Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Kalkulus II (23 - 24)

1,003 views

Published on

unj fmipa-fisika

Published in: Education
  • Be the first to comment

  • Be the first to like this

Kalkulus II (23 - 24)

  1. 1. Kalkulus II<br />Teguh Budi P, M.Si <br />Sesion#23-24<br />JurusanFisika<br />FakultasMatematikadanIlmuPengetahuanAlam<br />
  2. 2. Constantmultiple rule <br />Higher Order Derivatives<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />2<br />Outline<br />1/9/2011<br />
  3. 3. Multivariable Functions and Their Derivatives(part 1)<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />3<br />1/9/2011<br />
  4. 4. The derivative of a constant is zero.<br />If the derivative of a function is its slope, then for a constant function, the derivative must be zero.<br />example:<br />1/9/2011<br />4<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  5. 5. (Pascal’s Triangle)<br />If we find derivatives with the difference quotient:<br />We observe a pattern:<br />…<br />1/9/2011<br />5<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  6. 6. We observe a pattern:<br />…<br />power rule<br />examples:<br />1/9/2011<br />6<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  7. 7. constant multiple rule:<br />examples:<br />When we used the difference quotient, we observed that since the limit had no effect on a constant coefficient, that the constant could be factored to the outside.<br />1/9/2011<br />7<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  8. 8. constant multiple rule:<br />sum and difference rules:<br />(Each term is treated separately)<br />1/9/2011<br />8<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  9. 9. Horizontal tangents occur when slope = zero.<br />Example:<br />Find the horizontal tangents of: <br />Plugging the x values into the original equation, we get:<br />(The function is even, so we only get two horizontal tangents.)<br />1/9/2011<br />9<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  10. 10. 1/9/2011<br />10<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  11. 11. 1/9/2011<br />11<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  12. 12. 1/9/2011<br />12<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  13. 13. 1/9/2011<br />13<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  14. 14. 1/9/2011<br />14<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  15. 15. First derivative (slope) is zero at:<br />1/9/2011<br />15<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  16. 16. product rule:<br />Notice that this is not just the product of two derivatives.<br />This is sometimes memorized as:<br />1/9/2011<br />16<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  17. 17. quotient rule:<br />or<br />1/9/2011<br />17<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  18. 18. is the first derivative of y with respect to x.<br />is the second derivative.<br />is the third derivative.<br />is the fourth derivative.<br />Higher Order Derivatives:<br />(y double prime)<br />We will learn later what these higher order derivatives are used for.<br />1/9/2011<br />18<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  19. 19. Thank You<br />1/9/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />19<br />

×