SlideShare a Scribd company logo
1 of 1
Download to read offline
Radiation  Dose  and  Image  Optimization  During    
Computed  Tomography  Coronary  Angiography	
Yili Wang1, Barinder Dhillon1, Narinder Paul2
Introduction
Materials &
Methods
Results Discussion
Computed Tomography
Coronary Angiography
(CTCA) is the standard of
care for evaluation of the
coronary arteries in
patients with low to
intermediate risk of
coronary artery disease
(CAD), due to a high
negative predictive value.
CTCA requires optimal
contrast enhancement of
the coronary arteries.
However, there is concern
over the use of ionizing
radiation and potential
long-term health issues.
•  Lungman® chest
phantom
•  Toshiba Aquilion ONETM
320-MDCT Scanner
•  Iodinated IV contrast
All scans used a CTCA
protocol; radiation dose
(CTDIvol and DLP) was
recorded.
1.  Scan chest phantom at
different kV. Use mA
modulation to maintain
image noise (SD, HU).
2.  Scan chest phantom at
different mA and fixed
80 kV.
3.  Scan chest phantom at
different scan lengths.
4.  Scan test tubes
containing 3 different
concentrations of
iodinated contrast at 3
different dilutions and
4 different kV settings
(Fig.1). Measure
Hounsfield Units (HU).
•  Increasing kV initially
reduces dose, but at
135 kV, patient dose
increased (Fig. 2).
•  Minimal mA and scan
length reduced dose.
•  For kV settings with mA
modulation, the minimum
dose was noted at
120kV. At lower and
higher kV settings, with a
fixed image noise, mA
modulation increased
dose.
•  Optimal contrast
opacification is required
as suboptimal contrast
opacification reduces the
diagnostic utility of CTCA
•  Low kV settings (80kV or
100kV) can increase
signal even for highly
diluted contrast.
Conclusion
Objective
Purpose – Determine the
impact on radiation dose
of manipulating factors
relevant to image
optimization during CTCA
including kV, mA, scan
length, and contrast
concentration.
Why – Current CT units
can produce diagnostic
images at lower radiation
dose. However,
overexposure is not
visually apparent and
leads to dose creep.
Repeat exams due to poor
contrast opacification
increase patient irradiation
and contrast dose.
For optimal CTCA use:
1.  Low kV settings to
maximize signal
intensity
2.  Increase image noise
setting at lower kV
3.  Use mA modulation for
scans using 64MDCT
4.  Minimize scan length
1The Michener Institute for Applied Health Sciences, Toronto, Canada
2 Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Canada.
•  Increasing mA increased
radiation dose (Fig. 3).
•  At the same kV, signal
increased with
increasing contrast
concentration (Fig. 5).
•  A low kV can
compensate for highly
diluted contrast (Fig. 6).
Results are consistent
across different types of
contrasts: Visipaque,
Ultravist, and
Omnipaque (Figs 5, 6,
and 7)
•  At the same dilution,
signal (HU) increased
with decreasing kV
(Fig. 6).
•  Increasing scan length
increased radiation
dose (Fig. 4).
0
100
200
300
400
500
600
700
800
900
1000
80kV 100kV 120kV 135kV
HU
FIG 5. Effect of kV on Signal from Contrast
(Visipaque 320)
1/20 dilution
1/50 dilution
1/100 dilution
0
100
200
300
400
500
600
700
80kV 100kV 120kV 135kV
HU
FIG 6. Effect of kV on Signal from Contrast
(Omnipaque 240)
1/20 dilution
1/50 dilution
1/100 dilution
0
100
200
300
400
500
600
700
800
900
1000
1100
80kV 100kV 120kV 135kV
HU
FIG 7. Effect of kV on Signal from Contrast
(Ultravist 370)
1/20 dilution
1/50 dilution
1/100 dilution
Fig 1. A. Three different iodinated contrast media are diluted into 1/20, 1/50 and 1/100
concentrations. A water-filled test tube is used for control. Scans were performed in a
water bath using CTCA protocol. B. Coronal reconstruction of scan at 80 kV. Regions of
Interest (ROI) were placed inside each test tube to measure image signal (HU).
water 1/20 1/20 1/20
1/50 1/50 1/50
1/100 1/100 1/100
Visipaque
320
Ultravist
370
Omnipaque
240
A B
0
5
10
15
20
25
30
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
70 80 90 100 110 120 130 140
DoseLengthProduct(DLP)
CTDI
kV
FIG 2. Effect of kV on Radiation Dose (CTDI and DLP)
CTDI
DLP
21
22
23
24
25
26
27
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
145 150 155 160 165 170 175 180 185
DoseLengthProduct(DLP)
CTDI
mA
FIG 3. Effect of mA on Radiation Dose (CTDI and DLP)
CTDI
DLP
0
5
10
15
20
25
30
35
40
45
0
0.5
1
1.5
2
2.5
3
110 120 130 140 150 160 170
DoseLenghtProduct(DLP)
CTDI
Scan Length (mm)
FIG 4. Effect of Scan Length on Radiation Dose
(CTDI and DLP)
CTDI
DLP

