Outline    Simple Strategies        (RNFLVR)       Predictable Stieltjes Integrals   Consistent Price Systems




        ...
Outline   Simple Strategies   (RNFLVR)    Predictable Stieltjes Integrals   Consistent Price Systems



                  ...
Outline        Simple Strategies   (RNFLVR)     Predictable Stieltjes Integrals   Consistent Price Systems



            ...
Outline        Simple Strategies         (RNFLVR)           Predictable Stieltjes Integrals   Consistent Price Systems



...
Outline   Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals       Consistent Price Systems



               ...
Outline        Simple Strategies   (RNFLVR)     Predictable Stieltjes Integrals   Consistent Price Systems



            ...
Outline   Simple Strategies       (RNFLVR)        Predictable Stieltjes Integrals   Consistent Price Systems



          ...
Outline   Simple Strategies    (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



                  ...
Outline   Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals       Consistent Price Systems



               ...
Outline        Simple Strategies        (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



         ...
Outline        Simple Strategies    (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



             ...
Outline   Simple Strategies     (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



                 ...
Outline   Simple Strategies    (RNFLVR)        Predictable Stieltjes Integrals   Consistent Price Systems



             ...
Outline        Simple Strategies         (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



        ...
Outline       Simple Strategies    (RNFLVR)    Predictable Stieltjes Integrals    Consistent Price Systems



            ...
Outline        Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



              ...
Outline        Simple Strategies      (RNFLVR)       Predictable Stieltjes Integrals   Consistent Price Systems



       ...
Outline        Simple Strategies       (RNFLVR)              Predictable Stieltjes Integrals       Consistent Price System...
Outline       Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



               ...
Outline        Simple Strategies    (RNFLVR)            Predictable Stieltjes Integrals   Consistent Price Systems



    ...
Outline        Simple Strategies             (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



    ...
Outline   Simple Strategies       (RNFLVR)            Predictable Stieltjes Integrals         Consistent Price Systems



...
Outline   Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



                   ...
Outline        Simple Strategies              (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



   ...
Outline         Simple Strategies   (RNFLVR)         Predictable Stieltjes Integrals   Consistent Price Systems



       ...
Outline   Simple Strategies   (RNFLVR)   Predictable Stieltjes Integrals   Consistent Price Systems



                   ...
Upcoming SlideShare
Loading in …5
×

Fundamental Theorem of Asset Pricing

1,181
-1

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,181
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Fundamental Theorem of Asset Pricing

