SlideShare a Scribd company logo
1 of 10
Download to read offline
Nonfasting Glucose, Ischemic Heart Disease,
and Myocardial Infarction
A Mendelian Randomization Study
Marianne Benn, MD, PHD, DMSC,*†‡ Anne Tybjærg-Hansen, MD, DMSC,†‡§ʈ
Mark I. McCarthy, MD,¶#** Gorm B. Jensen, MD, DMSC,‡§ Peer Grande, MD, DMSC,‡§
Børge G. Nordestgaard, MD, DMSC*†‡ʈ
Herlev and Copenhagen, Denmark; and Oxford, United Kingdom
Objectives The purpose of this study was to test whether elevated nonfasting glucose levels associate with and cause isch-
emic heart disease (IHD) and myocardial infarction (MI).
Background Elevated fasting plasma glucose levels associate with increased risk of IHD, but whether this is also true for non-
fasting levels and whether this is a causal relationship is unknown.
Methods Using a Mendelian randomization approach, we studied 80,522 persons from Copenhagen, Denmark. Of those,
IHD developed in 14,155, and MI developed in 6,257. Subjects were genotyped for variants in GCK (rs4607517),
G6PC2 (rs560887), ADCY5 (rs11708067), DGKB (rs2191349), and ADRA2A (rs10885122) associated with ele-
vated fasting glucose levels in genome-wide association studies.
Results Risk of IHD and MI increased stepwise with increasing nonfasting glucose levels. The hazard ratio for IHD in sub-
jects with nonfasting glucose levels Ն11 mmol/l (Ն198 mg/dl) versus Ͻ5 mmol/l (Ͻ90 mg/dl) was 6.9 (95%
confidence interval [CI]: 4.2 to 11.2) adjusted for age and sex, and 2.3 (95% CI: 1.3 to 4.2) adjusted multifactori-
ally; corresponding values for MI were 9.2 (95% CI: 4.6 to 18.2) and 4.8 (95% CI: 2.1 to 11.2). Increasing num-
ber of glucose-increasing alleles was associated with increasing nonfasting glucose levels and with increased
risk of IHD and MI. The estimated causal odds ratio for IHD and MI by instrumental variable analysis for a
1-mmol/l (18-mg/dl) increase in nonfasting glucose levels due to genotypes combined were 1.25 (95% CI: 1.03
to 1.52) and 1.69 (95% CI: 1.28 to 2.23), and the corresponding observed hazard ratio for IHD and MI by Cox
regression was 1.18 (95% CI: 1.15 to 1.22) and 1.09 (95% CI: 1.07 to 1.11), respectively.
Conclusions Like common nonfasting glucose elevation, plasma glucose-increasing polymorphisms associate with increased
risk of IHD and MI. These data are compatible with a causal association. (J Am Coll Cardiol 2012;59:2356–65)
© 2012 by the American College of Cardiology Foundation
Elevated fasting plasma glucose levels are associated with
increased risk of ischemic heart disease (IHD) and myocar-
dial infarction (MI) in subjects with and without diabetes
mellitus (1,2), but it is unclear whether this is also true for
nonfasting levels. Although intensive glycemic control may
reduce the risk of IHD and MI (3), it is unclear whether this
risk reduction is due to reduced glucose levels per se or to an
improvement of concomitant obesity, dyslipidemia, and
hypertension.
To study a potential causal relationship a Mendelian
randomization approach can be used to circumvent con-
founding and reverse causation (4). This approach uses the
fact that genetic glucose-increasing variants are randomly
assorted during gamete formation, like patients are random-
ized to placebo or active treatment in intervention trials;
and, if genotypes associated with higher plasma glucose
levels also are associated with increased risk of IHD and MI
compared to genotypes associated with lower levels, it
follows that this likely is a causal association. To use this
approach, we genotyped variants in GCK (rs4607517) (5),
G6PC2 (rs560887) (5–7), ADCY5 (rs11708067) (8), DGKB
From the *Department of Clinical Biochemistry, Herlev Hospital, Herlev, Denmark;
†Copenhagen General Population Study, Herlev Hospital, Herlev, Denmark; ‡Co-
penhagen University Hospitals, Faculty of Health Sciences, University of Copenha-
gen, Copenhagen, Denmark; §Departments of Clinical Biochemistry and Cardiology,
Rigshospitalet, Copenhagen, Denmark; ʈCopenhagen City Heart Study, Bispebjerg
Hospital, Copenhagen, Denmark; ¶Oxford Centre for Diabetes, Endocrinology and
Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom;
#Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United
Kingdom; and the **Oxford NIHR Biomedical Research Centre, Churchill Hospital,
Oxford, United Kingdom. This work was supported by Chief Physician Johan
Boserup and Lise Boserup’s Foundation and the Danish Heart Foundation, both
nonprofit organizations with no right to approve or disapprove of the manuscript. The
authors have reported they have no relationships relevant to the contents of this paper
to disclose.
Manuscript received January 25, 2012; accepted February 15, 2012.
Journal of the American College of Cardiology Vol. 59, No. 25, 2012
© 2012 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00
Published by Elsevier Inc. doi:10.1016/j.jacc.2012.02.043
(rs2191349) (6), and ADRA2A (rs10885122) (8), which
were selected as the variants associated with the largest
effects on fasting glucose levels in genome-wide association
studies specifically aiming to identify variants associated
with plasma glucose levels, and not previously associated
with IHD and MI (9). Furthermore, the genetic variants
have no major effects on other risk factors and, therefore,
can be used to study the impact of longstanding differences
in plasma glucose levels without known pleiotropic effects.
We tested the hypothesis that there is a potential causal
association between elevated nonfasting glucose levels and
increased risk of IHD and MI. As most subjects are in the
nonfasting state the majority of a 24-h cycle, and thus
exposed to higher glucose levels than observed through
fasting measurements, it may be more important to study
nonfasting than fasting glucose levels. First, we tested
whether elevated nonfasting glucose levels are associated
with increased risk of IHD; second, whether the selected
genotypes (5,8,10,11) are associated with elevated nonfast-
ing glucose levels; and finally, whether genotypes are asso-
ciated with increased risk of IHD and MI both as single site
genotypes and combined in instrumental variable analyses.
Methods
Subjects. Studies were approved by institutional review
boards and Danish ethical committees, and conducted
according to the Declaration of Helsinki. Participants were
all white persons and of Danish descent, and gave informed
consent. None appeared in Ͼ1 study.
The CCHS. The CCHS (Copenhagen City Heart Study)
is a prospective study of the general population initiated in
1976 to 1978 with follow-up examinations in 1981 to 1983,
1991 to 1994, and 2001 to 2003, and endpoints ascertained
from 1976 through May 2011 (12). Participants were
selected to reflect the adult Danish population ages 20 to
80ϩ years. Data were obtained from a questionnaire, a
physical examination, and from blood samples at each
examination. Baseline nonfasting plasma glucose levels were
available on 16,568 participants attending the 1976 to 1978,
1981 to 1983, 1991 to 1994, and/or 2001 to 2003 examina-
tions. Baseline was defined as the first examination a subject
participated in. Blood samples for deoxyribonucleic acid
(DNA) extraction were available on 10,603 participants
attending the 1991 to 1994 and 2001 to 2003 examinations.
The CGPS. The CGPS (Copenhagen General Population
Study) is a cross-sectional/prospective study of the general
population initiated in 2003 with ongoing enrollment (13–
15) and endpoints ascertained from 1976 through May
2011. Participants were selected and examined exactly as in
the CCHS. At the time of genotyping, 48,614 subjects had
been included.
The CIHDS. The CIHDS (Copenhagen Ischemic Heart
Disease Study) comprises 5,109 patients from the greater
Copenhagen area referred for coronary angiography in 1991 to
2010 and 10,231 controls without IHD ascertained as for the
CGPS (13–15). In addition to a
diagnosis of IHD, these patients
also had stenosis/atherosclerosis
on coronary angiography and/or a
positive exercise electrocardiogra-
phy test, and/or MI.
Ischemic heart disease and
myocardial infarction. In all
studies, information on diagnosis
of IHD and MI according to
WHO International Classifica-
tion of Diseases (ICD) (ICD8: 410–414 and 410; and
ICD10: I20–I25 and I21) was collected and verified from
1976 through May 2011 by reviewing all hospital admis-
sions and diagnoses entered in the national Danish Patient
Registry and all causes of death in the national Danish
Causes of Death Registry. Ischemic heart disease was
angina pectoris and MI, the latter determined on the basis
of characteristic chest pain, electrocardiographic changes,
and/or elevated cardiac enzymes following the changes in
diagnostic criteria over time (16). Follow-up was 100%
complete, that is, no subject was lost to follow-up in any
study.
Genotypes. Genotyping for GCK (rs4607517), G6PC2
(rs560887), ADCY5 (rs11708067), DGKB (rs2191349), and
ADRA2A (rs10885122) was by TaqMan, ABI Prism
7900HT Sequence Detection System (Applied Biosystems,
Foster City, California). Each run included a known non-
carrier, a heterozygous, and a homozygous control verified
by sequencing. After 2 reruns, call rates for genotypes where
Ͼ99.9% for all assays. We also genotyped the MTNR1B
(rs10830963) variant, but it did not associate with nonfast-
ing glucose levels (observed per allele effect, nonfasting:
Ϫ0.025 [SEM 0.01]) as reported for fasting glucose levels in
genome-wide association studies (per allele effect in litera-
ture: 0.072 [SEM 0.005]) (5,8), and were therefore ex-
cluded from further analysis.
Biochemical analyses. Colorimetric assays were used to mea-
sure nonfasting plasma glucose, total cholesterol, and high-density
lipoprotein (HDL) cholesterol (Konelab, Boehringer Mannheim,
Germany). Blood samples were taken at random irrespective of
content of or of time since the last meal.
Other covariates. Body mass index (BMI) was weight (kg)
divided by height squared (m2
); metabolic syndrome was
defined as fulfilling 3 of the following 5 criteria: waist
circumference Ն102 cm for men and Ն88 cm for women,
triglycerides Ն1.7 mmol/l (150 mg/dl) or drug treatment for
elevated triglycerides, HDL Ͻ1.0 mmol/l (40 mg/dl) in
men and Ͻ1.3 mmol/l (50 mg/dl) in women or drug
treatment for low HDL, systolic blood pressure Ն130 mm
Hg and/or diastolic blood pressure Ն85 mm Hg or antihy-
pertensive drug treatment, fasting glucose Ն5.56 mmol/l
(100 mg/dl), or antidiabetic medication (17); diabetes mel-
litus was self-reported diabetes, use of antidiabetic medica-
tion, a nonfasting plasma glucose Ͼ11.0 mmol/l, and/or
hospitalization or death due to diabetes (ICD8: 249–250;
Abbreviations
and Acronyms
BMI ‫؍‬ body mass index
CI ‫؍‬ confidence interval
HDL ‫؍‬ high-density
lipoprotein
IHD ‫؍‬ ischemic heart
disease
MI ‫؍‬ myocardial infarction
2357JACC Vol. 59, No. 25, 2012 Benn et al.
June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
ICD10: E10–E11, E13–E14); hypertension was defined as
systolic blood pressure Ն140 mm Hg (Ն135 mm Hg for
diabetic subjects), diastolic blood pressure Ն90 mm Hg
(Ն85 mm Hg for diabetics), and/or use of antihyperten-
sive medication prescribed specifically for hypertension;
current smoking, menopause status, and statin use were
also self-reported.
Statistical analyses. Data were analyzed by 2 authors
(M.B. and B.G.N.) using Stata/IC version 11.1 (StataCorp,
College Station, Texas). Two-sided p Ͻ 0.05 was signifi-
cant. For trend tests using Cuzick nonparametric test and
extension of a Wilcoxon rank sum test, groups of subjects
classified by nonfasting glucose levels, genotypes, or number
of alleles were ranked according to increasing nonfasting
glucose levels and coded as 0, 1, 2, 3, and so forth.
First, to test whether nonfasting glucose associate with
increased risk of IHD and MI, Kaplan-Meier curves were
used to estimate cumulative incidence, and Cox regression
models with age as time scale and left truncation (delayed
entry) were used to estimate hazard ratios for IHD and MI
in the prospective CCHS. Analyses were conducted using
results from each participant’s first glucose measurement in
the 1976 to 1978, 1981 to 1983, 1991 to 1994, or 2001 to
2003 examinations (i.e., baseline), and data from the serial
examinations of other risk factors were used as time-
dependent covariates for multifactorial adjustment. Risk of
IHD and MI was estimated as a function of nonfasting
glucose levels in groups of 1-mmol/l (18-mg/dl) increases
versus Ͻ5.0 mmol/l (Ͻ90 mg/dl) and as a continuous variable,
and was corrected for regression dilution bias using a factor of
0.45 (Online Figs. 1 and 2) (18). Analyses were adjusted for:
1) age and sex; 2) multifactorially for age, sex, current smoking,
menopause, and statin use; 3) multifactorially including BMI;
4) multifactorially including total cholesterol and HDL cho-
lesterol; 5) multifactorially including hypertension; and 6)
multifactorially including all of the above.
Second, to test whether genotype associate with elevated
nonfasting glucose levels, per allele effects of genotypes were
calculated in the CCHS and CGPS combined to obtain
maximal power; we used a method by Falconer, taking allele
frequency and mean nonfasting glucose levels for each
genotype into account (19).
Third, to test whether genetically elevated nonfasting
glucose levels associate with increased risk of IHD, we
tested for association between genotype and IHD and MI
risk using logistic regression in the CCHS, CGPS, and
CIHDS combined to obtain maximal power. Analyses were
adjusted for age and sex only, as genotypes were randomly
distributed across the covariates.
Finally, instrumental variable analysis by 2-stage least-
squares regression was used to assess a potential causal
relationship between elevated nonfasting glucose levels and