More Related Content

What's hot

Comparative study of aaa and pbc (1)
Comparative study of aaa and pbc (1)Comparative study of aaa and pbc (1)
Comparative study of aaa and pbc (1)Rahim Gohar
 
Spectral CT - Head to Toe Poster
Spectral CT - Head to Toe PosterSpectral CT - Head to Toe Poster
Spectral CT - Head to Toe PosterGarry Choy MD MBA
 
MDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaMDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaAvinesh Shrestha
 
Parsons and Robar, Volume of interest CBCT and tube current modulation for i...
 Parsons and Robar, Volume of interest CBCT and tube current modulation for i... Parsons and Robar, Volume of interest CBCT and tube current modulation for i...
Parsons and Robar, Volume of interest CBCT and tube current modulation for i...David Parsons
 
ANALYSIS AND BENEFITS OF RAPIDARC
ANALYSIS AND BENEFITS OF RAPIDARC ANALYSIS AND BENEFITS OF RAPIDARC
ANALYSIS AND BENEFITS OF RAPIDARC Melissa McClement
 
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QA
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QAArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QA
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QAMiami Cancer Institute
 
The Use Of High Energy Protons
The Use Of High Energy ProtonsThe Use Of High Energy Protons
The Use Of High Energy Protonsfondas vakalis
 
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAEDose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAEhaijaypee_dan
 
CT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QACT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QASambasivaselli R
 
TPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation OncologyTPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation OncologyMiami Cancer Institute
 
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...Carestream
 
Proton beam therapy
Proton beam therapyProton beam therapy
Proton beam therapydeepak2006
 
challenges of small field dosimetry
challenges of small field dosimetrychallenges of small field dosimetry
challenges of small field dosimetryLayal Jambi
 

What's hot (20)

Comparative study of aaa and pbc (1)
Comparative study of aaa and pbc (1)Comparative study of aaa and pbc (1)
Comparative study of aaa and pbc (1)
 
SPIE_2015_Fahmi
SPIE_2015_FahmiSPIE_2015_Fahmi
SPIE_2015_Fahmi
 
Spectral CT - Head to Toe Poster
Spectral CT - Head to Toe PosterSpectral CT - Head to Toe Poster
Spectral CT - Head to Toe Poster
 
MDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh ShresthaMDCT Principles and Applications- Avinesh Shrestha
MDCT Principles and Applications- Avinesh Shrestha
 
Parsons and Robar, Volume of interest CBCT and tube current modulation for i...
 Parsons and Robar, Volume of interest CBCT and tube current modulation for i... Parsons and Robar, Volume of interest CBCT and tube current modulation for i...
Parsons and Robar, Volume of interest CBCT and tube current modulation for i...
 
