SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759
www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-21-27

Some Integral Properties of Aleph Function, General Class of
Polynomials Associated With Feynman Integrals
1,

Yashmeen Khan, and 2, Pallavi Sharma

1,

2,

Department of Mathematics, Government College, Kota, Rajasthan
Department of Mathematics, Kautilya Institute of Technology and Engineering, Jaipur, Rajasthan

ABSTRACT: The aim of the present paper is to discuss certain integral properties of Aleph function and
general class of polynomials. The exact partition of a Gaussian model in statistical mechanics and several other
functions as its particular cases. During the course of finding, we establish certain new double integral
relations pertaining to a product involving a general class of polynomials and the Aleph function.

KEY WORDS AND PHRASES: Feynman integrals, Aleph function, General Class of Polynomials, Hermite
Polynomials, Laguerre Polynomials.

I.

INTRODUCTION

The conventional formulation may fail pertaining to the domain of quantum cosmology but Feynman
path integrals apply interesting by Feynman path integrals are reformulation of quantum mechanics on more
fundamental than the conventional formulation in term of operator. Feynman integral are useful in the study and
development of simple and multiple variable hypergeometric series which in turn are useful in statistics
mechanics.
The Aleph ()-functions, introduced by Südland et al.[9], however the notation and complete definition
is presented here in the following manner in terms of the Mellin-Barnes type integrals
  z]  



1
2 

m, n
y   r
i i



L

 z]  

m, n

x , y   r
i i i

  s) z

x  y   r
i i i


z



m, n

For all z  0 where  

(s)

(a  A 
   a  A 
j
j 1, n i
ji
ji n  1, x  r
i
(b  B 
   b  B 
j
j 1, m i
ji
ji m  1, y  r
i

…(1)

ds

 1 and
m

n




m, n
x  y   r
i i i

 s) 

b

j1
x

r










i 1



1  a

j1

i

a

j n  1

the integration path L  L

j

y



i

j

 B s)

i 

ji

R

 A

ji

 A s
j

…(2)

i



s

j

1  b

j m  1

ji

 B

ji

s

extends from   i  to   i   and is such that the poles, assumed

to be simple, of   1  a  A s), j = 1,…,n do not coincide with the pole of   b  B s), j= 1,…,m the
j

j

j

j

parameter xi, yi are non-negative integers satisfying:
0  n  x 1  m  y  
i

i

The parameters A  B  A
j

j

ji

B

ji

i

 0 for i  1,..., r

 0 and a  b  a
j

j

ji

b

ji

 C. The empty product in (2) is interpreted

as unity. The existence conditions for the defining integral (1) are given below
  0   arg (z) | 



2





  1 r

www.ijmsi.org

…(3)

21 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…


  0   arg (z) | 


 and R {    1  0


2

…(4)



where
n










B   
j
 


m

A



j

j1


j1

x

y





A

j n  1

j







B

x
 y

  b  a     b   a

j
j

j
j
j1
j1
j n  1
 j m  1
For detailed account of the Aleph ()-function see (9) and (10).
The general class of polynomial introduced by Srivastava (9)
m

n

  n)

[n/m]

S

m



 p] 

n

mk

B

k!

k0

n, k

p

k

j

j m  1






…(5)

 1
   x  y    1 r


 2


…(6)

n  0,1,2,...

Main Results:
We shall establish the following results:
(A)
1

1

0 0
 n/m]





 1 p


q 


 1  pq


  n)

mk

B

k!

k0

. 



i 1

y

i 1

 
 m
1  pq
 
S

(1  p)(1  q)  n
 

  r
i

 1 p
 m, n
wq  

x  y   r
i i i
 1  pq


 1 q

w  dp dq

 1  pq


k

k    w

n, k

m, n  1
x



 1 q


 1  pq

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
  1  k      1
 j j 1, m i ji ji m  1, y i  r i



w 



…(2.1)

provided that
T

Re[     b     0   arg w | 
j

j

2

m is an arbitrary positive integer and the coefficient B

 n, k  0) are arbitrary constant, real or complex.

n, k

Proof. We have
m

S

n

 1 p

wq  

1  pq



m, n
x

i

 y  r
i i

m



2 

L

b

j1
x

r





i 1

i



(-n)

mk

B

k !