increased IHD and MI risk using genetic variants as
instruments for elevated nonfasting glucose levels in an
additive model; we used the CCHS, CGPS, and CIHDS
combined to obtain maximal power. Strength of the geno-
types as instruments (association of genotype with plasma
glucose) was evaluated by F-statistics from the first-stage
regression, where F Ͼ10 indicates sufficient strength to
ensure the validity of the instrumental variable analysis,
while R2
in percent is a measure of percent contribution of
genotype to the variation in plasma glucose (4). Causal odds
ratios were estimated using the multiplicative generalized
method of moments estimator implemented in the user-
written Stata command “ivpois.” Altman’s method (20) was
used to compare the causal odds ratio from the instru-
mental variable analysis with the observational multifac-
torially adjusted hazard ratio from Cox regression. Use of
Ͼ1 genotype as instrumental variable reduces risk of bias
Characteristics of ParticipantsTable 1 Characteristics of Participants
Characteristics CCHS CGPS CIHDS
n 16,568 48,614 15,340
Ischemic heart disease* 4,184 4,862 5,109
Myocardial infarction* 2,327 2,038 1,892
Age, yrs 51 (40–59) 58 (47–67) 57 (48–66)
Women 53% 56% 46%
Body mass index, kg/m2
24.3 (22.2–26.8) 25.6 (23.2–28.5) 25.6 (23.2–28.5)
Total cholesterol, mmol/l 6.0 (5.2–6.8) 5.6 (4.9–6.3) 5.5 (4.7–6.3)
HDL cholesterol, mmol/l 1.4 (1.1–1.7) 1.6 (1.3–2.0) 1.5 (1.2–1.9)
Diabetes mellitus 2.1% 3.7% 13.2%
Hypertension 47% 71% 55%
Current smoking 53% 20% 26%
Menopause, women only 49% 66% —
Statin use 1.5% 11% —
Values are n, mean (range), or %. *Number of disease events at end of follow-up. Other data are from enrollment into the studies: In the CCHS
(Copenhagen City Heart Study), values are from the first participation in the study in either 1976 to 1978, 1981 to 1983, 1991 to 1994, or 2001
to 2003; in the CGPS (Copenhagen General Population Study), from enrollment 2003 to 2010; and in the CIHDS (Copenhagen Ischemic Heart
Disease Study), from enrollment 1994 to 2010. To convert glucose in mmol/l to mg/dl, multiply by 18; to convert cholesterol in mmol/l to mg/dl,
multiply by 39.
HDL ϭ high-density lipoprotein.
2358 Benn et al. JACC Vol. 59, No. 25, 2012
Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
due to pleiotropy, but may result in an overestimation of
the causal risk estimate (21). This can be evaluated using
effect estimates (strength of the association between
genotype and glucose level) from previous independent
studies. To do this, we repeated the instrumental variable
analyses using effect estimates from published genome-
wide association studies (effect sizes shown in Fig. 2)
(5,6,8).
Results
Characteristics of the 80,522 participants in the 3 study
populations are shown in Table 1; IHD developed in 14,155
subjects and MI in 6,247. Age, BMI, total cholesterol levels,
frequency of male sex, metabolic syndrome, diabetes melli-
tus, use of insulin or oral antidiabetic medication, hyperten-
sion, smoking, menopause (women only), and statin use
were higher at higher nonfasting plasma glucose levels,
whereas HDL cholesterol levels were lower (Online
Table 1). Variation in nonfasting plasma glucose levels as a
function of time since the last meal in hours is shown in
Online Figure 1. Median values ranged from 5.66 mmol/l at
0 to 1 h after a meal to 5.08 mmol/l Ͼ8 h after a meal (range
0.58 mmol/). Regression dilution on plasma glucose levels
from the 1976 to 1978 to the 1981 to 1983 examination is
shown in Online Figure 2, and was used to correct associ-
ation between nonfasting glucose and risk of IHD and MI
for regression dilution bias.
Nonfasting glucose and IHD and MI observational
estimates. Risk of IHD and MI increased stepwise with
increasing nonfasting glucose levels (Figs. 1 and 2). Subjects
with a level Ͼ11 mmol/l had their event on average 20 years
before subjects with levels Ͻ5 mmol/l (Fig. 1). Age- and
sex-adjusted hazard ratio for IHD was 6.9 (95% confidence
interval [CI]: 4.2 to 11.2) in subjects with nonfasting plasma
glucose levels Ն11 mmol/l (Ն198 mg/dl) versus Ͻ5 mmol/l
(Ͻ90 mg/dl). Corresponding estimates were 6.2 (95% CI:
3.8 to 10.2) when adjusting multifactorially; 4.7 (95% CI:
2.8 to 7.7) multifactorially including BMI; 3.8 (95% CI: 2.2
to 6.5) multifactorially including total and HDL choles-
terol; 5.8 (95% CI: 3.6 to 9.5) multifactorially including
hypertension; and 2.3 (95% CI: 1.3 to 4.2) multifactorially
including all the above. Corresponding values for MI were
9.2 (95% CI: 4.6 to 18.2), 8.3 (95% CI: 4.2 to 16.6), 6.8
(95% CI: 3.4 to 13.7), 6.0 (95% CI: 2.8 to 13.0), 7.5 (95%
CI: 3.8 to 15.0), and 4.8 (95% CI: 2.1 to 11.2).
Genotype and nonfasting glucose. Homozygotes versus
noncarriers associated with the following increases in
nonfasting plasma glucose levels: GCK (rs4607517) 2.7%
(95% CI: 1.5% to 3.8%), G6PC2 (rs560887) 2.5% (1.9%
to 3.2%), ADCY5 (rs11708067) 1.5% (0.7% to 2.2%),
DGKB (rs2191349) 0.8% (0.3% to 1.3%), and ADRA2A
(rs10885122) 0.5% (Ϫ1.1% to 2.0%) (Fig. 3). Combining
genotypes by number of glucose-increasing alleles, an
increasing number of glucose-increasing alleles associated
with an up to 4.8% (3.6% to 6.0%) increase in nonfasting
glucose levels.
Genotype and IHD and MI. Assuming that increased
nonfasting glucose levels have a causal effect on risk of IHD
and MI, lifelong increased glucose levels due to genetic
variants should confer a similar increase in risk of IHD and
MI as that observed for increased glucose levels encountered
in the general population. For example, the 4.8% increase in
nonfasting glucose levels seen for 8 glucose-increasing alleles
(Fig. 3) would theoretically predict an increased risk of IHD
and MI with hazard ratios of 1.04 (95% CI: 1.03 to 1.05) and
1.04 (95% CI: 1.03 to 1.05) (Online Fig. 3). In accordance
with this, the observed odds ratio for IHD increased as a
function of the glucose-increasing alleles with the largest
glucose-increasing effects (p trend ϭ 0.01) (Online Fig. 3); the
Figure 1
Cumulative Incidence Using Kaplan-Meier
Estimates of IHD and MI
Cumulative incidence using Kaplan-Meier estimates of (A) ischemic heart dis-
ease (IHD) and (B) myocardial infarction (MI) in percent as a function of age at
event. Subjects with IHD or MI before study enrollment were excluded, result-
ing in 16,318 subjects followed up for as long as 35 years with respect to inci-
dent events. Solid line indicates Ͻ5 mmol/l; long-dashed line indicates 5 to
6.9 mmol/l; shorter-dashed line indicates 7 to 8.9 mmol/l; shortest-dashed
line indicates 9 to 10.9 mmol/l; and dotted line indicates Ն11 mmol/l.
2359JACC Vol. 59, No. 25, 2012 Benn et al.
June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
Figure 2 Risk of IHD and MI as a Function of Baseline Nonfasting Plasma Glucose Levels in General Population
Nonfasting plasma glucose levels were measured in 16,568 subjects who participated in the 1976 to 1978, 1981 to 1983, 1991 to 1994, and/or 2001 to 2003
examinations of the Copenhagen City Heart Study. Results are shown for (A) ischemic heart disease (IHD) and (B) myocardial infarction (MI). Participants with IHD or MI
before study enrollment were excluded, resulting in 16,318 subjects followed up for as long as 35 years with respect to incident events. Basic multifactorial adjustment
was for age, sex, current smoking, menopause, and statin use. The fully multifactorially adjusted model additionally included body mass index, total cholesterol, high-
density lipoprotein (HDL) cholesterol, and hypertension. CI ϭ confidence interval; HR ϭ hazard ratio.
2360 Benn et al. JACC Vol. 59, No. 25, 2012
Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
various risk factors except glucose levels were equally distrib-
uted among the genotypes, confirming that these genotypes are
largely unconfounded by such factors (Online Table 2). Results
for MI were similar (Online Fig. 3).
Nonfasting glucose and IHD and MI causal estimates.
A potential causal effect of increased nonfasting glucose
levels on increased risk of IHD and MI was also examined
using instrumental variable analysis. A 1-mmol/l (18-mg/
Figure 2 Continued
2361JACC Vol. 59, No. 25, 2012 Benn et al.
June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
dl) increase in nonfasting glucose levels due to genotypes
associated with a causal odds ratio for IHD of 1.25 (95% CI:
1.03 to 1.52) and MI of 1.69 (95% CI: 1.28 to 2.23), and
the observed multifactorially adjusted hazard ratio for a
similar increase was 1.18 (95% CI: 1.15 to 1.22) for IHD
and 1.09 (95% CI: 1.07 to 1.11) for MI (Fig. 4). The
corresponding causal odds ratios for IHD and MI were 1.36
(95% CI: 1.05 to 1.77) and 1.54 (95% CI: 1.05 to 2.27),
respectively, using effect estimates for per allele increases in
fasting glucose levels from the literature.
Discussion
The main finding of this study is that both observational
and genetically elevated nonfasting glucose levels are asso-
ciated with increased risk of IHD and MI. This finding is
compatible with elevated glucose levels per se being causally
related to the development of IHD and MI.
Overall, evidence for or against a causal contribution of
glucose to the pathogenesis of macrovascular disease, in-
cluding IHD and MI, can come from 5 types of evidence;
that is, conventional epidemiology, mechanistic studies,
animal models, randomized intervention trials, and Men-
delian randomization studies like the present (22,23).
1) Previous prospective epidemiologic studies showed that
elevated fasting glucose levels associate with increased IHD
and MI risk even at nondiabetic glucose levels (1,2). Our
results using nonfasting glucose levels are in agreement with
this, and confirm that even after adjustment for obesity,
dyslipidemia, and hypertension, elevated IHD and MI risk
remain. 2) Results from in vitro and animal studies have
suggested several mechanisms by which glucose may con-
tribute to macrovascular disease: increased glucose levels,
free fatty acids, and insulin resistance together leads to
oxidative stress, activation of protein kinase C isoforms,
formation of advanced glycation end product, and nonen-
zymatic glycation of low-density lipoprotein, apolipopro-
teins, and clotting factors, collectively resulting in vasocon-
striction, inflammation, and thrombosis (2,24,25). 3) In
animal models with experimental hypercholesterolemia or
genetic predisposition for atherosclerosis, elevated glucose
Gene Genotype
No. of
participants
Mean (standard error) P-trend
Change in glucose levels, %
(95% confidence interval)
Per allele effect,
mmol/L (SEM)
Per allele effect,
mmol/L (SEM);
GWAS (5,6,8)
Risk allele
frequency;
GWAS
GCK rs4607517,G>A
)700.0(260.0)610.0(370.00100.0<511,84GG
)4.1-6.0(0.1560,81AG
81.0)8.3-5.1(7.2517,1AA
G6PC2 rs560887,C>T
)400.0(460.0)900.0(860.00100.0<193,6TT
)5.1-2.0(9.0586,82TC
82.0)2.3-9.1(5.2147,23CC
ADCY5 rs11708067,A>G
)300.0(720.0)110.0(930.00100.0<880,4GG
)9.0-6.0-(1.0715,52GA
87.0)2.2-7.0(5.1292,83AA
DGKB rs2191349,T>G
)7800.0(640.0)700.0(220.00100.0<730,61GG
)0.1-1.0(5.0539,33GT
25.0)3.1-3.0(8.0029,71TT
ADRA2A rs10885122,G>T
)400.0(220.0)220.0(710.0020.0988TT
)7.1-5.1-(1.0325,31TG
78.0)0.2-1.1-(5.0394,35GG
Glucose increasing alleles
0100.0<310,23-0
)1.2-3.0-(9.0364,64
)7.2-5.0(6.1726,415
)1.4-8.1(9.2099,916
)6.4-3.2(4.3980,617
)0.6-6.3(8.4640,78
Nonfasting glucose, mmol/L
Figure 3 Nonfasting Plasma Glucose Levels as a Function of Genotype in General Population
Glucose-increasing alleles were combinations of genotypes with glucose-increasing effects; the most common genotype combinations are shown, whereas the rarer com-
binations were excluded because of reduced statistical power. This was examined in 67,914 participants from the Copenhagen City Heart Study and the Copenhagen
General Population Study combined, irrespective of other cardiovascular risk factors or treatment for diabetes mellitus. Estimates of effect on fasting plasma glucose
levels reported from genome-wide association studies (GWAS) using plasma glucose level as the phenotype are reported in the right column. To convert mmol/l glucose
to mg/dl, multiply by 18.
2362 Benn et al. JACC Vol. 59, No. 25, 2012
Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
levels may directly cause macrovascular disease (24,26). 4) A
meta-analysis of randomized intervention trials (27–32)
showed that intensive glycemic control in patients with
diabetes mellitus was associated with a 15% reduction in risk
of IHD (3). However, in all included studies, intensive
glycemic control also had beneficial effects on obesity,
dyslipidemia, and/or hypertension, obscuring the isolated
effect of reduced glucose levels, and this issue remains
unresolved. 5) Using a Mendelian randomization approach
free from reverse causation and unconfounded by obesity,
dyslipidemia, and hypertension, we here found that both
observational and genetic lifelong elevated nonfasting or
fasting glucose levels associate with increased risk of IHD
and MI. In the present study, we use genotypes associated
with glucose levels in the nondiabetic range and not asso-
ciated with diabetes mellitus in our general population
samples, suggesting that the increased risk of IHD is more
likely due to glucose per se, rather than mediated through
diabetes mellitus. A recent Mendelian randomization study
support that elevated fasting plasma glucose levels may also
be causally related to increased intima-media thickness (33).
Therefore, these 5 different types of evidence collectively
suggest that elevated plasma glucose per se might be causally
related to the development of IHD and MI.
From a clinical standpoint, our confirmation of increased
nonfasting glucose as a marker of increased IHD risk
suggests that nonfasting values may be used in risk stratifi-
cation, whereas for diagnostic purposes, fasting values are