  1. 1. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems The Fundamental Theorem of Asset Pricing under Transaction Costs Paolo Guasoni (joint work with Miklós Rásonyi) Boston University Department of Mathematics and Statistics
  2. 2. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Overview Model Bid and Ask Prices in continuous time. Jumps allowed. Theorem (Robust No Free Lunch with Vanishing Risk) (Exists Strictly Consistent Price System) Getting there: what is an admissible strategy? Consequences (RNFLVR) ⇒ Finite variation strategies. No stochastic integrals. Do we need a probability?
  3. 3. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Model One risky and one risk-free asset. Risk-free asset as numeraire. Risky asset: Bid price St − κt , Ask price St + κt . Prices may become negative. Numeraire does matter. Assumption (Ω, F, (F)0≤t≤T , P) filtered probability space. Usual conditions. (S, κ) càdlàg adapted locally bounded. κ ≥ 0.
  4. 4. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Simple Strategies Definition Simple strategy: θ predictable, θ0 = θT = 0, and: ∞ θσ n 1 + θσ n 1 θ= + σn σn ,σn+1 n=1 (σn )n≥1 strictly increasing stopping times. supn≥1 σn > T a.s., that is P(∪n≥1 {σn > T }) = 1. Finite number of transactions. May depend on ω. Doubling Strategies? Left and Right Transactions.
  5. 5. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Left and Right Transactions Right transaction at a stopping time σ and price (S ± κ)σ . Trade “when market opens”. a q Left transaction at a predictable time σ and price (S ± κ)σ− . q Trade “before market closes”. a In general two transactions: a q a Both right and left transactions considered simple.
  6. 6. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Cost Definition Cost of a simple strategy θ: ∞ (S + κ)σ− (θσn − θσ+ )+ + (S + κ)σn (θσn − θσn )+ C(θ) = + n n−1 n=1 ∞ (S − κ)σ− (θσn − θσ+ )− + (S − κ)σn (θσn − θσn )− − + n n−1 n=1 Purchases minus sales, for left and right transactions. Terminal value V (θ) = −C(θ).
  7. 7. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems What is an Admissible Strategy? Numeraire-free version. For some c > 0: V (θ) ≥ −c(1 + ST ) Too loose: Not the usual definition. Martingales vs. Local martingales. Leverage without collateral. c(ST − S0 ) admissible. Many banks still alive... Naïve definition. For some c > 0: V (θ1[0,t] ) ≥ −c for all t ∈ [0, T ] Too strict: Payoff space not closed. Forget separation arguments. No leverage with markets closed. All banks dead.
  8. 8. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Freeze, Wait, Close You cannot trade your way out of losses. Anytime, the broker can freeze the account, and wait for a good time to close risky positions, for a bounded loss. A simple strategy θ is admissible if and only if, after every transaction, there exists a liquidation time. Continuous prices (or totally inaccessible jumps): for all t, there exists a stopping time t ≤ τ ≤ T such that V (θ1[0,t] + θt 1 t,τ ) + x ≥ 0 for some x > 0. Accessible jumps allowed: Both freeze and liquidation either left or right. Four cases.
  9. 9. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Four Cases Right Freeze and Right Close. a q q a a Right Freeze and Left Close. a a q a q Left Freeze and Right Close. q q a a Left Freeze and Left Close. q a a q
  10. 10. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Freeze and Close, Left or Right ˆ Discrete filtration F = (F0 , Fσ− , Fσ1 , Fσ− , Fσ2 , . . . ) 1 2 ˆˆ (S, κ)n≥0 defined analogously. ˆ (θt )0≤t≤T induces (θn )n≥0 defined as ˆ ˆˆ θ = (0, θσ , θ + , θσ , θ + , . . . ). θ is F-adapted. σ1 σ2 1 2 Definition θ simple x-admissible if, for all k ≥ 0, there exists a liquidation strategy k θ, such that: ˆ ˆ i) k θ = θ·∧k 1{·<λk } for some F-stopping time λk > k a.s. (liquidation time). ii) x + V (k θ) ≥ 0. Reduces to frictionless definition for κ = 0.
  11. 11. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems No Simple Arbitrage Definition Simple arbitrage: θ ∈ As such that P(V (θ) ≥ 0) = 1 and P(V (θ) > 0) > 0. (NA-S): θ ∈ As and P(V (θ) ≥ 0) = 1 implies that V (θ) = 0. Proposition If (NA-S) holds, then As = {θ ∈ As : x + V (θ) ≥ 0 a.s.}. x Admissibility of θ depends on final payoff only. Key property to obtain closedness of admissible payoffs. ⊂ easy. ⊃ far less so.
  12. 12. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems The Frictionless Story Frictionless markets: κ = 0. (1) (NFLVR) for Simple Strategies ⇓ S is a semimartingale ⇓ Payoffs of general strategies as stochastic integrals θdS (2) (NFLVR) for General Strategies ⇓ Equivalent Local Martingale Measure “The use of general integrands however seems more difficult to interpret and their use can be questioned in economic models” (Delbaen and Schachemayer, 1994)
  13. 13. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Payoffs as Integrals Frictionless payoffs: θdS stochastic integrals. Approximations. θ is x-admissible. (x + ε)-admissible θn with |θ − θn | < ε? No, in general. Model misspecifications. If S and S are close, are dS and dS close? θ θ No, again. Needs underlying probability. Why? Troubling properties. Only simple strategies concrete. No probability in accounting.