k0

n, k

 1 p


wq 


1  pq



k

n


1

[n/m]

 1 q

w  dp dq 

1  pq



j

 B s
j

y

i


j n  1

1  a

j1

a

ji

 A

ji

s

j

 A s
j

i



1  b

j m  1

ji

 B

ji

s

 1 q


w 


 1  pq


s

ds

…(2.2)

Multiplying both sides of (2.2) by




 1 p
  1 q  

1  pq
w 

 
 and integrating with respect to p and q between 0 and 1 for both
1  pq
1  pq   (1  p)(1  q) 

 
the variable and we get the result

www.ijmsi.org

22 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…



(B) 

0



 1

f(   w  

0

 n/m]





  n)


mk

B

k!

k0

. 

i 1

y

i 1

  

n

m, n
x  y  r
i i i

 w] d  dw

k   

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k   1 
 j j 1, m i ji ji m  1, y i  r i


m, n  1
x

S

    k 1

f(   

0

n, k

m

 1

w

  r
i


  d



…(2.3)

provided that
Re(     b     0  m is an arbitrary positive integer and coefficients B
j

i

n, k

 n, k  0) are arbitrary

constants, real or complex.
Proof. We have
m

S

n

 

  n)

[n/m]

m, n



 w) 

x  y  r
i i i

mk

B

k!

k0

m

n




1
2 

  b  B s)
j

j1

L

x

r



k



n, k



i 1



j

j1
y

a

j n  1

 A

ji

Multiplying both side (2.4) by f(   w  

 1

s

  1  a  A s  (w)

i



i

j

 1  b

j m  1

 1

w

…(2.4)

ds
i



s)

ji

j

 B s)

ji

ji

and integrating with respect to  and w between 0 and 

for both side the variable and get the result (2.3).
1

 n/m]





1

0 0

(C)

   w  1  w 

  n)

1   

 1

w

m



S

1
mk

B

k!

k0

 1

n, k

k    

f(   1   

n

m, n

 w(1    

k     1

x  y  r
i i i

1  w  d  dw

d

0

  1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

…(2.5)

1  

x
y
  r  b  B 
   b  B 
   1  k      1 
i 1 i 1 i 
j
j 1, m
i
ji
ji m  1, y  r i

i


provided that Re() >0, Re() >0, m is an arbitrary positive integer and coefficient Bn,k (n,k ≥ 0) are arbitrary
constant, real or complex.
Proof. We have
m, n  1

m

S

n

 w  1    

 n/m]

m, n
x  y  r
i i i

1  w  



  n)

2 

L

  b  B s)
j

j1
x

r


i 1



i

n, k

k

w

1   

k

n




B

k!

k0

m

1

mk

j





j

q

i

j n  1

  1  a  A s)

j1

a

ji

 A

ji

s)

j

1  w 

s

ds

…(2.6)

i



 1  b

j m  1

www.ijmsi.org

ji

 B s)
ji

23 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
Multiplying both side of (2.6) by    w  1   

 1

1  w 

 1



w

and integrating with respect to  and w

between 0 and 1 for both the variable and get the result.
1

0 0

(D)

 n/m]





 q(1  p) 


 (1  pq) 

1

  n)

mk

. 

i 1

y



1

 q(1  p)  m, n
 wq(1  p) 

  x  y  r 
 dp dq
i i i 
(1  pq) 
1  pq



m

S

 1  p)

n

  k  z        1

n, k

  1  k     1 ), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k       1 
 j j 1, m i ji ji m  1, y i  r i


m, n
x

 1 q 


 1  pq 

k  z       1

B

k!

k0



i 1

  r
i

T

provided that Re(       b     0   arg w | 
j

i


w 



…(2.7)

  m is an arbitrary integer and the coefficient B n,k

2

(n,k ≥ 0) are arbitrary constant, real or complex.
Proof. We have
m

S

n

 q(1  p)  m, n
 wq(1  p) 

  x  y  r 

i i i   1  pq)
1  pq 



 n/m]



2 

L

  b  B s)
j

j1
x

r





i 1

i

B

n, k

 q(1  p) 


 1  pq 

k

n




mk

k!

k0

m

1

  n)

j



j

y

i



  1  a  A s)

j1

a

j n  1

ji

 A

ji

i



s)

j

 1  b

j m  1

ji

 B s)

 wq(1  p) 