ANALYSIS AND BENEFITS OF RAPIDARC
ANALYSIS AND BENEFITS OF RAPIDARC ANALYSIS AND BENEFITS OF RAPIDARC
ANALYSIS AND BENEFITS OF RAPIDARC
 
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QA
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QAArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QA
ArcCheck 3D-Diode array evaluation, commissioning, testing for VMAT QA
 
The Use Of High Energy Protons
The Use Of High Energy ProtonsThe Use Of High Energy Protons
The Use Of High Energy Protons
 
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAEDose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
Dose reduction in MDCT . Daniel J.P , Khorfakhan hospital . UAE
 
Dual Energy CT
Dual Energy CTDual Energy CT
Dual Energy CT
 
CT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QACT based Image Guided Radiotherapy - Physics & QA
CT based Image Guided Radiotherapy - Physics & QA
 
TPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation OncologyTPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation Oncology
 
Dose reduction
Dose reductionDose reduction
Dose reduction
 
Session 2 radiotherapy
Session 2 radiotherapySession 2 radiotherapy
Session 2 radiotherapy
 
Image Contrast, Noise, Resolution
Image Contrast, Noise, ResolutionImage Contrast, Noise, Resolution
Image Contrast, Noise, Resolution
 
Session 7 interventional radiology
Session 7 interventional radiologySession 7 interventional radiology
Session 7 interventional radiology
 
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...
Dual energy imaging and digital tomosynthesis: Innovative X-ray based imaging...
 
Proton beam therapy
Proton beam therapyProton beam therapy
Proton beam therapy
 
challenges of small field dosimetry
challenges of small field dosimetrychallenges of small field dosimetry
challenges of small field dosimetry
 
RADIOTHERAPY CALCULATION
RADIOTHERAPY CALCULATIONRADIOTHERAPY CALCULATION
RADIOTHERAPY CALCULATION
 

Viewers also liked

Ipr100 asignación de seguimiento 2014 1 administrativo-en_salud
Ipr100  asignación de seguimiento 2014 1 administrativo-en_saludIpr100  asignación de seguimiento 2014 1 administrativo-en_salud
Ipr100 asignación de seguimiento 2014 1 administrativo-en_saludPRACTICAS ICCT
 
DanixaConde_Escala 2:2_FormatoA3
DanixaConde_Escala 2:2_FormatoA3DanixaConde_Escala 2:2_FormatoA3
DanixaConde_Escala 2:2_FormatoA3danixaconde
 
Todd Pardoe Resume
Todd Pardoe ResumeTodd Pardoe Resume
Todd Pardoe ResumeTodd Pardoe
 
FP_KUMASI
FP_KUMASIFP_KUMASI
FP_KUMASIS K
 
Le blog perso d'un pervers sexuel
Le blog perso d'un pervers sexuelLe blog perso d'un pervers sexuel
Le blog perso d'un pervers sexuelunusualjunk9308
 
Amway - az nagy előd
Amway - az nagy elődAmway - az nagy előd
Amway - az nagy elődImre Palásti
 
Experience composting-poultry-carcasses-blake
Experience composting-poultry-carcasses-blakeExperience composting-poultry-carcasses-blake
Experience composting-poultry-carcasses-blakeIIAD
 
La educación en el tiempo libre es una necesidad y un derecho de niños
La educación en el tiempo libre es una necesidad y un derecho de niñosLa educación en el tiempo libre es una necesidad y un derecho de niños
La educación en el tiempo libre es una necesidad y un derecho de niñosraqueliux21
 

Viewers also liked (18)

Scan pic0040
Scan pic0040Scan pic0040
Scan pic0040
 
Ipr100 asignación de seguimiento 2014 1 administrativo-en_salud
Ipr100  asignación de seguimiento 2014 1 administrativo-en_saludIpr100  asignación de seguimiento 2014 1 administrativo-en_salud
Ipr100 asignación de seguimiento 2014 1 administrativo-en_salud
 
DanixaConde_Escala 2:2_FormatoA3
DanixaConde_Escala 2:2_FormatoA3DanixaConde_Escala 2:2_FormatoA3
DanixaConde_Escala 2:2_FormatoA3
 
