SlideShare a Scribd company logo
1 of 28
How to solve PDEs using  MATHEMATIA and MATLAB G. Y. Park, S. H. Lee and J.K. Lee Department of Electronic and Electrical Engineering, POSTECH 2006. 5. 17 Plasma Application Modeling POSTECH
Contents ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Plasma Application Modeling POSTECH
References ,[object Object],[object Object],[object Object],Plasma Application Modeling POSTECH
PDE (Partial Differential Equation) ,[object Object],[object Object],Plasma Application Modeling POSTECH - Three Types of PDEs: 1) Elliptic:     Steady heat transfer, flow and diffusion 2) Parabolic:    Transient heat transfer, flow and diffusion 3) Hyperbolic:    Transient wave equation
FTCS method for the heat equation FTCS ( Forward Euler in Time and Central difference in Space ) Heat equation in a slab Plasma Application Modeling POSTECH
FTCS method for the heat equation Initial  conditions Plot FTCS
Stability of FTCS and CTCS FTCS is first-order accuracy in time and second-order accuracy in space. So small time steps are required to achieve reasonable accuracy. CTCS method  for heat equation (Both the time and space derivatives are center-differenced.) However, CTCS method is   unstable   for  any  time step size. ( unstable ) Plasma Application Modeling POSTECH Courant condition  for FTCS
Lax method Simple modification to the CTCS method In the differenced time derivative, The resulting difference equation is ( Second-order accuracy in both time and space ) Plasma Application Modeling POSTECH Replacement by average value from surrounding grid points Courant condition  for Lax method
Crank Nicolson Algorithm ( Implicit Method ) BTCS ( Backward time, centered space ) method for heat equation ( This is stable for any choice of time steps, however it is first-order accurate in time. ) Crank-Nicolson scheme for heat equation taking the average between time steps n-1 and n, ( This is stable for any choice of time steps and second-order accurate in time. ) Plasma Application Modeling POSTECH a set of coupled linear equations for
Crank Nicolson Algorithm Initial  conditions Plot Crank-Nicolson scheme Exact solution
Crank Nicolson Algorithm Plasma Application Modeling POSTECH
Multiple Spatial Dimensions FTCS for 2D heat equation Courant condition for this scheme ( Other schemes such as CTCS and Lax can be easily extended to multiple dimensions. ) Plasma Application Modeling POSTECH
Wave equation with nonuniform wave speed 2D wave equation Initial condition : Boundary condition : Wave speed : CTCS method for the wave equation : Courant condition : Plasma Application Modeling POSTECH
Wave equation with nonuniform wave speed Since evaluation of the nth timestep refers back to the n-2nd step,  for the first step, a trick is employed. Since initial velocity and value, Plasma Application Modeling POSTECH
Wave equation with nonuniform wave speed Plasma Application Modeling POSTECH
Wave equation with nonuniform wave speed Plasma Application Modeling POSTECH
2D Poisson’s equation Poisson’s equation Direct Solution for Poisson’s equation Centered-difference the spatial derivatives
Jacobi’s  method ( Relaxation method ) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],FTCS (Maximum time step satisfying Courant condition)
Jacobi method
Simultaneous OverRelaxation (SOR) The convergence of the Jacobi method is quite slow.  Furthermore, the larger the system, the slower the convergence. Simultaneous OverRelaxation (SOR) : the Jacobi method is modified in two ways, ,[object Object],[object Object],[object Object],Plasma Application Modeling POSTECH
Simultaneous OverRelaxation (SOR)
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  dftcs.m >> dftcs dftcs - Program to solve the diffusion equation using the Forward Time Centered Space scheme. Enter time step: 0.0001 Enter the number of grid points: 51 Solution is expected to be stable Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  dftcs.m >> dftcs dftcs - Program to solve the diffusion equation using the Forward Time Centered Space scheme. Enter time step: 0.00015 Enter the number of grid points: 61 WARNING:   Solution is expected to be unstable Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  neutrn.m >>  neutrn Program to solve the neutron diffusion equation using the FTCS. Enter time step: 0.0005 Enter the number of grid points: 61 Enter system length: 2 =>  System length is subcritical Solution is expected to be stable Enter number of time steps: 12000 Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  neutrn.m >>  neutrn Program to solve the neutron diffusion equation using the FTCS. Enter time step: 0.0005 Enter the number of grid points: 61 Enter system length: 4 =>  System length is supercritical Solution is expected to be stable Enter number of time steps: 12000 Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  advect.m >> advect advect - Program to solve the advection equation using the various hyperbolic PDE schemes: FTCS, Lax, Lax-Wendorf Enter number of grid points: 50 Time for wave to move one grid spacing is 0.02 Enter time step: 0.002 Wave circles system in 500 steps Enter number of steps: 500 FTCS FTCS Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  advect.m >> advect advect - Program to solve the advection equation using the various hyperbolic PDE schemes: FTCS, Lax, Lax-Wendorf Enter number of grid points: 50 Time for wave to move one grid spacing is 0.02 Enter time step: 0.02 Wave circles system in 50 steps Enter number of steps: 50 Lax Lax Plasma Application Modeling Group POSTECH
O.V. Manuilenko MATLAB   The Language of Technical Computing MATLAB PDE Run:  relax.m >> relax relax - Program to solve the Laplace equation using Jacobi, Gauss-Seidel and SOR methods on a square grid Enter number of grid points on a side: 50 Theoretical optimum omega = 1.88184  Enter desired omega: 1.8 Potential at y=L equals 1  Potential is zero on all other boundaries Desired fractional change = 0.0001 Plasma Application Modeling Group POSTECH