  1  pq) 

s

ds

ji

…(2.8)




  q(1  p) 

 1 q 
1
 and integrating with respect to p and q
Multiplying both side by  



  1  pq 
 1  pq   1  p) 


between 0 and 1for both the variable and get the result (2.7).
3. Particular Cases
By applying our result given in (2.1), (2.3), (2.5), (2.7) to the case of Hermite polynomial (8) and (11)
and by setting

 1

n
n
2 p

In which case m = 2, Bn,k = (1)k.
2

S  p]  p

1

(A)

1

0 0

. 

n/2

H



 1 p
  1 q

q 

 
 1  pq   1  pq

m, n
x  y  r
i i i












 1 p

qw 

(1  p)(1  q)  1  pq


 1 q

w  dp dq H

 1  pq


 1  pq)

n






2


n/2




1

 1 p 


 wq 


 1  pq 


www.ijmsi.org

24 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
 n/2]

  n)





2k

  1

k

k

w

k   

k!

k0

m, n  1
x  1 y  1  r
i
i
i

 1   1   a  A 
   a A 

j
j 1, n i
ji
ji n  1, x  r
i
. w
(b  B 
   b  B 
   1  k     1 
j
j 1, m
i
ji
ji m  1, y  r i

i

valid under the same conditions as obtained from (A).



(B)

0

  n)



. 

  1

k

  1  n/2

i 1

y

i 1

f(   

0

m, n  1
x




2k

k!

k0

p 1

f(   w  w

0

 n/2]





  r
i






H

n






 1  m, n

  x  y   r  w  dw d 
i i i
2 n 

    k 1

d k   

 1   1   a  A 
    a  A 
j
j 1, n
i
ji
ji n  1, x  r
i
(b  B 
   b  B 
   1  k   1 
j
j 1, m
i
ji
ji m  1, y  r i
i


 



valid under the same conditions as required for (B).
1

(C)

1

   w  1   

0 0
. H

 n/2]

  n)





n

. 

 1

w

  n/2

1
2k

k

  1   k    

m, n  1
x

1  w 

1   

n/2


 m, n
1

  x , y   r 1  w  dw d 
i i i
 2 w 1    

k!

k0

 1

i 1

y

i 1

  r
i

    1   

k     1

0

  1   1   a j  A j 1, n    i  a ji  A ji  n  1, x i  r

 b B 
   b  B 
   1  k     1 
 j j 1, m i ji ji n  1, y i  r i



1  



valid under the same condition as required for (C).
(D)
1

1

0 0

 q(1  p) 


 1  pq 

H

 n/2]





  n)

2k

n







2



 1 q


 1  pq





1

q(1  p) 

1  pq 

k

  1     1 

k!

k0






1
1 n  2

 1  p)

m, n
x  y  r
i i i

q

x

i 1

y

 1  pq)

 wq(1  p)


 1  pq

m, n  1
i 1

  r
i

n/2
n/2


 dp dq



  1  k     1   a j  A j 1, n   i  a ji  A ji  n  1, x i  r
w

(b  B 
   b  B 
   1  k     1 
 j j 1, m i ji ji m  1, y i  r i







valid under the same conditions as obtained from (D).
For

the

B

n  r
1




 n   r  1)

n, k

Laguerre

polynomials

([8]and

[11])

setting

'

r

n

n

S  x)  L  x) in

which

case

the result (A), (B),(C) and D reduced to the following formulae
k

www.ijmsi.org

25 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…
(1)
1



 1 p
  1 q

q 

 
 1  pq   1  pq

1

0 0
 n/2]

  n)





n  r
1




 n   r  1)

k

k!

k0




 r  1 p
 m, n
 1 q

 1  pq)

L 

wq  
w  dp dq

 n


x  y  r
i i i  1  pq
 (1  p)(1  q) 
 1  pq



k

w

k  

k

 1   1   a  A 
    a  A 
j
j 1, n
i
ji
ji n  1, x  r
i



(b



m, n  1

. 






x  1 y  1   r
i
i
i

j

B 
   b  B 
   1  k     1 
j 1, m
i
ji
ji m  1, y  r i
i


w



valid under the same conditions as required for (A).