  14. 14. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems (Robust) No Free Lunch with Vanishing Risk Definition (S, κ) satisfies i) (NFLVR) if, for any sequence (θn )n≥1 such that θn ∈ As 1/n and V (θn ) converges a.s. to some limit V , then V = 0 a.s. ii) (RNFLVR) if, there exists (S , κ ) satisfying (NFLVR), and the bid-ask spread of (S , κ ) is within that of (S, κ): inf (κt − κt − |St − St |) > 0 a.s. t∈[0,T ] (RNFLVR) ⇒ efficient friction: inft∈[0,T ] κt > 0 a.s. Only simple strategies.
  15. 15. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems General Admissible Strategies Definition (θn )n≥1 ⊂ As converges admissibly to (θt )t∈[0,T ] : θn ∈ As n x+1/n for some x > 0, and θ converge to θ a.s. Any such limit is an x-admissible strategy. Ax : x-admissible strategies. A := ∪x>0 Ax admissible strategies. Cost C(θ) of θ ∈ A (limits in a.s. sense): adm C(θ) = ess inf lim inf C(θn ) : θn −→ θ n→∞ x-admissible as limit of simple, almost x-admissible. Cost of θ as the lowest cost of its simple approximations.
  16. 16. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Admissible implies Finite Variation Proposition If (RNFLVR) holds, any admissible strategy has finite variation. Finite variation derived, not assumed. Explicit expression for C(θ)? Interpretation? Properties?
  17. 17. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Predictable Stieltjes Integrals Definition S càdlàg. θ predictable finite variation. Integral: Sdθ− − (θs − θs− )∆Ss IT (S, θ) = [0,T ] s≤T Stieltjes integral plus correction term. No probability. Look at Sdθ, not θdS! Why this definition?
  18. 18. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Simple Strategies Proposition ∞ i) If θ = θ τn 1 + θ τn 1 predictable, then + τn τn ,τn+1 n=1 Sτ − (θτi − θτ − ) + Sτi (θτ + − θτi ) IT (S, θ) = i i i τi ≤T τi <T ∗ ii) IT is linear both in S and in θ, and |IT (S, θ)| ≤ θ T ST Consistent with simple strategies. Robust for misspecifications.
  19. 19. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Convergence Theorem i) supn≥1 θn T < ∞. θn → θ pointwise ⇒ I(S, θn ) → I(S, θ) pointwise. ii) supn≥1 θn T < ∞ and S ≥ 0. θn → θ pointwise ⇒ lim infn I(S, θn ) ≥ I(S, θ ) pointwise. Lebesgue and Fatou properties... ...but for the integrator. Still no probability.
  20. 20. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Approximations Theorem S càdlàg adapted locally bounded. θ predictable finite variation. For all ε > 0 there exists a simple strategy: ∞ θσ n 1 + θσ n 1 θ= + σn σn ,σn+1 n=0 satisfying θ ∈ PV , |θ − θ| ≤ ε, | Sdθ − Sdθ| ≤ ε and θ ≤ θ pointwise on [0, T ] (outside a P-zero set). If θ x-admissible, there exists (x + ε)-admissible θε . Simple approximations for any finite variation strategy. Approximation depends on probability.
  21. 21. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Compatible with Stochastic Integral Proposition θ predictable finite variation. S càdlàg semimartingale. T T Sdθ = θT ST − θ0 S0 − θdS, 0 0 Left: predictable Stieltjes integral. Right: usual stochastic integral. Linked by integration by parts.
  22. 22. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Representation for Cost adm Cost: C(θ) = ess inf lim infn→∞ C(θn ) : θn −→ θ Explicit formula with predictable Stieltjes integrals: C(θ) = Sdθ + κd θ [0,T ] [0,T ] Simple approximations with simple strategies. For all ε > 0 there exists θε simple such that: |θ − θε |, |C(θ) − C(θε )| < ε a.s. Crucial consequence: payoff space C = {V (θ) : θ ∈ A} − L0 Fatou closed. + Separation works. Kreps-Yan Theorem.
  23. 23. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems A Path Downhill Understanding admissibility and value as main problems. Kreps-Yan theorem: separating measure. Sandwich martingale within bid and ask. Well-known path (Jouini-Kallal, Cherny, Choulli-Stricker) New admissibility: supermartingale property?
  24. 24. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Consistent Price Systems Definition Strictly Consistent Price System (SCPS): pair (M, Q) of probability Q equivalent to P and Q-local martingale M within bid-ask spread: inf (κt − |St − Mt |) > 0 a.s. t∈[0,T ] Consistent Price System (CPS) if inequality not strict. Proposition EQ [V (M,0) (θ)] ≤ 0 for any CPS (M, Q) and θ ∈ A. Analogue of supermartingale property. (SCPS) ⇒ (RNFLVR) clear.
  25. 25. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems From Separating Measure to CPS Lemma (Xt )t∈[0,T ] and (Yt )t∈[0,T ] be two càdlàg processes. The following conditions are equivalent: i) There exists a càdlàg martingale (Mt )t∈[0,T ] such that: X ≤M≤Y a.s. ii) For all stopping times σ, τ such that 0 ≤ σ ≤ τ ≤ T a.s.: E [ Xτ | Fσ ] ≤ Yσ E [ Yτ | Fσ ] ≥ Xσ and a.s. ii) ⇒ i) delivers CPS from separating measure.
  26. 26. Outline Simple Strategies (RNFLVR) Predictable Stieltjes Integrals Consistent Price Systems Conclusion Bid and ask prices moving freely. Value? Admissibility? Arbitrage? Finite Variation? The Fundamental Theorem as a tool to understand. Left and Right Transactions. Admissibility: freeze, wait and close. Anytime. Robust no free lunches and finite variation. Thank You!
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×