required. Although nonfasting/post-prandial glucose levels
are more variable than fasting levels, risk of cardiovascular
disease is more strongly associated with nonfasting/post-
prandial hyperglycemia than fasting hyperglycemia (34).
The exact reason for this is not known, but it has been
observed that persons with impaired glucose tolerance, a
Figure 4 Summary of Causal Effects of Increased Nonfasting Glucose on Increased Risk of IHD and MI
Studies’ summary of the causal effect of increased nonfasting glucose on increased risk of ischemic heart disease (IHD) and myocardial infarction (MI). This was tested
in the Copenhagen City Heart Study, the Copenhagen General Population Study, and the Copenhagen Ischemic Heart Disease Study combined; 6,448 participants were
not genotyped for lack of deoxyribonucleic acid; and for participants genotyped, numbers vary slightly from genotype to genotype. The causal effect of increased nonfast-
ing glucose levels on risk of IHD and MI was estimated by the association between a 1-mmol/l (18-mg/dl) genetic increase in nonfasting glucose levels and risk of IHD
and MI, using instrumental variable analysis by 2-stage least-squares regression and given as an odds ratio (OR) with a 95% confidence interval (CI). This risk is com-
pared to the observational prospective increased risk of IHD and MI, respectively, associated with a 1-mmol/l (18-mg/dl) increase in nonfasting glucose in the general
population, the Copenhagen City Heart Study, given as a multifactorially adjusted Cox regression hazard ratio (HR) with a 95% CI. Odds ratios for a 1-mmol/l (18-mg/dl)
genetic increase in nonfasting glucose levels are also given for individual and combined genotypes. F-statistics (evaluation of strength of instrument) and R2
(contribution
of genotype to variation in plasma glucose levels in percent) are from the first-stage regression analysis. In the second-stage regression analysis studying the associa-
tion between genotype and risk, imputed glucose values were included in part of the cases in the Copenhagen Ischemic Heart Disease Study. The causal effect of a
1-mmol/l (18-mg/dl) genetic increase in nonfasting glucose levels on risk of IHD and MI was also estimated using effect sizes for genotypes previously reported from
genome-wide association studies specifically aimed at identifying genes associated with plasma glucose levels. The p value is for significance of hazard ratio/odds ratio.
The p value comparison is between the estimate from observational epidemiology and the causal estimate from instrumental variable analysis. To convert mmol/l glu-
cose to mg/dl, multiply by 18.
2363JACC Vol. 59, No. 25, 2012 Benn et al.
June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
diagnostic group known to have a high risk of cardiovascular
disease, have elevated nonfasting/post-prandial glucose lev-
els, but usually fasting blood glucose levels within the
normal range (35). The use of nonfasting glucose measure-
ments may explain the relatively high observational risk
estimates in the present study compared to others (1), but
this difference may also in part be because we were able to
adjust for regression dilution bias (18).
Strengths of the present study are that we had sufficient
statistical power to document increased risk of IHD and MI
as a function of glucose-increasing genotypes. Another
strength of the present study was that all participants were
white persons of Danish descent, thus effectively excluding
admixture as a potential problem in our study.
A potential limitation of the present Mendelian random-
ization approach is that, apart from their involvement in
glucose regulation and metabolism, the presently studied
genetic variants may have pleiotropic effects on other
cardiovascular risk factors or directly on IHD and MI risk
unrelated to nonfasting glucose levels. However, we did not
find any consistent associations with age, BMI, levels of
total cholesterol or HDL cholesterol, or frequency of
metabolic syndrome, diabetes mellitus, use of insulin or oral
antidiabetic medication, hypertension, current smoking,
menopause, or statin use across genotypes. Nevertheless, the
ADCY5 and DGKB genes are reported to be involved in
symphacetic and parasymphacetic regulation of heart rate
(10) and may have an effect on IHD and MI risk through 1
of these pathways. Furthermore, ADRA2A is directly in-
volved in lipolysis and is associated with risk of attention
deficit/hyperactive disorder (11). Except for increased birth
weight reported to be associated with GCK genotype, no
pleiotropic effects have been reported for the GCK and
G6PC2 genes with the largest effects on nonfasting glucose
levels in the present study. Using Ͼ1 genotype reduces the
effect of unknown pleiotropy of the genotypes and reduces the
influence of a genotype directly associated with risk of IHD
and MI unrelated to nonfasting glucose levels, but may result
in an overestimation of the causal risk (4). Another potential
limitation of the present study is the modest contribution of
genotypes to the variation in nonfasting glucose levels (weak
instrument bias and unreliable instruments bias) and the use of
5 genotypes as instruments. To evaluate this, we first used F
statistics to test the strength of the instruments and found that
3 of 5 instruments were excellent, and combined, all 5
genotypes were good instruments (F Ͼ10). We then repeated
the instrumental variable analyses using effect estimates from
published genome-wide association studies. The causal esti-
mate using external independent effect sizes corresponded with
the causal estimate from the present study populations, sug-
gesting that such a bias is unlikely. Also, we studied white
subjects only, and therefore our results may not necessarily
translate to other races. A known limitation of prospective
studies using a baseline nonfasting measurement for classifica-
tion is misclassification due to regression dilution bias, which is
the fact that extreme values at baseline tend to attenuate over
time and regress toward the mean value of measurements (4).
In the present study, we corrected for this using results from
subjects with Ͼ1 measurement over time to estimate the
degree of regression dilution.
Conclusions
Both elevated observational and genetic nonfasting glucose
levels are associated with increased risk of IHD and MI.
These data are compatible with a causal association.
Acknowledgments
The authors thank Hanne Damm and Dorthe Uldall
Andersen for assisting with the large-scale genotyping. The
authors are indebted to the staff and participants of the
CCHS, the CGPS, and the CIHDS for their important
contributions.
Reprint requests and correspondence: Dr. Børge G. Nordest-
gaard, Department of Clinical Biochemistry, Herlev Hospital,
Copenhagen University Hospital, Herlev Ringvej 75, Herlev
DK-2730, Denmark. E-mail: Boerge.Nordestgaard@regionh.dk.
REFERENCES
1. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood
glucose concentration, and risk of vascular disease: a collaborative
meta-analysis of 102 prospective studies. Lancet 2010;375:2215–22.
2. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship
between glucose and incident cardiovascular events. A metaregression
analysis of published data from 20 studies of 95,783 individuals
followed for 12.4 years. Diabetes Care 1999;22:233–40.
3. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of
glucose on cardiovascular outcomes and death in patients with diabetes
mellitus: a meta-analysis of randomised controlled trials. Lancet
2009;373:1765–72.
4. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG.
Mendelian randomization: using genes as instruments for making
causal inferences in epidemiology. Stat Med 2008;27:1133–63.
5. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B
influence fasting glucose levels. Nat Genet 2009;41:77–81.
6. Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide associa-
tion analysis of metabolic traits in a birth cohort from a founder
population. Nat Genet 2009;41:35–46.
7. Chambers JC, Zhang W, Zabaneh D, et al. Common genetic variation
near melatonin receptor MTNR1B contributes to raised plasma
glucose and increased risk of type 2 diabetes among Indian Asians and
European Caucasians. Diabetes 2009;58:2703–8.
8. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci
implicated in fasting glucose homeostasis and their impact on type 2
diabetes risk. Nat Genet 2010;42:105–16.
9. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes
susceptibility loci identified through large-scale association analysis.
Nat Genet 2010;42:579–89.
10. Okumura S, Kawabe J, Yatani A, et al. Type 5 adenylyl cyclase
disruption alters not only sympathetic but also parasympathetic and
calcium-mediated cardiac regulation. Circ Res 2003;93:364–71.
11. Risselada AJ, Vehof J, Bruggeman R, et al. Association between the
1291-C/G polymorphism in the adrenergic alpha-2a receptor and the
metabolic syndrome. J Clin Psychopharmacol 2010;30:667–71.
12. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Non-
fasting triglycerides and risk of myocardial infarction, ischemic heart
disease, and death in men and women. JAMA 2007;298:299–308.
13. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H,
Nordestgaard BG. Genetically elevated C-reactive protein and isch-
emic vascular disease. N Engl J Med 2008;359:1897–908.
2364 Benn et al. JACC Vol. 59, No. 25, 2012
Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
14. Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of
loss-of-function mutations in the ABCA1 gene with high-density
lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA
2008;299:2524–32.
15. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen
A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk
of ischemic heart disease: 3 independent studies and meta-analyses.
J Am Coll Cardiol 2010;55:2833–42.
16. Thygesen K, Alpert JS, White HD. Universal definition of myocardial
infarction. J Am Coll Cardiol 2007;50:2173–95.
17. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic
syndrome: a joint interim statement of the International Diabetes
Federation Task Force on Epidemiology and Prevention; National
Heart, Lung, and Blood Institute; American Heart Association;
World Heart Federation; International Atherosclerosis Society; and
International Association for the Study of Obesity. Circulation 2009;
120:1640–5.
18. Clarke R, Shipley M, Lewington S, et al. Underestimation of risk
associations due to regression dilution in long-term follow-up of
prospective studies. Am J Epidemiol 1999;150:341–53.
19. Falconer DS, Mackay TFS. Introduction to Quantitative Genetics.
4th ed. Harlow, Essex, UK: Addison-Wesley Longman, 1996.
20. Altman DG, Bland JM. Interaction revisited: the difference between
two estimates. BMJ 2003;326:219.
21. Pierce B, Ahsan H, VanderWeele T. Power and instrument strength
requirements for Mendelian randomization studies using multiple
genetic variants. Int J Epidemiol 2010;40:740–52.
22. Nordestgaard BG. Does elevated C-reactive protein cause human
atherothrombosis? Novel insights from genetics, intervention trials,
and elsewhere. Curr Opin Lipidol 2009;20:393–401.
23. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein (a) as a
cardiovascular risk factor: current status. Eur Heart J 2010;31:2844–53.
24. Brownlee M, Spiro RG. Biochemistry of the basement membrane in
diabetes mellitus. Adv Exp Med Biol 1979;124:141–56.
25. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase
inhibition on nerve conduction and morphometry in diabetic neurop-
athy. Zenarestat Study Group. Neurology 1999;53:580–91.
26. Rucinsky R, Cook A, Haley S, Nelson R, Zoran, DL, Poundstone M.
AAHA diabetes management guidelines for dogs and cats. J Am Anim
Hosp Assoc 2010;46:215–24.
27. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive
blood-glucose control with metformin on complications in overweight
patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–65.
28. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive
glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–59.
29. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of
macrovascular events in patients with type 2 diabetes in the PROactive
Study (PROspective pioglitAzone Clinical Trial in macroVascular
Events): a randomised controlled trial. Lancet 2005;366:1279–89.
30. Wilcox R, Kupfer S, Erdmann E. Effects of pioglitazone on major
adverse cardiovascular events in high-risk patients with type 2 diabetes:
results from PROspective pioglitAzone Clinical Trial in macroVascu-
lar Events (PROactive 10). Am Heart J 2008;155:712–7.
31. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose
control and vascular outcomes in patients with type 2 diabetes. N Engl
J Med 2008;358:2560–72.
32. Duckworth W, Abraira C, Moritz T, et al. Glucose control and
vascular complications in veterans with type 2 diabetes. N Engl J Med
2009;360:129–39.
33. Rasmussen-Torvik LJ, Li M, Kao W, et al. Association of a fasting
glucose genetic risk score with subclinical atherosclerosis: the Athero-
sclerosis Risk In Communities (ARIC) study. Diabetes 2011;9:295–8.
34. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial
infarction and death in newly detected NIDDM: the Diabetes Inter-
vention Study, 11-year follow-up. Diabetologia 1996;39:1577–83.
35. Haffner SM. The importance of hyperglycemia in the nonfasting
state to the development of cardiovascular disease. Endocr Rev
1998;19:583–92.
Key Words: cardiovascular disease y diabetes mellitus y
epidemiology y nonfasting y plasma glucose y post-prandial.
APPENDIX
For supplemental figures and tables,
please see the online version of this article.
2365JACC Vol. 59, No. 25, 2012 Benn et al.
June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease

More Related Content

What's hot

Ueda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toonyUeda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toony
ueda2015
 
Ueda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toonyUeda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toony
ueda2015
 
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
Alexandros Karaiosif M. Res.
 
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
Karissa Morton
 
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
CrimsonPublishersIOD
 
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
UniversitasGadjahMada
 
Cm2 4. association of the hind iii and s447x in t2d
Cm2 4. association of the hind iii and s447x in t2dCm2 4. association of the hind iii and s447x in t2d
Cm2 4. association of the hind iii and s447x in t2d
Gibran Fadl
 

What's hot (20)

Abcc
AbccAbcc
Abcc
 
Ueda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toonyUeda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toony
 
Ueda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toonyUeda2015 diabetes control dr.lobna el-toony
Ueda2015 diabetes control dr.lobna el-toony
 
Copeptin as a Novel Biomarker in the Diagnosis of Acute Myocardial Infarction...
Copeptin as a Novel Biomarker in the Diagnosis of Acute Myocardial Infarction...Copeptin as a Novel Biomarker in the Diagnosis of Acute Myocardial Infarction...
Copeptin as a Novel Biomarker in the Diagnosis of Acute Myocardial Infarction...
 
Sample manuscript-original isi
Sample manuscript-original isiSample manuscript-original isi
Sample manuscript-original isi
 
Schold
ScholdSchold
Schold
 
Haematology trials 2017
Haematology trials 2017Haematology trials 2017
Haematology trials 2017
 
Crimson Publishers: Insulin Therapy and Cardiovascular Outcome Trials (CVOTs)...
Crimson Publishers: Insulin Therapy and Cardiovascular Outcome Trials (CVOTs)...Crimson Publishers: Insulin Therapy and Cardiovascular Outcome Trials (CVOTs)...
Crimson Publishers: Insulin Therapy and Cardiovascular Outcome Trials (CVOTs)...
 
Implication of preoperative glycosylated hemoglobin level on short term outco...
Implication of preoperative glycosylated hemoglobin level on short term outco...Implication of preoperative glycosylated hemoglobin level on short term outco...
Implication of preoperative glycosylated hemoglobin level on short term outco...
 
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
Cardiorespiratory Fitness,Metabolic Risk, and Inflammation in Children - Anto...
 
Jc2
Jc2Jc2
Jc2
 
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
KMorton Gender dimorphism and its effect on mortality in traumatically brain ...
 
Blood sugar
Blood sugarBlood sugar
Blood sugar
 
Efficiency of Use of Dietary Supplement Arteroprotect® In Prevention of Cardi...
Efficiency of Use of Dietary Supplement Arteroprotect® In Prevention of Cardi...Efficiency of Use of Dietary Supplement Arteroprotect® In Prevention of Cardi...
Efficiency of Use of Dietary Supplement Arteroprotect® In Prevention of Cardi...
 
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
Microalbuminuria in Saudi Adults with Type 1 Diabetes Mellitus_Crimson Publis...
 
Sample Work of an Meta-Analysis | Hire a Meta-Analysis Expert: Pubrica.com
Sample Work of an Meta-Analysis | Hire a Meta-Analysis Expert: Pubrica.comSample Work of an Meta-Analysis | Hire a Meta-Analysis Expert: Pubrica.com
Sample Work of an Meta-Analysis | Hire a Meta-Analysis Expert: Pubrica.com
 
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
Association of the HLA-B alleles with carbamazepine-induced Stevens–Johnson s...
 
Diabetes tipo 2 insulina 2013
Diabetes tipo 2 insulina 2013Diabetes tipo 2 insulina 2013
Diabetes tipo 2 insulina 2013
 
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
Association of cardio metabolic risk factors, serum nitric oxide metabolite a...
 
Cm2 4. association of the hind iii and s447x in t2d
Cm2 4. association of the hind iii and s447x in t2dCm2 4. association of the hind iii and s447x in t2d
Cm2 4. association of the hind iii and s447x in t2d
 

Viewers also liked

Fasting is not routinely required for determination of a lipid profile
Fasting is not routinely required for determination of a lipid profileFasting is not routinely required for determination of a lipid profile
Fasting is not routinely required for determination of a lipid profile
LAB IDEA
 
Is measuring apo B and Lp (a) of value ?
Is measuring apo B and Lp (a) of value ?Is measuring apo B and Lp (a) of value ?
Is measuring apo B and Lp (a) of value ?
cardiositeindia
 
Health promotion in elderly
Health promotion in elderlyHealth promotion in elderly
Health promotion in elderly
Doha Rasheedy
 
Laboratory errors in medical practice
Laboratory  errors in medical practiceLaboratory  errors in medical practice
Laboratory errors in medical practice
MedicineBSMMU
 

Viewers also liked (20)

2008.02.12 Massie Hyperlipidemia
2008.02.12    Massie   Hyperlipidemia2008.02.12    Massie   Hyperlipidemia
2008.02.12 Massie Hyperlipidemia
 
가슴통증/급성 심장동맥증후군 입원처방
가슴통증/급성 심장동맥증후군 입원처방가슴통증/급성 심장동맥증후군 입원처방
가슴통증/급성 심장동맥증후군 입원처방
 
Health Outcomes, Quality, and Cost: Opportunities for Pediatric Endocrinology
Health Outcomes, Quality, and Cost: Opportunities for Pediatric EndocrinologyHealth Outcomes, Quality, and Cost: Opportunities for Pediatric Endocrinology
Health Outcomes, Quality, and Cost: Opportunities for Pediatric Endocrinology
 
Atherotech VAP+ cardiovascular testing
Atherotech VAP+ cardiovascular testingAtherotech VAP+ cardiovascular testing
Atherotech VAP+ cardiovascular testing
 
American Diabetes Association clinical practice recommendations 2012
American Diabetes Association clinical practice recommendations 2012American Diabetes Association clinical practice recommendations 2012
American Diabetes Association clinical practice recommendations 2012
 
Shelly hyperlipidemia
Shelly hyperlipidemiaShelly hyperlipidemia
Shelly hyperlipidemia
 
Hypertension evaluation 1
Hypertension   evaluation 1Hypertension   evaluation 1
Hypertension evaluation 1
 
Fasting is not routinely required for determination of a lipid profile
Fasting is not routinely required for determination of a lipid profileFasting is not routinely required for determination of a lipid profile
Fasting is not routinely required for determination of a lipid profile
 
Is measuring apo B and Lp (a) of value ?
Is measuring apo B and Lp (a) of value ?Is measuring apo B and Lp (a) of value ?
Is measuring apo B and Lp (a) of value ?
 