(2)



0

0

  n)

n





 1

f(   w  w

k

k!

k0

.



r

m, n

n

 1

x  y  r
i i i

L  

n  r
1




 n   r  1)



f(   

0

k

 w] dw d 

    k 1

k   

 1   1   a  A 
   a A 
j
j 1, n i
ji
ji n  1, x  r
i



(b



m, n  1
x  1 y  1   r
i
i
i

j

B 
   b  B 
   1  k   1 
j 1, m i
ji
ji m  1, y  r i
i






valid under the same condition as required for (B).
1

(3) 

1

  w    1   

0

0

  n)

n




. 

i 1

y

 1

w



r

L

n

 w  1    

1

k   
k'

0

f    1   

 1   1   a  A 
   a  A 
j
j 1, n i
ji
ji n  1, x  r
i

m, n  1
x

1  w 

n  r
1




 n   r  1)

k

k!

k0

 1

i 1

  r
i

m, n
x , y  r
i i i

1  w  dw d 

  k   1



 b B 
   b  B 
    1  k     1 
 j j 1, m i ji ji n  1, y i  r i







valid under the same condition as required for (C).
(4)
1



 q(1  p) 


 1  pq 

1

0 0

L
n





n

 q(1  p) 


 (1  pq 

  n)

k

k!

k0

.

r

 1 q


 1  pq

i 1

y



1
 1  p)

m, n
x  y  r
i i i

n  r
1




 n   r  1)

 wq(1  p)


 1  pq


 dp dq



  1
k'

 1  k     1   a  A 
   a  A 
j
j 1, n
i
ji
ji n  1, x  r
i

m, n  1
x






i 1

  r
i



(b



j

B 
   b  B 
   1  k     1 
j 1, m
i
ji
ji m  1, y  r i
i


w



valid under the same condition as obtained for (D).

www.ijmsi.org

26 | P a g e
Some Integral Properties Of Aleph Function, General Class Of…

II.

CONCLUSION

The results obtained here are basic in nature and are likely to find useful applications in the study of
simple and multiple variable hypergeometric series which in turn are useful in statistical mechanics, electrical
networks and probability theory. These integrals reformulation of quantum mechanics are more fundamental
than the conventional formulation in terms of operators.

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

Fox C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429.
Grosche, C. and Steiner, F., Hand book of Feynman path integrals, Springer tracts in modern physics, Vol.145, Springer-Verlag,
Berlin Heidelberg, New York (1998).
Mathai.A.M. and Saxena,R.K., The H-function with applications in Statistics and other disciplines, Wiley Eastern, New Delhi,
1978.
Saxena, Ram K and Pogany, Tiber K., On fractional integration formula for Aleph functions, Vol. 218(3), 2011 Applied Math.
Comput. Ilsevier.
Saxena, R.K. and Kumar, R., A basic analogue of generalized H-function, Matematiche (Catania) 50 (1995), 263-271.
Saxena, R.K., Mathai, A.M. and Haubold, H.J., Unified fractional kinetic equation and a diffusion equation, Astrophys. Space Sci.
290 (2004), 299-310.
Srivastava, H.M., Indian J. Math. 14(1972), 1-6.
Srivastava, H.M. and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of
polynomials. Rend. Circ. Mat. Palermo, 2(32), 157-187 (1983).
Südland,N., Bauman,B. and Nonnenmacher,T.F., Open problem; who know about the Aleph ()-functions? Fract. Calc. Appl. Anal.
1(4) (1998); 401-402.
Südland,B., Baumann,B. and Nonnenmacher,T.F., Fractional driftless, Fokker-Planck equation with power law diffusion
coefficients. In V.G. Gangha, E.W. Mayr, W.G. Varozhtsov, editors, Computer Algebra in Scientific Computing (CASC Konstanz
2001), Springer, Berlin (2001); 513-525.
Szego, C., Orthogonal Polynomial, Amer. Math. Soc. Colloq. Publ. 23 fourth edition, Amer. Math. Soc. Providence, Rhode Island,
1975.

www.ijmsi.org

27 | P a g e

More Related Content

What's hot

10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
DAVID GIKUNJU
 
B. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and CosmologyB. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and Cosmology
SEENET-MTP
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theory
Alexander Decker
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
foxtrot jp R
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
Tomonari Masada
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Fuad Anwar
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
Zoe Zontou
 