Cavitazione Modena
Cavitazione Modena
Cavitazione Modena
Cavitazione Modena
 
Todd Pardoe Resume
Todd Pardoe ResumeTodd Pardoe Resume
Todd Pardoe Resume
 
prueba
pruebaprueba
prueba
 
Apresentação2
Apresentação2Apresentação2
Apresentação2
 
Día 2 programacion
Día 2 programacionDía 2 programacion
Día 2 programacion
 
FP_KUMASI
FP_KUMASIFP_KUMASI
FP_KUMASI
 
Bitácora #1
Bitácora #1Bitácora #1
Bitácora #1
 
Le blog perso d'un pervers sexuel
Le blog perso d'un pervers sexuelLe blog perso d'un pervers sexuel
Le blog perso d'un pervers sexuel
 
Consejo de Carreras ITU
Consejo de Carreras ITUConsejo de Carreras ITU
Consejo de Carreras ITU
 
Alimento
AlimentoAlimento
Alimento
 
Amway - az nagy előd
Amway - az nagy elődAmway - az nagy előd
Amway - az nagy előd
 
Experience composting-poultry-carcasses-blake
Experience composting-poultry-carcasses-blakeExperience composting-poultry-carcasses-blake
Experience composting-poultry-carcasses-blake
 
Diego armando soto
Diego armando sotoDiego armando soto
Diego armando soto
 
La educación en el tiempo libre es una necesidad y un derecho de niños
La educación en el tiempo libre es una necesidad y un derecho de niñosLa educación en el tiempo libre es una necesidad y un derecho de niños
La educación en el tiempo libre es una necesidad y un derecho de niños
 
Qué es la anorexia
Qué es la  anorexiaQué es la  anorexia
Qué es la anorexia
 

Similar to FINAL CTCA CAMRT presentation - Yili

Dose reduction technique in ct scan
Dose reduction technique in ct scanDose reduction technique in ct scan
Dose reduction technique in ct scanMohd Aiman Azmardi
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionsanyengere
 
SPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteSPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteShahid Younas
 
J0362069073
J0362069073J0362069073
J0362069073theijes
 
Ct angio ppt
Ct angio pptCt angio ppt
Ct angio pptdrksp
 
cardiovascular ct ppt
cardiovascular ct pptcardiovascular ct ppt
cardiovascular ct pptdrksp
 
Radiation dose to lens in CT
Radiation dose to lens in CTRadiation dose to lens in CT
Radiation dose to lens in CTKalpana Parajuli
 
COMPUTED TOMOGRAPHY SCAN
COMPUTED TOMOGRAPHY SCANCOMPUTED TOMOGRAPHY SCAN
COMPUTED TOMOGRAPHY SCANShounak Nandi
 
Effects of variation of tube voltage current, filtration..pptx
Effects of variation of tube voltage current, filtration..pptxEffects of variation of tube voltage current, filtration..pptx
Effects of variation of tube voltage current, filtration..pptxDr. Dheeraj Kumar
 
Ct radiation dose & safety lecture 1
Ct radiation dose & safety lecture 1Ct radiation dose & safety lecture 1
Ct radiation dose & safety lecture 1Gamal Mahdaly
 
Implementation of an audit and dose reduction program for ct matyagin
Implementation of an audit and dose reduction program for ct matyaginImplementation of an audit and dose reduction program for ct matyagin
Implementation of an audit and dose reduction program for ct matyaginLeishman Associates
 
Ultrasound Targeted Microbubble Destruction Research Project
Ultrasound Targeted Microbubble Destruction Research ProjectUltrasound Targeted Microbubble Destruction Research Project
Ultrasound Targeted Microbubble Destruction Research ProjectChristina Amaral
 
Datamed Poster DDR DRLS-Final
Datamed Poster DDR DRLS-FinalDatamed Poster DDR DRLS-Final
Datamed Poster DDR DRLS-FinalOmiros Omirou
 