Health promotion in elderly
Health promotion in elderlyHealth promotion in elderly
Health promotion in elderly
 
Laboratory errors in medical practice
Laboratory  errors in medical practiceLaboratory  errors in medical practice
Laboratory errors in medical practice
 
Risk factor for stroke
Risk factor for strokeRisk factor for stroke
Risk factor for stroke
 
Biochem
BiochemBiochem
Biochem
 
Lipid Guidelines - Dr. Ajay Kantharia
Lipid Guidelines - Dr. Ajay KanthariaLipid Guidelines - Dr. Ajay Kantharia
Lipid Guidelines - Dr. Ajay Kantharia
 
Rancidity & Lipid Peroxidation
Rancidity & Lipid PeroxidationRancidity & Lipid Peroxidation
Rancidity & Lipid Peroxidation
 
Lipid lowering trials ppt
Lipid lowering trials pptLipid lowering trials ppt
Lipid lowering trials ppt
 
Lipid profile
Lipid profile Lipid profile
Lipid profile
 
Dr ravi lipid profile
Dr ravi lipid profileDr ravi lipid profile
Dr ravi lipid profile
 
Hyperlipidemia
HyperlipidemiaHyperlipidemia
Hyperlipidemia
 
Disorders of lipid metabolism ppt
Disorders of lipid metabolism pptDisorders of lipid metabolism ppt
Disorders of lipid metabolism ppt
 

Similar to Nonfasting Glucose, Ischemic Heart Disease, and Myocardial Infarction A Mendelian Randomization Study

Journal club 72010
Journal club 72010Journal club 72010
Journal club 72010
Ahad Lodhi
 
CVD Egypt Clinical Diabetes Reprint Summer 2010
CVD Egypt Clinical Diabetes Reprint Summer 2010CVD Egypt Clinical Diabetes Reprint Summer 2010
CVD Egypt Clinical Diabetes Reprint Summer 2010
Mahmoud IBRAHIM
 
Prognosis of pulmonary arterial hypertension
Prognosis of pulmonary arterial hypertensionPrognosis of pulmonary arterial hypertension
Prognosis of pulmonary arterial hypertension
gisa_legal
 
A comparative analysis of biochemical and hematological parameters in diabeti...
A comparative analysis of biochemical and hematological parameters in diabeti...A comparative analysis of biochemical and hematological parameters in diabeti...
A comparative analysis of biochemical and hematological parameters in diabeti...
amsjournal
 
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
Victor Matías Barrios
 
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
สปสช นครสวรรค์
 
Jim 1427mourad012005
Jim 1427mourad012005Jim 1427mourad012005
Jim 1427mourad012005
jjmourad
 

Similar to Nonfasting Glucose, Ischemic Heart Disease, and Myocardial Infarction A Mendelian Randomization Study (20)

Journal club 72010
Journal club 72010Journal club 72010
Journal club 72010
 
Ojchd.000542
Ojchd.000542Ojchd.000542
Ojchd.000542
 
Genomics in CVD
Genomics in CVDGenomics in CVD
Genomics in CVD
 
Does Type of Dialysis Affect BNP in Fluid Overload Patients?
Does Type of Dialysis Affect BNP in Fluid Overload Patients?Does Type of Dialysis Affect BNP in Fluid Overload Patients?
Does Type of Dialysis Affect BNP in Fluid Overload Patients?
 
Recent Trends in Genomic Biomarkers - Pepgra Healthcare
Recent Trends in Genomic Biomarkers - Pepgra HealthcareRecent Trends in Genomic Biomarkers - Pepgra Healthcare
Recent Trends in Genomic Biomarkers - Pepgra Healthcare
 
CVD Egypt Clinical Diabetes Reprint Summer 2010
CVD Egypt Clinical Diabetes Reprint Summer 2010CVD Egypt Clinical Diabetes Reprint Summer 2010
CVD Egypt Clinical Diabetes Reprint Summer 2010
 
Prognosis of pulmonary arterial hypertension
Prognosis of pulmonary arterial hypertensionPrognosis of pulmonary arterial hypertension
Prognosis of pulmonary arterial hypertension
 
Presentation ppt.pptx
Presentation ppt.pptxPresentation ppt.pptx
Presentation ppt.pptx
 
Recent trends in genomic biomarkers pepgra healthcare
Recent trends in genomic biomarkers   pepgra healthcareRecent trends in genomic biomarkers   pepgra healthcare
Recent trends in genomic biomarkers pepgra healthcare
 
Drug in htn(2) (1)
Drug in htn(2) (1)Drug in htn(2) (1)
Drug in htn(2) (1)
 
Abcc2
Abcc2Abcc2
Abcc2
 
Core Components of the Metabolic Syndrome in Nonalcohlic Fatty Liver Disease
Core Components of the Metabolic Syndrome in Nonalcohlic Fatty Liver DiseaseCore Components of the Metabolic Syndrome in Nonalcohlic Fatty Liver Disease
Core Components of the Metabolic Syndrome in Nonalcohlic Fatty Liver Disease
 
A comparative analysis of biochemical and hematological parameters in diabeti...
A comparative analysis of biochemical and hematological parameters in diabeti...A comparative analysis of biochemical and hematological parameters in diabeti...
A comparative analysis of biochemical and hematological parameters in diabeti...
 
Gene expression and IVUS
Gene expression and IVUSGene expression and IVUS
Gene expression and IVUS
 
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
Andreassen2008 igf1 as predictor of all cause mortality and cardiovascular di...
 
HNDM proceedings of November 2016,Singapore
HNDM proceedings of November 2016,SingaporeHNDM proceedings of November 2016,Singapore
HNDM proceedings of November 2016,Singapore
 
Are All FH patients the same ? Cardiovascular Risk Assessment in Familial Hyp...
Are All FH patients the same ? Cardiovascular Risk Assessment in Familial Hyp...Are All FH patients the same ? Cardiovascular Risk Assessment in Familial Hyp...
Are All FH patients the same ? Cardiovascular Risk Assessment in Familial Hyp...
 
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
อ้างอิง 5 prevalence and effect of hemoglobin e disorders on hb a1c and lipid...
 
Jim 1427mourad012005
Jim 1427mourad012005Jim 1427mourad012005
Jim 1427mourad012005
 
Lower versus higher hemoglobin threshold for transfusion in septic shock
Lower versus higher hemoglobin threshold for transfusion in septic shockLower versus higher hemoglobin threshold for transfusion in septic shock
Lower versus higher hemoglobin threshold for transfusion in septic shock
 

More from Bladimir Viloria

Canarias a e-a_2_columnas_rm
Canarias a e-a_2_columnas_rmCanarias a e-a_2_columnas_rm
Canarias a e-a_2_columnas_rm
Bladimir Viloria
 
Dengue y fiebre hemorrágica por dengue
Dengue y fiebre hemorrágica por dengueDengue y fiebre hemorrágica por dengue
Dengue y fiebre hemorrágica por dengue
Bladimir Viloria
 
Programa influenza svmi 2013
Programa influenza  svmi 2013Programa influenza  svmi 2013
Programa influenza svmi 2013
Bladimir Viloria
 

More from Bladimir Viloria (10)

Verificación y transferencia de intervalos de referencia del perfil tiroideo ...
Verificación y transferencia de intervalos de referencia del perfil tiroideo ...Verificación y transferencia de intervalos de referencia del perfil tiroideo ...
Verificación y transferencia de intervalos de referencia del perfil tiroideo ...
 
Análisis de desempeño de laboratorios clínicos en la derterminación de glucos...
Análisis de desempeño de laboratorios clínicos en la derterminación de glucos...Análisis de desempeño de laboratorios clínicos en la derterminación de glucos...
Análisis de desempeño de laboratorios clínicos en la derterminación de glucos...
 
Parasitic worms may hold key to cutting spread of hiv researchers
Parasitic worms may hold key to cutting spread of hiv researchersParasitic worms may hold key to cutting spread of hiv researchers
Parasitic worms may hold key to cutting spread of hiv researchers
 
Perfil de susceptibilidad antimicrobiana de bacterias causantes de infección ...
Perfil de susceptibilidad antimicrobiana de bacterias causantes de infección ...Perfil de susceptibilidad antimicrobiana de bacterias causantes de infección ...
Perfil de susceptibilidad antimicrobiana de bacterias causantes de infección ...
 
Informacion sobre inscripciones en las jornadas cientificas bioanalisis 2015
Informacion sobre inscripciones en las jornadas cientificas bioanalisis 2015Informacion sobre inscripciones en las jornadas cientificas bioanalisis 2015
Informacion sobre inscripciones en las jornadas cientificas bioanalisis 2015
 
Insulin resistance and cancer the role of insulin and IGFs
Insulin resistance and cancer the role of insulin and IGFsInsulin resistance and cancer the role of insulin and IGFs
Insulin resistance and cancer the role of insulin and IGFs
 
Revisión: Resistencia a la insulina y el síndrome de ovario poliquístico. Una...
Revisión: Resistencia a la insulina y el síndrome de ovario poliquístico. Una...Revisión: Resistencia a la insulina y el síndrome de ovario poliquístico. Una...
Revisión: Resistencia a la insulina y el síndrome de ovario poliquístico. Una...
 
Canarias a e-a_2_columnas_rm
Canarias a e-a_2_columnas_rmCanarias a e-a_2_columnas_rm
Canarias a e-a_2_columnas_rm
 
Dengue y fiebre hemorrágica por dengue
Dengue y fiebre hemorrágica por dengueDengue y fiebre hemorrágica por dengue
Dengue y fiebre hemorrágica por dengue
 
Programa influenza svmi 2013
Programa influenza  svmi 2013Programa influenza  svmi 2013
Programa influenza svmi 2013
 

Recently uploaded

Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Dipal Arora
 

Recently uploaded (20)

Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
 
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In AhmedabadO898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 

Nonfasting Glucose, Ischemic Heart Disease, and Myocardial Infarction A Mendelian Randomization Study