What's hot (18)

Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
 
Stochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat SpacetimesStochastic Gravity in Conformally-flat Spacetimes
Stochastic Gravity in Conformally-flat Spacetimes
 
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
Some Soliton Solutions of Non Linear Partial Differential Equations by Tan-Co...
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
B. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and CosmologyB. Dragovich: On Modified Gravity and Cosmology
B. Dragovich: On Modified Gravity and Cosmology
 
On 1 d fractional supersymmetric theory
  On 1 d fractional supersymmetric theory  On 1 d fractional supersymmetric theory
On 1 d fractional supersymmetric theory
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Auto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian ApprochAuto Regressive Process (1) with Change Point: Bayesian Approch
Auto Regressive Process (1) with Change Point: Bayesian Approch
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
D0621619
D0621619D0621619
D0621619
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
 

Similar to International Journal of Mathematics and Statistics Invention (IJMSI)

The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
ijtsrd
 

Similar to International Journal of Mathematics and Statistics Invention (IJMSI) (20)

On Some Integrals of Products of H -Functions
On Some Integrals of Products of  H -FunctionsOn Some Integrals of Products of  H -Functions
On Some Integrals of Products of H -Functions
 
A04 07 0105
A04 07 0105A04 07 0105
A04 07 0105
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...A coefficient inequality for the starlike univalent functions in the unit dis...
A coefficient inequality for the starlike univalent functions in the unit dis...
 
Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...Analysis of variance of global experiments with repeated measurements with pr...
Analysis of variance of global experiments with repeated measurements with pr...
 
E028047054
E028047054E028047054
E028047054
 
Solve Equations
Solve EquationsSolve Equations
Solve Equations
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape control
 
A02402001011
A02402001011A02402001011
A02402001011
 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
 
Función de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométricaFunción de Bessel y la función hipergeométrica
Función de Bessel y la función hipergeométrica
 
C024015024
C024015024C024015024
C024015024
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 

International Journal of Mathematics and Statistics Invention (IJMSI)