-Lecture 2.ppt
-Lecture 2.ppt-Lecture 2.ppt
-Lecture 2.pptMagde Gad
 

Similar to FINAL CTCA CAMRT presentation - Yili (20)

Dose reduction technique in ct scan
Dose reduction technique in ct scanDose reduction technique in ct scan
Dose reduction technique in ct scan
 
CT RADIATION DOSE REDUCTION
CT RADIATION DOSE REDUCTION CT RADIATION DOSE REDUCTION
CT RADIATION DOSE REDUCTION
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protection
 
CT dose reduction
CT dose reductionCT dose reduction
CT dose reduction
 
SPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteSPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT Constitute
 
J0362069073
J0362069073J0362069073
J0362069073
 
Ct angio ppt
Ct angio pptCt angio ppt
Ct angio ppt
 
cardiovascular ct ppt
cardiovascular ct pptcardiovascular ct ppt
cardiovascular ct ppt
 
Radiation dose to lens in CT
Radiation dose to lens in CTRadiation dose to lens in CT
Radiation dose to lens in CT
 
COMPUTED TOMOGRAPHY SCAN
COMPUTED TOMOGRAPHY SCANCOMPUTED TOMOGRAPHY SCAN
COMPUTED TOMOGRAPHY SCAN
 
Session 1 conventional x ray
Session 1  conventional x raySession 1  conventional x ray
Session 1 conventional x ray
 
Effects of variation of tube voltage current, filtration..pptx
Effects of variation of tube voltage current, filtration..pptxEffects of variation of tube voltage current, filtration..pptx
Effects of variation of tube voltage current, filtration..pptx
 
jmrs156
jmrs156jmrs156
jmrs156
 
Ct radiation dose & safety lecture 1
Ct radiation dose & safety lecture 1Ct radiation dose & safety lecture 1
Ct radiation dose & safety lecture 1
 
Implementation of an audit and dose reduction program for ct matyagin
Implementation of an audit and dose reduction program for ct matyaginImplementation of an audit and dose reduction program for ct matyagin
Implementation of an audit and dose reduction program for ct matyagin
 
Computed tomography angiography of the hepatic, pancreatic, and spleenic circ...
Computed tomography angiography of the hepatic, pancreatic, and spleenic circ...Computed tomography angiography of the hepatic, pancreatic, and spleenic circ...
Computed tomography angiography of the hepatic, pancreatic, and spleenic circ...
 
Ultrasound Targeted Microbubble Destruction Research Project
Ultrasound Targeted Microbubble Destruction Research ProjectUltrasound Targeted Microbubble Destruction Research Project
Ultrasound Targeted Microbubble Destruction Research Project
 
Datamed Poster DDR DRLS-Final
Datamed Poster DDR DRLS-FinalDatamed Poster DDR DRLS-Final
Datamed Poster DDR DRLS-Final
 
-Lecture 2.ppt
-Lecture 2.ppt-Lecture 2.ppt
-Lecture 2.ppt
 
Dual Energy CT - SIEMENS
Dual Energy CT - SIEMENSDual Energy CT - SIEMENS
Dual Energy CT - SIEMENS
 

