Your SlideShare is downloading. ×
0
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Listrik Magnet (4)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Listrik Magnet (4)

1,969

Published on

unj fmipa-fisika

unj fmipa-fisika

Published in: Education
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,969
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
5
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Listrik Magnet<br />Umiatin, M.Si<br />Sesion #04<br />JurusanFisika<br />FakultasMatematikadanIlmuPengetahuanAlam<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />1<br />1/7/2011<br />
  • 2. Outline<br />DeskripsiPotensialListrik<br />Persamaan Poisson dan Laplace <br />PotensialdariDistribusiMuatanTerlokalisasi<br />1/7/2011<br />© 2010 UniversitasNegeri Jakarta | www.unj.ac.id |<br />2<br />
  • 3. ELECTROSTATICS<br />1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />3<br />
  • 4. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />4<br />
  • 5. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />5<br />
  • 6. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />6<br />
  • 7. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />7<br />
  • 8. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />8<br />
  • 9. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />9<br />
  • 10. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />10<br />
  • 11. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />11<br />
  • 12. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />12<br />
  • 13. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />13<br />
  • 14. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />14<br />
  • 15. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />15<br />
  • 16. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />16<br />
  • 17. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />17<br />
  • 18. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />18<br />
  • 19. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />19<br />Separation Variable Method<br />When the potential or charge distribution is specified on the boundaries on some region and we want to find the potential in the interior, the best strategy is solving Laplace’s equation directly through separation variable method. <br />By analyzing the problem we can choose appropriate coordinate system. <br />
  • 20. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />20<br />Example 1 : <br /> Two infinite metal grounded lie parallel to the xz plane, one at y = o, the other at y = a. The left end, at x = 0, is closed of with infinite strip insulated from the two plates and maintained at a specific potential Vo(y). Find the potential inside the slot !<br />
  • 21. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />21<br />Solution : Illustrate the problem in to cartesian coordinate system. Its two dimensional problem. <br />
  • 22. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />22<br />Laplace’ eq :<br />By subtituting the solution below into Laplace’s eq<br />We get<br />
  • 23. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />23<br />Using boundary condition iv:<br />
  • 24. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />24<br />Condition i <br /> D = 0<br />Condition ii <br /> sin ka = 0<br />
  • 25. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />25<br />Next, determine the coefficients Cn<br />
  • 26. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />26<br />
  • 27. 1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />27<br />
  • 28. Thank You<br />1/7/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />28<br />

×