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 || P-ISSN: 2321 - 4759 www.ijmsi.org || Volume 2 || Issue 1 || February - 2014 || PP-21-27 Some Integral Properties of Aleph Function, General Class of Polynomials Associated With Feynman Integrals 1, Yashmeen Khan, and 2, Pallavi Sharma 1, 2, Department of Mathematics, Government College, Kota, Rajasthan Department of Mathematics, Kautilya Institute of Technology and Engineering, Jaipur, Rajasthan ABSTRACT: The aim of the present paper is to discuss certain integral properties of Aleph function and general class of polynomials. The exact partition of a Gaussian model in statistical mechanics and several other functions as its particular cases. During the course of finding, we establish certain new double integral relations pertaining to a product involving a general class of polynomials and the Aleph function. KEY WORDS AND PHRASES: Feynman integrals, Aleph function, General Class of Polynomials, Hermite Polynomials, Laguerre Polynomials. I. INTRODUCTION The conventional formulation may fail pertaining to the domain of quantum cosmology but Feynman path integrals apply interesting by Feynman path integrals are reformulation of quantum mechanics on more fundamental than the conventional formulation in term of operator. Feynman integral are useful in the study and development of simple and multiple variable hypergeometric series which in turn are useful in statistics mechanics. The Aleph ()-functions, introduced by Südland et al.[9], however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integrals   z]    1 2  m, n y   r i i  L  z]   m, n x , y   r i i i   s) z x  y   r i i i  z   m, n For all z  0 where   (s) (a  A     a  A  j j 1, n i ji ji n  1, x  r i (b  B     b  B  j j 1, m i ji ji m  1, y  r i …(1) ds  1 and m n   m, n x  y   r i i i  s)  b j1 x r       i 1  1  a j1 i a j n  1 the integration path L  L j y  i j  B s) i  ji R  A ji  A s j …(2) i  s j 1  b j m  1 ji  B ji s extends from   i  to   i   and is such that the poles, assumed to be simple, of   1  a  A s), j = 1,…,n do not coincide with the pole of   b  B s), j= 1,…,m the j j j j parameter xi, yi are non-negative integers satisfying: 0  n  x 1  m  y   i i The parameters A  B  A j j ji B ji i  0 for i  1,..., r  0 and a  b  a j j ji b ji  C. The empty product in (2) is interpreted as unity. The existence conditions for the defining integral (1) are given below   0   arg (z) |    2     1 r www.ijmsi.org …(3) 21 | P a g e
  • 2. Some Integral Properties Of Aleph Function, General Class Of…    0   arg (z) |    and R {    1  0  2 …(4)  where n      B    j    m A  j j1  j1 x y   A j n  1 j    B x  y    b  a     b   a  j j  j j j1 j1 j n  1  j m  1 For detailed account of the Aleph ()-function see (9) and (10). The general class of polynomial introduced by Srivastava (9) m n   n) [n/m] S m   p]  n mk B k! k0 n, k p k j j m  1     …(5)  1    x  y    1 r    2  …(6) n  0,1,2,... Main Results: We shall establish the following results: (A) 1 1 0 0  n/m]    1 p   q     1  pq    n) mk B k! k0 .   i 1 y i 1    m 1  pq   S  (1  p)(1  q)  n     r i  1 p  m, n wq    x  y   r i i i  1  pq   1 q  w  dp dq   1  pq  k k    w n, k m, n  1 x   1 q    1  pq   1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B    1  k      1  j j 1, m i ji ji m  1, y i  r i   w    …(2.1) provided that T Re[     b     0   arg w |  j j 2 m is an arbitrary positive integer and the coefficient B  n, k  0) are arbitrary constant, real or complex. n, k Proof. We have m S n  1 p  wq    1  pq   m, n x i  y  r i i m  2  L b j1 x r   i 1 i  (-n) mk B k ! k0 n, k  1 p   wq    1  pq   k n  1 [n/m]  1 q  w  dp dq   1  pq   j  B s j y i  j n  1 1  a j1 a ji  A ji s j  A s j i  1  b j m  1 ji  B ji s  1 q   w     1  pq  s ds …(2.2) Multiplying both sides of (2.2) by    1 p   1 q    1  pq w      and integrating with respect to p and q between 0 and 1 for both 1  pq 1  pq   (1  p)(1  q)     the variable and we get the result www.ijmsi.org 22 | P a g e