  • 1. Nonfasting Glucose, Ischemic Heart Disease, and Myocardial Infarction A Mendelian Randomization Study Marianne Benn, MD, PHD, DMSC,*†‡ Anne Tybjærg-Hansen, MD, DMSC,†‡§ʈ Mark I. McCarthy, MD,¶#** Gorm B. Jensen, MD, DMSC,‡§ Peer Grande, MD, DMSC,‡§ Børge G. Nordestgaard, MD, DMSC*†‡ʈ Herlev and Copenhagen, Denmark; and Oxford, United Kingdom Objectives The purpose of this study was to test whether elevated nonfasting glucose levels associate with and cause isch- emic heart disease (IHD) and myocardial infarction (MI). Background Elevated fasting plasma glucose levels associate with increased risk of IHD, but whether this is also true for non- fasting levels and whether this is a causal relationship is unknown. Methods Using a Mendelian randomization approach, we studied 80,522 persons from Copenhagen, Denmark. Of those, IHD developed in 14,155, and MI developed in 6,257. Subjects were genotyped for variants in GCK (rs4607517), G6PC2 (rs560887), ADCY5 (rs11708067), DGKB (rs2191349), and ADRA2A (rs10885122) associated with ele- vated fasting glucose levels in genome-wide association studies. Results Risk of IHD and MI increased stepwise with increasing nonfasting glucose levels. The hazard ratio for IHD in sub- jects with nonfasting glucose levels Ն11 mmol/l (Ն198 mg/dl) versus Ͻ5 mmol/l (Ͻ90 mg/dl) was 6.9 (95% confidence interval [CI]: 4.2 to 11.2) adjusted for age and sex, and 2.3 (95% CI: 1.3 to 4.2) adjusted multifactori- ally; corresponding values for MI were 9.2 (95% CI: 4.6 to 18.2) and 4.8 (95% CI: 2.1 to 11.2). Increasing num- ber of glucose-increasing alleles was associated with increasing nonfasting glucose levels and with increased risk of IHD and MI. The estimated causal odds ratio for IHD and MI by instrumental variable analysis for a 1-mmol/l (18-mg/dl) increase in nonfasting glucose levels due to genotypes combined were 1.25 (95% CI: 1.03 to 1.52) and 1.69 (95% CI: 1.28 to 2.23), and the corresponding observed hazard ratio for IHD and MI by Cox regression was 1.18 (95% CI: 1.15 to 1.22) and 1.09 (95% CI: 1.07 to 1.11), respectively. Conclusions Like common nonfasting glucose elevation, plasma glucose-increasing polymorphisms associate with increased risk of IHD and MI. These data are compatible with a causal association. (J Am Coll Cardiol 2012;59:2356–65) © 2012 by the American College of Cardiology Foundation Elevated fasting plasma glucose levels are associated with increased risk of ischemic heart disease (IHD) and myocar- dial infarction (MI) in subjects with and without diabetes mellitus (1,2), but it is unclear whether this is also true for nonfasting levels. Although intensive glycemic control may reduce the risk of IHD and MI (3), it is unclear whether this risk reduction is due to reduced glucose levels per se or to an improvement of concomitant obesity, dyslipidemia, and hypertension. To study a potential causal relationship a Mendelian randomization approach can be used to circumvent con- founding and reverse causation (4). This approach uses the fact that genetic glucose-increasing variants are randomly assorted during gamete formation, like patients are random- ized to placebo or active treatment in intervention trials; and, if genotypes associated with higher plasma glucose levels also are associated with increased risk of IHD and MI compared to genotypes associated with lower levels, it follows that this likely is a causal association. To use this approach, we genotyped variants in GCK (rs4607517) (5), G6PC2 (rs560887) (5–7), ADCY5 (rs11708067) (8), DGKB From the *Department of Clinical Biochemistry, Herlev Hospital, Herlev, Denmark; †Copenhagen General Population Study, Herlev Hospital, Herlev, Denmark; ‡Co- penhagen University Hospitals, Faculty of Health Sciences, University of Copenha- gen, Copenhagen, Denmark; §Departments of Clinical Biochemistry and Cardiology, Rigshospitalet, Copenhagen, Denmark; ʈCopenhagen City Heart Study, Bispebjerg Hospital, Copenhagen, Denmark; ¶Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; #Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; and the **Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom. This work was supported by Chief Physician Johan Boserup and Lise Boserup’s Foundation and the Danish Heart Foundation, both nonprofit organizations with no right to approve or disapprove of the manuscript. The authors have reported they have no relationships relevant to the contents of this paper to disclose. Manuscript received January 25, 2012; accepted February 15, 2012. Journal of the American College of Cardiology Vol. 59, No. 25, 2012 © 2012 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2012.02.043
  • 2. (rs2191349) (6), and ADRA2A (rs10885122) (8), which were selected as the variants associated with the largest effects on fasting glucose levels in genome-wide association studies specifically aiming to identify variants associated with plasma glucose levels, and not previously associated with IHD and MI (9). Furthermore, the genetic variants have no major effects on other risk factors and, therefore, can be used to study the impact of longstanding differences in plasma glucose levels without known pleiotropic effects. We tested the hypothesis that there is a potential causal association between elevated nonfasting glucose levels and increased risk of IHD and MI. As most subjects are in the nonfasting state the majority of a 24-h cycle, and thus exposed to higher glucose levels than observed through fasting measurements, it may be more important to study nonfasting than fasting glucose levels. First, we tested whether elevated nonfasting glucose levels are associated with increased risk of IHD; second, whether the selected genotypes (5,8,10,11) are associated with elevated nonfast- ing glucose levels; and finally, whether genotypes are asso- ciated with increased risk of IHD and MI both as single site genotypes and combined in instrumental variable analyses. Methods Subjects. Studies were approved by institutional review boards and Danish ethical committees, and conducted according to the Declaration of Helsinki. Participants were all white persons and of Danish descent, and gave informed consent. None appeared in Ͼ1 study. The CCHS. The CCHS (Copenhagen City Heart Study) is a prospective study of the general population initiated in 1976 to 1978 with follow-up examinations in 1981 to 1983, 1991 to 1994, and 2001 to 2003, and endpoints ascertained from 1976 through May 2011 (12). Participants were selected to reflect the adult Danish population ages 20 to 80ϩ years. Data were obtained from a questionnaire, a physical examination, and from blood samples at each examination. Baseline nonfasting plasma glucose levels were available on 16,568 participants attending the 1976 to 1978, 1981 to 1983, 1991 to 1994, and/or 2001 to 2003 examina- tions. Baseline was defined as the first examination a subject participated in. Blood samples for deoxyribonucleic acid (DNA) extraction were available on 10,603 participants attending the 1991 to 1994 and 2001 to 2003 examinations. The CGPS. The CGPS (Copenhagen General Population Study) is a cross-sectional/prospective study of the general population initiated in 2003 with ongoing enrollment (13– 15) and endpoints ascertained from 1976 through May 2011. Participants were selected and examined exactly as in the CCHS. At the time of genotyping, 48,614 subjects had been included. The CIHDS. The CIHDS (Copenhagen Ischemic Heart Disease Study) comprises 5,109 patients from the greater Copenhagen area referred for coronary angiography in 1991 to 2010 and 10,231 controls without IHD ascertained as for the CGPS (13–15). In addition to a diagnosis of IHD, these patients also had stenosis/atherosclerosis on coronary angiography and/or a positive exercise electrocardiogra- phy test, and/or MI. Ischemic heart disease and myocardial infarction. In all studies, information on diagnosis of IHD and MI according to WHO International Classifica- tion of Diseases (ICD) (ICD8: 410–414 and 410; and ICD10: I20–I25 and I21) was collected and verified from 1976 through May 2011 by reviewing all hospital admis- sions and diagnoses entered in the national Danish Patient Registry and all causes of death in the national Danish Causes of Death Registry. Ischemic heart disease was angina pectoris and MI, the latter determined on the basis of characteristic chest pain, electrocardiographic changes, and/or elevated cardiac enzymes following the changes in diagnostic criteria over time (16). Follow-up was 100% complete, that is, no subject was lost to follow-up in any study. Genotypes. Genotyping for GCK (rs4607517), G6PC2 (rs560887), ADCY5 (rs11708067), DGKB (rs2191349), and ADRA2A (rs10885122) was by TaqMan, ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City, California). Each run included a known non- carrier, a heterozygous, and a homozygous control verified by sequencing. After 2 reruns, call rates for genotypes where Ͼ99.9% for all assays. We also genotyped the MTNR1B (rs10830963) variant, but it did not associate with nonfast- ing glucose levels (observed per allele effect, nonfasting: Ϫ0.025 [SEM 0.01]) as reported for fasting glucose levels in genome-wide association studies (per allele effect in litera- ture: 0.072 [SEM 0.005]) (5,8), and were therefore ex- cluded from further analysis. Biochemical analyses. Colorimetric assays were used to mea- sure nonfasting plasma glucose, total cholesterol, and high-density lipoprotein (HDL) cholesterol (Konelab, Boehringer Mannheim, Germany). Blood samples were taken at random irrespective of content of or of time since the last meal. Other covariates. Body mass index (BMI) was weight (kg) divided by height squared (m2 ); metabolic syndrome was defined as fulfilling 3 of the following 5 criteria: waist circumference Ն102 cm for men and Ն88 cm for women, triglycerides Ն1.7 mmol/l (150 mg/dl) or drug treatment for elevated triglycerides, HDL Ͻ1.0 mmol/l (40 mg/dl) in men and Ͻ1.3 mmol/l (50 mg/dl) in women or drug treatment for low HDL, systolic blood pressure Ն130 mm Hg and/or diastolic blood pressure Ն85 mm Hg or antihy- pertensive drug treatment, fasting glucose Ն5.56 mmol/l (100 mg/dl), or antidiabetic medication (17); diabetes mel- litus was self-reported diabetes, use of antidiabetic medica- tion, a nonfasting plasma glucose Ͼ11.0 mmol/l, and/or hospitalization or death due to diabetes (ICD8: 249–250; Abbreviations and Acronyms BMI ‫؍‬ body mass index CI ‫؍‬ confidence interval HDL ‫؍‬ high-density lipoprotein IHD ‫؍‬ ischemic heart disease MI ‫؍‬ myocardial infarction 2357JACC Vol. 59, No. 25, 2012 Benn et al. June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
  • 3. ICD10: E10–E11, E13–E14); hypertension was defined as systolic blood pressure Ն140 mm Hg (Ն135 mm Hg for diabetic subjects), diastolic blood pressure Ն90 mm Hg (Ն85 mm Hg for diabetics), and/or use of antihyperten- sive medication prescribed specifically for hypertension; current smoking, menopause status, and statin use were also self-reported. Statistical analyses. Data were analyzed by 2 authors (M.B. and B.G.N.) using Stata/IC version 11.1 (StataCorp, College Station, Texas). Two-sided p Ͻ 0.05 was signifi- cant. For trend tests using Cuzick nonparametric test and extension of a Wilcoxon rank sum test, groups of subjects classified by nonfasting glucose levels, genotypes, or number of alleles were ranked according to increasing nonfasting glucose levels and coded as 0, 1, 2, 3, and so forth. First, to test whether nonfasting glucose associate with increased risk of IHD and MI, Kaplan-Meier curves were used to estimate cumulative incidence, and Cox regression models with age as time scale and left truncation (delayed entry) were used to estimate hazard ratios for IHD and MI in the prospective CCHS. Analyses were conducted using results from each participant’s first glucose measurement in the 1976 to 1978, 1981 to 1983, 1991 to 1994, or 2001 to 2003 examinations (i.e., baseline), and data from the serial examinations of other risk factors were used as time- dependent covariates for multifactorial adjustment. Risk of IHD and MI was estimated as a function of nonfasting glucose levels in groups of 1-mmol/l (18-mg/dl) increases versus Ͻ5.0 mmol/l (Ͻ90 mg/dl) and as a continuous variable, and was corrected for regression dilution bias using a factor of 0.45 (Online Figs. 1 and 2) (18). Analyses were adjusted for: 1) age and sex; 2) multifactorially for age, sex, current smoking, menopause, and statin use; 3) multifactorially including BMI; 4) multifactorially including total cholesterol and HDL cho- lesterol; 5) multifactorially including hypertension; and 6) multifactorially including all of the above. Second, to test whether genotype associate with elevated nonfasting glucose levels, per