FINAL CTCA CAMRT presentation - Yili

  • 1. Radiation  Dose  and  Image  Optimization  During     Computed  Tomography  Coronary  Angiography Yili Wang1, Barinder Dhillon1, Narinder Paul2 Introduction Materials & Methods Results Discussion Computed Tomography Coronary Angiography (CTCA) is the standard of care for evaluation of the coronary arteries in patients with low to intermediate risk of coronary artery disease (CAD), due to a high negative predictive value. CTCA requires optimal contrast enhancement of the coronary arteries. However, there is concern over the use of ionizing radiation and potential long-term health issues. •  Lungman® chest phantom •  Toshiba Aquilion ONETM 320-MDCT Scanner •  Iodinated IV contrast All scans used a CTCA protocol; radiation dose (CTDIvol and DLP) was recorded. 1.  Scan chest phantom at different kV. Use mA modulation to maintain image noise (SD, HU). 2.  Scan chest phantom at different mA and fixed 80 kV. 3.  Scan chest phantom at different scan lengths. 4.  Scan test tubes containing 3 different concentrations of iodinated contrast at 3 different dilutions and 4 different kV settings (Fig.1). Measure Hounsfield Units (HU). •  Increasing kV initially reduces dose, but at 135 kV, patient dose increased (Fig. 2). •  Minimal mA and scan length reduced dose. •  For kV settings with mA modulation, the minimum dose was noted at 120kV. At lower and higher kV settings, with a fixed image noise, mA modulation increased dose. •  Optimal contrast opacification is required as suboptimal contrast opacification reduces the diagnostic utility of CTCA •  Low kV settings (80kV or 100kV) can increase signal even for highly diluted contrast. Conclusion Objective Purpose – Determine the impact on radiation dose of manipulating factors relevant to image optimization during CTCA including kV, mA, scan length, and contrast concentration. Why – Current CT units can produce diagnostic images at lower radiation dose. However, overexposure is not visually apparent and leads to dose creep. Repeat exams due to poor contrast opacification increase patient irradiation and contrast dose. For optimal CTCA use: 1.  Low kV settings to maximize signal intensity 2.  Increase image noise setting at lower kV 3.  Use mA modulation for scans using 64MDCT 4.  Minimize scan length 1The Michener Institute for Applied Health Sciences, Toronto, Canada 2 Medical Imaging, Toronto General Hospital, University Health Network, Toronto, Canada. •  Increasing mA increased radiation dose (Fig. 3). •  At the same kV, signal increased with increasing contrast concentration (Fig. 5). •  A low kV can compensate for highly diluted contrast (Fig. 6). Results are consistent across different types of contrasts: Visipaque, Ultravist, and Omnipaque (Figs 5, 6, and 7) •  At the same dilution, signal (HU) increased with decreasing kV (Fig. 6). •  Increasing scan length increased radiation dose (Fig. 4). 0 100 200 300 400 500 600 700 800 900 1000 80kV 100kV 120kV 135kV HU FIG 5. Effect of kV on Signal from Contrast (Visipaque 320) 1/20 dilution 1/50 dilution 1/100 dilution 0 100 200 300 400 500 600 700 80kV 100kV 120kV 135kV HU FIG 6. Effect of kV on Signal from Contrast (Omnipaque 240) 1/20 dilution 1/50 dilution 1/100 dilution 0 100 200 300 400 500 600 700 800 900 1000 1100 80kV 100kV 120kV 135kV HU FIG 7. Effect of kV on Signal from Contrast (Ultravist 370) 1/20 dilution 1/50 dilution 1/100 dilution Fig 1. A. Three different iodinated contrast media are diluted into 1/20, 1/50 and 1/100 concentrations. A water-filled test tube is used for control. Scans were performed in a water bath using CTCA protocol. B. Coronal reconstruction of scan at 80 kV. Regions of Interest (ROI) were placed inside each test tube to measure image signal (HU). water 1/20 1/20 1/20 1/50 1/50 1/50 1/100 1/100 1/100 Visipaque 320 Ultravist 370 Omnipaque 240 A B 0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 70 80 90 100 110 120 130 140 DoseLengthProduct(DLP) CTDI kV FIG 2. Effect of kV on Radiation Dose (CTDI and DLP) CTDI DLP 21 22 23 24 25 26 27 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 145 150 155 160 165 170 175 180 185 DoseLengthProduct(DLP) CTDI mA FIG 3. Effect of mA on Radiation Dose (CTDI and DLP) CTDI DLP 0 5 10 15 20 25 30 35 40 45 0 0.5 1 1.5 2 2.5 3 110 120 130 140 150 160 170 DoseLenghtProduct(DLP) CTDI Scan Length (mm) FIG 4. Effect of Scan Length on Radiation Dose (CTDI and DLP) CTDI DLP