More Related Content

What's hot

Presentation3 partial differentials equation
Presentation3  partial differentials equationPresentation3  partial differentials equation
Presentation3 partial differentials equation
Alen Pepa
 
Simulation - Generating Continuous Random Variables
Simulation - Generating Continuous Random VariablesSimulation - Generating Continuous Random Variables
Simulation - Generating Continuous Random Variables
Martin Kretzer
 

What's hot (20)

A brief introduction to finite difference method
A brief introduction to finite difference methodA brief introduction to finite difference method
A brief introduction to finite difference method
 
numerical methods
numerical methodsnumerical methods
numerical methods
 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
 
NUMERICAL METHODS IN STEADY STATE, 1D and 2D HEAT CONDUCTION- Part-II
NUMERICAL METHODS IN STEADY STATE, 1D and 2D HEAT CONDUCTION- Part-IINUMERICAL METHODS IN STEADY STATE, 1D and 2D HEAT CONDUCTION- Part-II
NUMERICAL METHODS IN STEADY STATE, 1D and 2D HEAT CONDUCTION- Part-II
 
Numerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conductionNumerical methods in Transient-heat-conduction
Numerical methods in Transient-heat-conduction
 
Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)
 
Roots of Nonlinear Equations - Open Methods
Roots of Nonlinear Equations - Open MethodsRoots of Nonlinear Equations - Open Methods
Roots of Nonlinear Equations - Open Methods
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
Presentation3 partial differentials equation
Presentation3  partial differentials equationPresentation3  partial differentials equation
Presentation3 partial differentials equation
 
Secant Method
Secant MethodSecant Method
Secant Method
 
03 optimization
03 optimization03 optimization
03 optimization
 
Numerical methods
Numerical methodsNumerical methods
Numerical methods
 
Mathematical Modeling for Practical Problems
Mathematical Modeling for Practical ProblemsMathematical Modeling for Practical Problems
Mathematical Modeling for Practical Problems
 
ROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONSROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONS
 
Simulation - Generating Continuous Random Variables
Simulation - Generating Continuous Random VariablesSimulation - Generating Continuous Random Variables
Simulation - Generating Continuous Random Variables
 
CFD Introduction using Ansys Fluent
CFD Introduction using Ansys FluentCFD Introduction using Ansys Fluent
CFD Introduction using Ansys Fluent
 
Simple harmonic oscillator
Simple harmonic oscillatorSimple harmonic oscillator
Simple harmonic oscillator
 
CFD Best Practices & Key Features
CFD Best Practices & Key FeaturesCFD Best Practices & Key Features
CFD Best Practices & Key Features
 
Optimization tutorial
Optimization tutorialOptimization tutorial
Optimization tutorial
 

Similar to Finite DIfference Methods Mathematica

Secrets of supercomputing
Secrets of supercomputingSecrets of supercomputing
Secrets of supercomputing
fikrul islamy
 