allele effects of genotypes were calculated in the CCHS and CGPS combined to obtain maximal power; we used a method by Falconer, taking allele frequency and mean nonfasting glucose levels for each genotype into account (19). Third, to test whether genetically elevated nonfasting glucose levels associate with increased risk of IHD, we tested for association between genotype and IHD and MI risk using logistic regression in the CCHS, CGPS, and CIHDS combined to obtain maximal power. Analyses were adjusted for age and sex only, as genotypes were randomly distributed across the covariates. Finally, instrumental variable analysis by 2-stage least- squares regression was used to assess a potential causal relationship between elevated nonfasting glucose levels and increased IHD and MI risk using genetic variants as instruments for elevated nonfasting glucose levels in an additive model; we used the CCHS, CGPS, and CIHDS combined to obtain maximal power. Strength of the geno- types as instruments (association of genotype with plasma glucose) was evaluated by F-statistics from the first-stage regression, where F Ͼ10 indicates sufficient strength to ensure the validity of the instrumental variable analysis, while R2 in percent is a measure of percent contribution of genotype to the variation in plasma glucose (4). Causal odds ratios were estimated using the multiplicative generalized method of moments estimator implemented in the user- written Stata command “ivpois.” Altman’s method (20) was used to compare the causal odds ratio from the instru- mental variable analysis with the observational multifac- torially adjusted hazard ratio from Cox regression. Use of Ͼ1 genotype as instrumental variable reduces risk of bias Characteristics of ParticipantsTable 1 Characteristics of Participants Characteristics CCHS CGPS CIHDS n 16,568 48,614 15,340 Ischemic heart disease* 4,184 4,862 5,109 Myocardial infarction* 2,327 2,038 1,892 Age, yrs 51 (40–59) 58 (47–67) 57 (48–66) Women 53% 56% 46% Body mass index, kg/m2 24.3 (22.2–26.8) 25.6 (23.2–28.5) 25.6 (23.2–28.5) Total cholesterol, mmol/l 6.0 (5.2–6.8) 5.6 (4.9–6.3) 5.5 (4.7–6.3) HDL cholesterol, mmol/l 1.4 (1.1–1.7) 1.6 (1.3–2.0) 1.5 (1.2–1.9) Diabetes mellitus 2.1% 3.7% 13.2% Hypertension 47% 71% 55% Current smoking 53% 20% 26% Menopause, women only 49% 66% — Statin use 1.5% 11% — Values are n, mean (range), or %. *Number of disease events at end of follow-up. Other data are from enrollment into the studies: In the CCHS (Copenhagen City Heart Study), values are from the first participation in the study in either 1976 to 1978, 1981 to 1983, 1991 to 1994, or 2001 to 2003; in the CGPS (Copenhagen General Population Study), from enrollment 2003 to 2010; and in the CIHDS (Copenhagen Ischemic Heart Disease Study), from enrollment 1994 to 2010. To convert glucose in mmol/l to mg/dl, multiply by 18; to convert cholesterol in mmol/l to mg/dl, multiply by 39. HDL ϭ high-density lipoprotein. 2358 Benn et al. JACC Vol. 59, No. 25, 2012 Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
  • 4. due to pleiotropy, but may result in an overestimation of the causal risk estimate (21). This can be evaluated using effect estimates (strength of the association between genotype and glucose level) from previous independent studies. To do this, we repeated the instrumental variable analyses using effect estimates from published genome- wide association studies (effect sizes shown in Fig. 2) (5,6,8). Results Characteristics of the 80,522 participants in the 3 study populations are shown in Table 1; IHD developed in 14,155 subjects and MI in 6,247. Age, BMI, total cholesterol levels, frequency of male sex, metabolic syndrome, diabetes melli- tus, use of insulin or oral antidiabetic medication, hyperten- sion, smoking, menopause (women only), and statin use were higher at higher nonfasting plasma glucose levels, whereas HDL cholesterol levels were lower (Online Table 1). Variation in nonfasting plasma glucose levels as a function of time since the last meal in hours is shown in Online Figure 1. Median values ranged from 5.66 mmol/l at 0 to 1 h after a meal to 5.08 mmol/l Ͼ8 h after a meal (range 0.58 mmol/). Regression dilution on plasma glucose levels from the 1976 to 1978 to the 1981 to 1983 examination is shown in Online Figure 2, and was used to correct associ- ation between nonfasting glucose and risk of IHD and MI for regression dilution bias. Nonfasting glucose and IHD and MI observational estimates. Risk of IHD and MI increased stepwise with increasing nonfasting glucose levels (Figs. 1 and 2). Subjects with a level Ͼ11 mmol/l had their event on average 20 years before subjects with levels Ͻ5 mmol/l (Fig. 1). Age- and sex-adjusted hazard ratio for IHD was 6.9 (95% confidence interval [CI]: 4.2 to 11.2) in subjects with nonfasting plasma glucose levels Ն11 mmol/l (Ն198 mg/dl) versus Ͻ5 mmol/l (Ͻ90 mg/dl). Corresponding estimates were 6.2 (95% CI: 3.8 to 10.2) when adjusting multifactorially; 4.7 (95% CI: 2.8 to 7.7) multifactorially including BMI; 3.8 (95% CI: 2.2 to 6.5) multifactorially including total and HDL choles- terol; 5.8 (95% CI: 3.6 to 9.5) multifactorially including hypertension; and 2.3 (95% CI: 1.3 to 4.2) multifactorially including all the above. Corresponding values for MI were 9.2 (95% CI: 4.6 to 18.2), 8.3 (95% CI: 4.2 to 16.6), 6.8 (95% CI: 3.4 to 13.7), 6.0 (95% CI: 2.8 to 13.0), 7.5 (95% CI: 3.8 to 15.0), and 4.8 (95% CI: 2.1 to 11.2). Genotype and nonfasting glucose. Homozygotes versus noncarriers associated with the following increases in nonfasting plasma glucose levels: GCK (rs4607517) 2.7% (95% CI: 1.5% to 3.8%), G6PC2 (rs560887) 2.5% (1.9% to 3.2%), ADCY5 (rs11708067) 1.5% (0.7% to 2.2%), DGKB (rs2191349) 0.8% (0.3% to 1.3%), and ADRA2A (rs10885122) 0.5% (Ϫ1.1% to 2.0%) (Fig. 3). Combining genotypes by number of glucose-increasing alleles, an increasing number of glucose-increasing alleles associated with an up to 4.8% (3.6% to 6.0%) increase in nonfasting glucose levels. Genotype and IHD and MI. Assuming that increased nonfasting glucose levels have a causal effect on risk of IHD and MI, lifelong increased glucose levels due to genetic variants should confer a similar increase in risk of IHD and MI as that observed for increased glucose levels encountered in the general population. For example, the 4.8% increase in nonfasting glucose levels seen for 8 glucose-increasing alleles (Fig. 3) would theoretically predict an increased risk of IHD and MI with hazard ratios of 1.04 (95% CI: 1.03 to 1.05) and 1.04 (95% CI: 1.03 to 1.05) (Online Fig. 3). In accordance with this, the observed odds ratio for IHD increased as a function of the glucose-increasing alleles with the largest glucose-increasing effects (p trend ϭ 0.01) (Online Fig. 3); the Figure 1 Cumulative Incidence Using Kaplan-Meier Estimates of IHD and MI Cumulative incidence using Kaplan-Meier estimates of (A) ischemic heart dis- ease (IHD) and (B) myocardial infarction (MI) in percent as a function of age at event. Subjects with IHD or MI before study enrollment were excluded, result- ing in 16,318 subjects followed up for as long as 35 years with respect to inci- dent events. Solid line indicates Ͻ5 mmol/l; long-dashed line indicates 5 to 6.9 mmol/l; shorter-dashed line indicates 7 to 8.9 mmol/l; shortest-dashed line indicates 9 to 10.9 mmol/l; and dotted line indicates Ն11 mmol/l. 2359JACC Vol. 59, No. 25, 2012 Benn et al. June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
  • 5. Figure 2 Risk of IHD and MI as a Function of Baseline Nonfasting Plasma Glucose Levels in General Population Nonfasting plasma glucose levels were measured in 16,568 subjects who participated in the 1976 to 1978, 1981 to 1983, 1991 to 1994, and/or 2001 to 2003 examinations of the Copenhagen City Heart Study. Results are shown for (A) ischemic heart disease (IHD) and (B) myocardial infarction (MI). Participants with IHD or MI before study enrollment were excluded, resulting in 16,318 subjects followed up for as long as 35 years with respect to incident events. Basic multifactorial adjustment was for age, sex, current smoking, menopause, and statin use. The fully multifactorially adjusted model additionally included body mass index, total cholesterol, high- density lipoprotein (HDL) cholesterol, and hypertension. CI ϭ confidence interval; HR ϭ hazard ratio. 2360 Benn et al. JACC Vol. 59, No. 25, 2012 Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
  • 6. various risk factors except glucose levels were equally distrib- uted among the genotypes, confirming that these genotypes are largely unconfounded by such factors (Online Table 2). Results for MI were similar (Online Fig. 3). Nonfasting glucose and IHD and MI causal estimates. A potential causal effect of increased nonfasting glucose levels on increased risk of IHD and MI was also examined using instrumental variable analysis. A 1-mmol/l (18-mg/ Figure 2 Continued 2361JACC Vol. 59, No. 25, 2012 Benn et al. June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
  • 7. dl) increase in nonfasting glucose levels due to genotypes associated with a causal odds ratio for IHD of 1.25 (95% CI: 1.03 to 1.52) and MI of 1.69 (95% CI: 1.28 to 2.23), and the observed multifactorially adjusted hazard ratio for a similar increase was 1.18 (95% CI: 1.15 to 1.22) for IHD and 1.09 (95% CI: 1.07 to 1.11) for MI (Fig. 4). The corresponding causal odds ratios for IHD and MI were 1.36 (95% CI: 1.05 to 1.77) and 1.54 (95% CI: 1.05 to 2.27), respectively, using effect estimates for per allele increases in fasting glucose levels from the literature. Discussion The main finding of this study is that both observational and genetically elevated nonfasting glucose levels are asso- ciated with increased risk of IHD and MI. This finding is compatible with elevated glucose levels per se being causally related to the development of IHD and MI. Overall, evidence for or against a causal contribution of glucose to the pathogenesis of macrovascular disease, in- cluding IHD and MI, can come from 5 types of evidence; that is, conventional epidemiology, mechanistic studies, animal models, randomized intervention trials, and Men- delian randomization studies like the present (22,23). 1) Previous prospective epidemiologic studies showed that elevated fasting glucose levels associate with increased IHD and MI risk even at nondiabetic glucose levels (1,2). Our results using nonfasting glucose levels are in agreement with this, and confirm that even after adjustment for obesity, dyslipidemia, and hypertension, elevated IHD and MI risk remain. 2) Results from in vitro and animal studies have suggested several mechanisms by which glucose may con- tribute to macrovascular disease: increased glucose levels, free fatty acids, and insulin resistance together leads to oxidative stress, activation of protein kinase C isoforms, formation of advanced glycation end product, and nonen- zymatic glycation of low-density lipoprotein, apolipopro- teins, and clotting factors, collectively resulting in vasocon- striction, inflammation, and thrombosis (2,24,25). 3) In animal models with experimental hypercholesterolemia or genetic predisposition for atherosclerosis, elevated glucose Gene Genotype No. of participants Mean (standard error) P-trend Change in glucose levels, % (95% confidence interval) Per allele effect, mmol/L (SEM) Per allele effect, mmol/L (SEM); GWAS (5,6,8) Risk allele frequency; GWAS GCK rs4607517,G>A )700.0(260.0)610.0(370.00100.0<511,84GG )4.1-6.0(0.1560,81AG 81.0)8.3-5.1(7.2517,1AA G6PC2 rs560887,C>T )400.0(460.0)900.0(860.00100.0<193,6TT )5.1-2.0(9.0586,82TC 82.0)2.3-9.1(5.2147,23CC ADCY5 rs11708067,A>G )300.0(720.0)110.0(930.00100.0<880,4GG )9.0-6.0-(1.0715,52GA 87.0)2.2-7.0(5.1292,83AA DGKB rs2191349,T>G )7800.0(640.0)700.0(220.00100.0<730,61GG )0.1-1.0(5.0539,33GT 25.0)3.1-3.0(8.0029,71TT ADRA2A rs10885122,G>T )400.0(220.0)220.0(710.0020.0988TT )7.1-5.1-(1.0325,31TG 78.0)0.2-1.1-(5.0394,35GG Glucose increasing alleles 0100.0<310,23-0 )1.2-3.0-(9.0364,64 )7.2-5.0(6.1726,415 )1.4-8.1(9.2099,916 )6.4-3.2(4.3980,617 )0.6-6.3(8.4640,78 Nonfasting glucose, mmol/L Figure 3 Nonfasting Plasma Glucose Levels as a Function of Genotype in General Population Glucose-increasing alleles were combinations of genotypes with glucose-increasing effects; the most common genotype combinations are shown, whereas the rarer com- binations were excluded because of reduced statistical power. This was examined in 67,914 participants from the Copenhagen City Heart Study and the Copenhagen General Population Study combined, irrespective of other cardiovascular risk factors or treatment for diabetes mellitus. Estimates of effect on fasting plasma glucose levels reported from genome-wide association studies (GWAS) using plasma glucose level as the phenotype are reported in the right column. To convert mmol/l glucose to mg/dl, multiply by 18. 2362 Benn et al. JACC Vol. 59, No. 25, 2012 Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