  • 3. Some Integral Properties Of Aleph Function, General Class Of…  (B)  0   1 f(   w   0  n/m]     n)  mk B k! k0 .  i 1 y i 1    n m, n x  y  r i i i  w] d  dw k      1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B     1  k   1   j j 1, m i ji ji m  1, y i  r i  m, n  1 x S     k 1 f(    0 n, k m  1 w   r i    d   …(2.3) provided that Re(     b     0  m is an arbitrary positive integer and coefficients B j i n, k  n, k  0) are arbitrary constants, real or complex. Proof. We have m S n     n) [n/m] m, n   w)  x  y  r i i i mk B k! k0 m n   1 2    b  B s) j j1 L x r  k  n, k  i 1  j j1 y a j n  1  A ji Multiplying both side (2.4) by f(   w    1 s   1  a  A s  (w) i  i j  1  b j m  1  1 w …(2.4) ds i  s) ji j  B s) ji ji and integrating with respect to  and w between 0 and  for both side the variable and get the result (2.3). 1  n/m]   1 0 0 (C)    w  1  w    n) 1     1 w m  S 1 mk B k! k0  1 n, k k     f(   1    n m, n  w(1     k     1 x  y  r i i i 1  w  d  dw d 0   1   ;1), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r  …(2.5)  1    x y   r  b  B     b  B     1  k      1  i 1 i 1 i  j j 1, m i ji ji m  1, y  r i  i   provided that Re() >0, Re() >0, m is an arbitrary positive integer and coefficient Bn,k (n,k ≥ 0) are arbitrary constant, real or complex. Proof. We have m, n  1 m S n  w  1      n/m] m, n x  y  r i i i 1  w      n) 2  L   b  B s) j j1 x r  i 1  i n, k k w 1    k n   B k! k0 m 1 mk j   j q i j n  1   1  a  A s) j1 a ji  A ji s) j 1  w  s ds …(2.6) i   1  b j m  1 www.ijmsi.org ji  B s) ji 23 | P a g e
  • 4. Some Integral Properties Of Aleph Function, General Class Of… Multiplying both side of (2.6) by    w  1     1 1  w   1  w and integrating with respect to  and w between 0 and 1 for both the variable and get the result. 1 0 0 (D)  n/m]    q(1  p)     (1  pq)  1   n) mk .  i 1 y  1  q(1  p)  m, n  wq(1  p)     x  y  r   dp dq i i i  (1  pq)  1  pq   m S  1  p) n   k  z        1 n, k   1  k     1 ), (a j  A j 1, n   i  a ji  A ji  n  1, x i  r   b B     b  B     1  k       1   j j 1, m i ji ji m  1, y i  r i  m, n x  1 q     1  pq  k  z       1 B k! k0  i 1   r i T provided that Re(       b     0   arg w |  j i  w    …(2.7)   m is an arbitrary integer and the coefficient B n,k 2 (n,k ≥ 0) are arbitrary constant, real or complex. Proof. We have m S n  q(1  p)  m, n  wq(1  p)     x  y  r   i i i   1  pq) 1  pq     n/m]  2  L   b  B s) j j1 x r   i 1 i B n, k  q(1  p)     1  pq  k n   mk k! k0 m 1   n) j  j y i    1  a  A s) j1 a j n  1 ji  A ji i  s) j  1  b j m  1 ji  B s)  wq(1  p)      1  pq)  s ds ji …(2.8)     q(1  p)    1 q  1  and integrating with respect to p and q Multiplying both side by        1  pq   1  pq   1  p)    between 0 and 1for both the variable and get the result (2.7). 3. Particular Cases By applying our result given in (2.1), (2.3), (2.5), (2.7) to the case of Hermite polynomial (8) and (11) and by setting  1  n n 2 p  In which case m = 2, Bn,k = (1)k. 2 S  p]  p 1 (A) 1 0 0 .  n/2 H   1 p   1 q  q      1  pq   1  pq m, n x  y  r i i i           1 p  qw   (1  p)(1  q)  1  pq   1 q  w  dp dq H   1  pq   1  pq) n      2  n/2    1   1 p     wq     1  pq   www.ijmsi.org 24 | P a g e
  • 5. Some Integral Properties Of Aleph Function, General Class Of…  n/2]   n)   2k   1 k k w k    k! k0 m, n  1 x  1 y  1  r i i i  1   1   a  A     a A   j j 1, n i ji ji n  1, x  r i . w (b  B     b  B     1  k     1  j j 1, m i ji ji m  1, y  r i  i  valid under the same conditions as obtained from (A).  (B) 0   n)  .    1 k   1  n/2 i 1 y i 1 f(    0 m, n  1 x   2k k! k0 p 1 f(   w  w 0  n/2]     r i     H n      1  m, n    x  y   r  w  dw d  i i i 2 n      k 1 d k     1   1   a  A      a  A  j j 1, n i ji ji n  1, x  r i (b  B     b  B     1  k   1  j j 1, m i ji ji m  1, y  r i i      valid under the same conditions as required for (B). 1 (C) 1    w  1    0 0 . H  n/2]   n)   n .   1 w   n/2 1 2k k   1   k     m, n  1 x 1  w  1    n/2   m, n 1    x , y   r 1  w  dw d  i i i  2 w 1     k! k0  1 i 1 y i 1   r i     1    k     1 0   1   1   a j  A j 1, n    i  a ji  A ji  n  1, x i  r   b B     b  B     1  k     1   j j 1, m i ji ji n  1, y i  r i   1     valid under the same condition as required for (C). (D) 1 1 0 0  q(1  p)     1  pq  H  n/2]     n) 2k n      2    1 q    1  pq    1  q(1  p)   1  pq   k   1     1  k! k0     1 1 n  2  1  p) m, n x  y  r i i i q x i 1 y  1  pq)  wq(1  p)    1  pq m, n  1 i 1   r i n/2 n/2   dp dq     1  k     1   a j  A j 1, n   i  a ji  A ji  n  1, x i  r w  (b  B     b  B     1  k     1   j j 1, m i ji ji m  1, y i  r i      valid under the same conditions as obtained from (D). For the B n  r 1      n   r  1) n, k Laguerre polynomials ([8]and [11]) setting ' r n n S  x)  L  x) in which case the result (A), (B),(C) and D reduced to the following formulae k www.ijmsi.org 25 | P a g e