Secrets of supercomputing
Secrets of supercomputingSecrets of supercomputing
Secrets of supercomputing
fikrul islamy
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18
Aritra Sarkar
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUES
Mysha Malar M
 
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Power System Operation
 
EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13
Paul Brodbeck
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineering
Talal Ashraf
 

Similar to Finite DIfference Methods Mathematica (20)

DFT.docx
DFT.docxDFT.docx
DFT.docx
 
DFT.docx
DFT.docxDFT.docx
DFT.docx
 
Secrets of supercomputing
Secrets of supercomputingSecrets of supercomputing
Secrets of supercomputing
 
Secrets of supercomputing
Secrets of supercomputingSecrets of supercomputing
Secrets of supercomputing
 
Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18Virus, Vaccines, Genes and Quantum - 2020-06-18
Virus, Vaccines, Genes and Quantum - 2020-06-18
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUES
 
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORMDESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
DESIGN OF DELAY COMPUTATION METHOD FOR CYCLOTOMIC FAST FOURIER TRANSFORM
 
Current Research on Quantum Algorithms.ppt
Current Research on Quantum Algorithms.pptCurrent Research on Quantum Algorithms.ppt
Current Research on Quantum Algorithms.ppt
 
Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016Advanced Molecular Dynamics 2016
Advanced Molecular Dynamics 2016
 
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
Parallel-in-Time Object-Oriented Electromagnetic Transient Simulation of Powe...
 
Quantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of SolidsQuantum Computation for Predicting Electron and Phonon Properties of Solids
Quantum Computation for Predicting Electron and Phonon Properties of Solids
 
EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13EGUE Technikrom Final_8_12_13
EGUE Technikrom Final_8_12_13
 
ECET 345 Entire Course NEW
ECET 345 Entire Course NEWECET 345 Entire Course NEW
ECET 345 Entire Course NEW
 
Digital Wave Formulation of Quasi-Static Partial Element Equivalent Circuit M...
Digital Wave Formulation of Quasi-Static Partial Element Equivalent Circuit M...Digital Wave Formulation of Quasi-Static Partial Element Equivalent Circuit M...
Digital Wave Formulation of Quasi-Static Partial Element Equivalent Circuit M...
 
DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
DIGITAL WAVE FORMULATION OF PEEC METHOD (SLIDES)
 
introduction-to-numerical-methods-in-chemical-engineering
 introduction-to-numerical-methods-in-chemical-engineering introduction-to-numerical-methods-in-chemical-engineering
introduction-to-numerical-methods-in-chemical-engineering
 
Parallel Left Ventricle Simulation Using the FEniCS Framework
Parallel Left Ventricle Simulation Using the FEniCS FrameworkParallel Left Ventricle Simulation Using the FEniCS Framework
Parallel Left Ventricle Simulation Using the FEniCS Framework
 
WHAT IS COMPUTATIONAL FLUID DYNAMICS (CFD)
WHAT IS COMPUTATIONAL FLUID DYNAMICS (CFD)WHAT IS COMPUTATIONAL FLUID DYNAMICS (CFD)
WHAT IS COMPUTATIONAL FLUID DYNAMICS (CFD)
 
Slides TSALBP ACO 2008
Slides TSALBP ACO 2008Slides TSALBP ACO 2008
Slides TSALBP ACO 2008
 
Optimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfersOptimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfers
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Recently uploaded (20)

TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 

Finite DIfference Methods Mathematica

  • 1. How to solve PDEs using MATHEMATIA and MATLAB G. Y. Park, S. H. Lee and J.K. Lee Department of Electronic and Electrical Engineering, POSTECH 2006. 5. 17 Plasma Application Modeling POSTECH
  • 2.
  • 3.
  • 4.
  • 5. FTCS method for the heat equation FTCS ( Forward Euler in Time and Central difference in Space ) Heat equation in a slab Plasma Application Modeling POSTECH
  • 6. FTCS method for the heat equation Initial conditions Plot FTCS
  • 7. Stability of FTCS and CTCS FTCS is first-order accuracy in time and second-order accuracy in space. So small time steps are required to achieve reasonable accuracy. CTCS method for heat equation (Both the time and space derivatives are center-differenced.) However, CTCS method is unstable for any time step size. ( unstable ) Plasma Application Modeling POSTECH Courant condition for FTCS
  • 8. Lax method Simple modification to the CTCS method In the differenced time derivative, The resulting difference equation is ( Second-order accuracy in both time and space ) Plasma Application Modeling POSTECH Replacement by average value from surrounding grid points Courant condition for Lax method
  • 9. Crank Nicolson Algorithm ( Implicit Method ) BTCS ( Backward time, centered space ) method for heat equation ( This is stable for any choice of time steps, however it is first-order accurate in time. ) Crank-Nicolson scheme for heat equation taking the average between time steps n-1 and n, ( This is stable for any choice of time steps and second-order accurate in time. ) Plasma Application Modeling POSTECH a set of coupled linear equations for
  • 10. Crank Nicolson Algorithm Initial conditions Plot Crank-Nicolson scheme Exact solution
  • 11. Crank Nicolson Algorithm Plasma Application Modeling POSTECH
  • 12. Multiple Spatial Dimensions FTCS for 2D heat equation Courant condition for this scheme ( Other schemes such as CTCS and Lax can be easily extended to multiple dimensions. ) Plasma Application Modeling POSTECH
  • 13. Wave equation with nonuniform wave speed 2D wave equation Initial condition : Boundary condition : Wave speed : CTCS method for the wave equation : Courant condition : Plasma Application Modeling POSTECH
  • 14. Wave equation with nonuniform wave speed Since evaluation of the nth timestep refers back to the n-2nd step, for the first step, a trick is employed. Since initial velocity and value, Plasma Application Modeling POSTECH
  • 15. Wave equation with nonuniform wave speed Plasma Application Modeling POSTECH
  • 16. Wave equation with nonuniform wave speed Plasma Application Modeling POSTECH
  • 17. 2D Poisson’s equation Poisson’s equation Direct Solution for Poisson’s equation Centered-difference the spatial derivatives
  • 18.
  • 20.
  • 22. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: dftcs.m >> dftcs dftcs - Program to solve the diffusion equation using the Forward Time Centered Space scheme. Enter time step: 0.0001 Enter the number of grid points: 51 Solution is expected to be stable Plasma Application Modeling Group POSTECH
  • 23. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: dftcs.m >> dftcs dftcs - Program to solve the diffusion equation using the Forward Time Centered Space scheme. Enter time step: 0.00015 Enter the number of grid points: 61 WARNING: Solution is expected to be unstable Plasma Application Modeling Group POSTECH
  • 24. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: neutrn.m >> neutrn Program to solve the neutron diffusion equation using the FTCS. Enter time step: 0.0005 Enter the number of grid points: 61 Enter system length: 2 => System length is subcritical Solution is expected to be stable Enter number of time steps: 12000 Plasma Application Modeling Group POSTECH
  • 25. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: neutrn.m >> neutrn Program to solve the neutron diffusion equation using the FTCS. Enter time step: 0.0005 Enter the number of grid points: 61 Enter system length: 4 => System length is supercritical Solution is expected to be stable Enter number of time steps: 12000 Plasma Application Modeling Group POSTECH
  • 26. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: advect.m >> advect advect - Program to solve the advection equation using the various hyperbolic PDE schemes: FTCS, Lax, Lax-Wendorf Enter number of grid points: 50 Time for wave to move one grid spacing is 0.02 Enter time step: 0.002 Wave circles system in 500 steps Enter number of steps: 500 FTCS FTCS Plasma Application Modeling Group POSTECH
  • 27. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: advect.m >> advect advect - Program to solve the advection equation using the various hyperbolic PDE schemes: FTCS, Lax, Lax-Wendorf Enter number of grid points: 50 Time for wave to move one grid spacing is 0.02 Enter time step: 0.02 Wave circles system in 50 steps Enter number of steps: 50 Lax Lax Plasma Application Modeling Group POSTECH
  • 28. O.V. Manuilenko MATLAB The Language of Technical Computing MATLAB PDE Run: relax.m >> relax relax - Program to solve the Laplace equation using Jacobi, Gauss-Seidel and SOR methods on a square grid Enter number of grid points on a side: 50 Theoretical optimum omega = 1.88184 Enter desired omega: 1.8 Potential at y=L equals 1 Potential is zero on all other boundaries Desired fractional change = 0.0001 Plasma Application Modeling Group POSTECH