  • 8. levels may directly cause macrovascular disease (24,26). 4) A meta-analysis of randomized intervention trials (27–32) showed that intensive glycemic control in patients with diabetes mellitus was associated with a 15% reduction in risk of IHD (3). However, in all included studies, intensive glycemic control also had beneficial effects on obesity, dyslipidemia, and/or hypertension, obscuring the isolated effect of reduced glucose levels, and this issue remains unresolved. 5) Using a Mendelian randomization approach free from reverse causation and unconfounded by obesity, dyslipidemia, and hypertension, we here found that both observational and genetic lifelong elevated nonfasting or fasting glucose levels associate with increased risk of IHD and MI. In the present study, we use genotypes associated with glucose levels in the nondiabetic range and not asso- ciated with diabetes mellitus in our general population samples, suggesting that the increased risk of IHD is more likely due to glucose per se, rather than mediated through diabetes mellitus. A recent Mendelian randomization study support that elevated fasting plasma glucose levels may also be causally related to increased intima-media thickness (33). Therefore, these 5 different types of evidence collectively suggest that elevated plasma glucose per se might be causally related to the development of IHD and MI. From a clinical standpoint, our confirmation of increased nonfasting glucose as a marker of increased IHD risk suggests that nonfasting values may be used in risk stratifi- cation, whereas for diagnostic purposes, fasting values are required. Although nonfasting/post-prandial glucose levels are more variable than fasting levels, risk of cardiovascular disease is more strongly associated with nonfasting/post- prandial hyperglycemia than fasting hyperglycemia (34). The exact reason for this is not known, but it has been observed that persons with impaired glucose tolerance, a Figure 4 Summary of Causal Effects of Increased Nonfasting Glucose on Increased Risk of IHD and MI Studies’ summary of the causal effect of increased nonfasting glucose on increased risk of ischemic heart disease (IHD) and myocardial infarction (MI). This was tested in the Copenhagen City Heart Study, the Copenhagen General Population Study, and the Copenhagen Ischemic Heart Disease Study combined; 6,448 participants were not genotyped for lack of deoxyribonucleic acid; and for participants genotyped, numbers vary slightly from genotype to genotype. The causal effect of increased nonfast- ing glucose levels on risk of IHD and MI was estimated by the association between a 1-mmol/l (18-mg/dl) genetic increase in nonfasting glucose levels and risk of IHD and MI, using instrumental variable analysis by 2-stage least-squares regression and given as an odds ratio (OR) with a 95% confidence interval (CI). This risk is com- pared to the observational prospective increased risk of IHD and MI, respectively, associated with a 1-mmol/l (18-mg/dl) increase in nonfasting glucose in the general population, the Copenhagen City Heart Study, given as a multifactorially adjusted Cox regression hazard ratio (HR) with a 95% CI. Odds ratios for a 1-mmol/l (18-mg/dl) genetic increase in nonfasting glucose levels are also given for individual and combined genotypes. F-statistics (evaluation of strength of instrument) and R2 (contribution of genotype to variation in plasma glucose levels in percent) are from the first-stage regression analysis. In the second-stage regression analysis studying the associa- tion between genotype and risk, imputed glucose values were included in part of the cases in the Copenhagen Ischemic Heart Disease Study. The causal effect of a 1-mmol/l (18-mg/dl) genetic increase in nonfasting glucose levels on risk of IHD and MI was also estimated using effect sizes for genotypes previously reported from genome-wide association studies specifically aimed at identifying genes associated with plasma glucose levels. The p value is for significance of hazard ratio/odds ratio. The p value comparison is between the estimate from observational epidemiology and the causal estimate from instrumental variable analysis. To convert mmol/l glu- cose to mg/dl, multiply by 18. 2363JACC Vol. 59, No. 25, 2012 Benn et al. June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease
  • 9. diagnostic group known to have a high risk of cardiovascular disease, have elevated nonfasting/post-prandial glucose lev- els, but usually fasting blood glucose levels within the normal range (35). The use of nonfasting glucose measure- ments may explain the relatively high observational risk estimates in the present study compared to others (1), but this difference may also in part be because we were able to adjust for regression dilution bias (18). Strengths of the present study are that we had sufficient statistical power to document increased risk of IHD and MI as a function of glucose-increasing genotypes. Another strength of the present study was that all participants were white persons of Danish descent, thus effectively excluding admixture as a potential problem in our study. A potential limitation of the present Mendelian random- ization approach is that, apart from their involvement in glucose regulation and metabolism, the presently studied genetic variants may have pleiotropic effects on other cardiovascular risk factors or directly on IHD and MI risk unrelated to nonfasting glucose levels. However, we did not find any consistent associations with age, BMI, levels of total cholesterol or HDL cholesterol, or frequency of metabolic syndrome, diabetes mellitus, use of insulin or oral antidiabetic medication, hypertension, current smoking, menopause, or statin use across genotypes. Nevertheless, the ADCY5 and DGKB genes are reported to be involved in symphacetic and parasymphacetic regulation of heart rate (10) and may have an effect on IHD and MI risk through 1 of these pathways. Furthermore, ADRA2A is directly in- volved in lipolysis and is associated with risk of attention deficit/hyperactive disorder (11). Except for increased birth weight reported to be associated with GCK genotype, no pleiotropic effects have been reported for the GCK and G6PC2 genes with the largest effects on nonfasting glucose levels in the present study. Using Ͼ1 genotype reduces the effect of unknown pleiotropy of the genotypes and reduces the influence of a genotype directly associated with risk of IHD and MI unrelated to nonfasting glucose levels, but may result in an overestimation of the causal risk (4). Another potential limitation of the present study is the modest contribution of genotypes to the variation in nonfasting glucose levels (weak instrument bias and unreliable instruments bias) and the use of 5 genotypes as instruments. To evaluate this, we first used F statistics to test the strength of the instruments and found that 3 of 5 instruments were excellent, and combined, all 5 genotypes were good instruments (F Ͼ10). We then repeated the instrumental variable analyses using effect estimates from published genome-wide association studies. The causal esti- mate using external independent effect sizes corresponded with the causal estimate from the present study populations, sug- gesting that such a bias is unlikely. Also, we studied white subjects only, and therefore our results may not necessarily translate to other races. A known limitation of prospective studies using a baseline nonfasting measurement for classifica- tion is misclassification due to regression dilution bias, which is the fact that extreme values at baseline tend to attenuate over time and regress toward the mean value of measurements (4). In the present study, we corrected for this using results from subjects with Ͼ1 measurement over time to estimate the degree of regression dilution. Conclusions Both elevated observational and genetic nonfasting glucose levels are associated with increased risk of IHD and MI. These data are compatible with a causal association. Acknowledgments The authors thank Hanne Damm and Dorthe Uldall Andersen for assisting with the large-scale genotyping. The authors are indebted to the staff and participants of the CCHS, the CGPS, and the CIHDS for their important contributions. Reprint requests and correspondence: Dr. Børge G. Nordest- gaard, Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev DK-2730, Denmark. E-mail: Boerge.Nordestgaard@regionh.dk. REFERENCES 1. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375:2215–22. 2. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999;22:233–40. 3. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765–72. 4. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008;27:1133–63. 5. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009;41:77–81. 6. Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide associa- tion analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009;41:35–46. 7. Chambers JC, Zhang W, Zabaneh D, et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009;58:2703–8. 8. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105–16. 9. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42:579–89. 10. Okumura S, Kawabe J, Yatani A, et al. Type 5 adenylyl cyclase disruption alters not only sympathetic but also parasympathetic and calcium-mediated cardiac regulation. Circ Res 2003;93:364–71. 11. Risselada AJ, Vehof J, Bruggeman R, et al. Association between the 1291-C/G polymorphism in the adrenergic alpha-2a receptor and the metabolic syndrome. J Clin Psychopharmacol 2010;30:667–71. 12. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Non- fasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007;298:299–308. 13. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and isch- emic vascular disease. N Engl J Med 2008;359:1897–908. 2364 Benn et al. JACC Vol. 59, No. 25, 2012 Nonfasting Glucose and Ischemic Heart Disease June 19/26, 2012:2356–65
  • 10. 14. Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 2008;299:2524–32. 15. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 2010;55:2833–42. 16. Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol 2007;50:2173–95. 17. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120:1640–5. 18. Clarke R, Shipley M, Lewington S, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol 1999;150:341–53. 19. Falconer DS, Mackay TFS. Introduction to Quantitative Genetics. 4th ed. Harlow, Essex, UK: Addison-Wesley Longman, 1996. 20. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ 2003;326:219. 21. Pierce B, Ahsan H, VanderWeele T. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 2010;40:740–52. 22. Nordestgaard BG. Does elevated C-reactive protein cause human atherothrombosis? Novel insights from genetics, intervention trials, and elsewhere. Curr Opin Lipidol 2009;20:393–401. 23. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein (a) as a cardiovascular risk factor: current status. Eur Heart J 2010;31:2844–53. 24. Brownlee M, Spiro RG. Biochemistry of the basement membrane in diabetes mellitus. Adv Exp Med Biol 1979;124:141–56. 25. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neurop- athy. Zenarestat Study Group. Neurology 1999;53:580–91. 26. Rucinsky R, Cook A, Haley S, Nelson R, Zoran, DL, Poundstone M. AAHA diabetes management guidelines for dogs and cats. J Am Anim Hosp Assoc 2010;46:215–24. 27. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–65. 28. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–59. 29. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial. Lancet 2005;366:1279–89. 30. Wilcox R, Kupfer S, Erdmann E. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial in macroVascu- lar Events (PROactive 10). Am Heart J 2008;155:712–7. 31. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–72. 32. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360:129–39. 33. Rasmussen-Torvik LJ, Li M, Kao W, et al. Association of a fasting glucose genetic risk score with subclinical atherosclerosis: the Athero- sclerosis Risk In Communities (ARIC) study. Diabetes 2011;9:295–8. 34. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Inter- vention Study, 11-year follow-up. Diabetologia 1996;39:1577–83. 35. Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 1998;19:583–92. Key Words: cardiovascular disease y diabetes mellitus y epidemiology y nonfasting y plasma glucose y post-prandial. APPENDIX For supplemental figures and tables, please see the online version of this article. 2365JACC Vol. 59, No. 25, 2012 Benn et al. June 19/26, 2012:2356–65 Nonfasting Glucose and Ischemic Heart Disease