Kalkulus II (3 - 4)

1,954 views

Published on

unj fmipa-fisika

Published in: Education
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,954
On SlideShare
0
From Embeds
0
Number of Embeds
36
Actions
Shares
0
Downloads
0
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide

Kalkulus II (3 - 4)

  1. 1. Kalkulus II<br />Teguh Budi P, M.Si <br />Sesion#03-04<br />JurusanFisika<br />FakultasMatematikadanIlmuPengetahuanAlam<br />1/9/2011<br />1<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  2. 2. Outline<br />Improper Integrals<br />1/9/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />2<br />
  3. 3. Improper Integrals<br />1/9/2011<br />3<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  4. 4. Sometimes we can find integrals for functions where the function or the limits are infinite. These are called improper integrals.<br />Until now we have been finding integrals of continuous functions over closed intervals.<br />1/9/2011<br />4<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  5. 5. Example 1:<br />The function is undefined at x = 1 .<br />Can we find the area under an infinitely high curve?<br />Since x = 1 is an asymptote, the function has no maximum.<br />We could define this integral as:<br />(left hand limit)<br />We must approach the limit from inside the interval.<br />1/9/2011<br />5<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  6. 6. Rationalize the numerator.<br />1/9/2011<br />6<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  7. 7. This integral converges because it approaches a solution.<br />1/9/2011<br />7<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  8. 8. Example 2:<br />(right hand limit)<br />We approach the limit from inside the interval.<br />This integral diverges.<br />1/9/2011<br />8<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  9. 9. The function approaches<br />when .<br />Example 3:<br />1/9/2011<br />9<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  10. 10. 1/9/2011<br />10<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  11. 11. Example 4:<br />(P is a constant.)<br />1/9/2011<br />11<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  12. 12. Thank You<br />1/9/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />12<br />

×