  • 6. Some Integral Properties Of Aleph Function, General Class Of… (1) 1   1 p   1 q  q      1  pq   1  pq 1 0 0  n/2]   n)   n  r 1      n   r  1) k k! k0    r  1 p  m, n  1 q   1  pq)  L   wq   w  dp dq   n   x  y  r i i i  1  pq  (1  p)(1  q)   1  pq   k w k   k  1   1   a  A      a  A  j j 1, n i ji ji n  1, x  r i   (b   m, n  1 .      x  1 y  1   r i i i j B     b  B     1  k     1  j 1, m i ji ji m  1, y  r i i  w   valid under the same conditions as required for (A).  (2)  0 0   n) n    1 f(   w  w k k! k0 .  r m, n n  1 x  y  r i i i L   n  r 1      n   r  1)  f(    0 k  w] dw d      k 1 k     1   1   a  A     a A  j j 1, n i ji ji n  1, x  r i   (b   m, n  1 x  1 y  1   r i i i j B     b  B     1  k   1  j 1, m i ji ji m  1, y  r i i     valid under the same condition as required for (B). 1 (3)  1   w    1    0 0   n) n   .  i 1 y  1 w  r L n  w  1     1 k    k' 0 f    1     1   1   a  A     a  A  j j 1, n i ji ji n  1, x  r i m, n  1 x 1  w  n  r 1      n   r  1) k k! k0  1 i 1   r i m, n x , y  r i i i 1  w  dw d    k   1    b B     b  B      1  k     1   j j 1, m i ji ji n  1, y i  r i      valid under the same condition as required for (C). (4) 1   q(1  p)     1  pq  1 0 0 L n   n  q(1  p)     (1  pq    n) k k! k0 . r  1 q    1  pq i 1 y  1  1  p) m, n x  y  r i i i n  r 1      n   r  1)  wq(1  p)    1  pq   dp dq     1 k'  1  k     1   a  A     a  A  j j 1, n i ji ji n  1, x  r i m, n  1 x     i 1   r i   (b   j B     b  B     1  k     1  j 1, m i ji ji m  1, y  r i i  w   valid under the same condition as obtained for (D). www.ijmsi.org 26 | P a g e
  • 7. Some Integral Properties Of Aleph Function, General Class Of… II. CONCLUSION The results obtained here are basic in nature and are likely to find useful applications in the study of simple and multiple variable hypergeometric series which in turn are useful in statistical mechanics, electrical networks and probability theory. These integrals reformulation of quantum mechanics are more fundamental than the conventional formulation in terms of operators. REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Fox C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429. Grosche, C. and Steiner, F., Hand book of Feynman path integrals, Springer tracts in modern physics, Vol.145, Springer-Verlag, Berlin Heidelberg, New York (1998). Mathai.A.M. and Saxena,R.K., The H-function with applications in Statistics and other disciplines, Wiley Eastern, New Delhi, 1978. Saxena, Ram K and Pogany, Tiber K., On fractional integration formula for Aleph functions, Vol. 218(3), 2011 Applied Math. Comput. Ilsevier. Saxena, R.K. and Kumar, R., A basic analogue of generalized H-function, Matematiche (Catania) 50 (1995), 263-271. Saxena, R.K., Mathai, A.M. and Haubold, H.J., Unified fractional kinetic equation and a diffusion equation, Astrophys. Space Sci. 290 (2004), 299-310. Srivastava, H.M., Indian J. Math. 14(1972), 1-6. Srivastava, H.M. and N.P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo, 2(32), 157-187 (1983). Südland,N., Bauman,B. and Nonnenmacher,T.F., Open problem; who know about the Aleph ()-functions? Fract. Calc. Appl. Anal. 1(4) (1998); 401-402. Südland,B., Baumann,B. and Nonnenmacher,T.F., Fractional driftless, Fokker-Planck equation with power law diffusion coefficients. In V.G. Gangha, E.W. Mayr, W.G. Varozhtsov, editors, Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin (2001); 513-525. Szego, C., Orthogonal Polynomial, Amer. Math. Soc. Colloq. Publ. 23 fourth edition, Amer. Math. Soc. Providence, Rhode Island, 1975. www.ijmsi.org 27 | P a g e