both on iterates and function values. Blocks updated according to a flexible quasi-cyclic rule. Acceleration of the convergence thanks to the choice of matrices (A˙ ℓ(xℓ))ℓ∈N based on MM principle. Application to sparse blind deconvolution Results demonstrated on sparse seismic reflectivity series
  • 45. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 19/20 Some references E. Chouzenoux, J.-C. Pesquet and A. Repetti. A block coordinate variable metric Forward-Backward algorithm. Tech. Rep., 2013. Available on http://www.optimization-online.org/DB HTML/2013/12/4178.html. E. Chouzenoux, J.-C. Pesquet and A. Repetti. Variable metric Forward-Backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory and Appl., vol.162, no. 1, pp. 107-132, Jul. 2014. E. Chouzenoux, J.-C. Pesquet and A. Repetti. A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems. ICASSP 2014, Florence, Italie, 4-9 May 2014. A. Repetti, M.Q. Pham, L. Duval, E. Chouzenoux and J.-C. Pesquet. Euclid in a taxicab: sparse blind deconvolution with smoothed ℓ1/ℓ2 regularization. IEEE Signal Processing Letters, May 2015.
  • 46. Motivations Inverse problems FB and MM tools Seismic blind deconvolution problem Conclusion bonuses Euclid in a Taxicab: ℓ1/ℓ2 sparse blind deconvolution 20/20 So, why Tobrouk (or Tobruk)? A bunker named Tobruk or a concrete ℓ1 ⊂ ℓ2 embedding