SlideShare a Scribd company logo
1 of 38
Download to read offline
COLLAPSE OF MASONRY VAULTS AND
            ARCHES USING NONLINEAR DISCRETE
                  NUMERICAL METHODS

                                      Rafael Bravo Pareja
                                       rbravo@ugr.es1
                                     José Luis Pérez Aparicio
                                   jopeap@upvnet.upv.es2
                      1 Department     of Structural Mechanics & Hydraulic Engineering
                                          University of Granada, SPAIN
                           2 Department  of Continuum and Structural Mechanics
                                  Polytechnic University of Valencia SPAIN




R.Bravo J.L.Perez-Aparicio (UGR-UPV)      Hola Vaults Using DDA (Complas 07)      6 September 2007   1 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   2 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   3 / 30
Introduction I

        Relatively new discipline in computational mechanics
        Numerical solutions of problems for which constitutive laws are
        not available
        Interactions of hundreds of blocks emerge physical properties of
        practical importance




        Masonry structures discontinuous. Discontinuous Deformation
        Analysis (DDA) better suited than Continuum Mechanics


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   4 / 30
Introduction II

        Masonry structures composed of blocks. Stability achieved by
        contact & friction
                                                          qv




                                                                            qh
                                       C1




                                                                 C2
                                                      W


        2D experiments of masonry vaults (cut stone) at real scale
        described. Experimental & numerical results compared


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)        6 September 2007   5 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   6 / 30
Formulation I
        Based on Newtonian Mechanics
        Hamilton’s principle:

                                    ∂Πi (Ui )
                                −             =0;                    i = 1, ..., n
                                     ∂Ui
        Discretization:



                Ui     = T Di



        Discrete equation of motion:

                                       ∂Π(Di )
                                 −             =0;                   i = 1, ..., n
                                        ∂Di
R.Bravo J.L.Perez-Aparicio (UGR-UPV)      Hola Vaults Using DDA (Complas 07)         6 September 2007   7 / 30
Formulation II
        Expansion provides matrix formulation:

                       ¨      ˙
                     M Di + C Di + KDi = F (Di , t) ;                       i = 1, ..., n
        Initial conditions:


                                 Di (0) = Di0 ;                ˙        ˙
                                                               Di (0) = Di0

                                                                   
                    ˆ
                   K11  ˆ
                        K12  ˆ
                             K13 · · ·                       ˆ
                                                             K1n    D1      ˆ
                                                                            F1
                  
                       ˆ22
                        K    ˆ23 · · ·
                             K                               ˆ2n  D2  F2 
                                                             K    ˆ 
                  
                            ˆ
                             K33 · · ·                       ˆ    ˆ 
                                                             K3n  D3  = F3 
                                 ..                           .  .   . 
                                                                          
                  
                      −Sim−         .                        .  .   . 
                                                              .      .       .
                                                             ˆ
                                                             Knn    Dn      ˆ
                                                                            Fn
        Off–diagonal terms indicate interaction → contact
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)           6 September 2007   8 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   9 / 30
Non Linear Frictional law and Algorithm
Implementation I
        Contact law models frictional behavior of rocky materials. (A.
        Nardin, G. Zavarise, BA. Scherefler (2003))
        Tangential behaviour. Sliding starts tangential force Ft ≥ Fr =
        Coulomb friction (regularized) + Softening law H(s) (Non linear)
                            Fr = Ks · s + a · s2 + b · s + c                      if Ft < Fr
                                                           H(s)

                       Fr = N · tan φ + a · s2 + b · s + c                        if Ft ≥ Fr
   Ks tangential penalty.                                              Coulomb Law (Linear)
   a, b and c experimental                       Fr
                                                                                    H(s)
   data

       Ks = 107 N/m2                                                               Applied Non Linear Law
                                     6
         a = −1.5 · 10                                     Stick Sliding
                                 5
         b = 2.0 · 10
R.Bravo J.L.Perez-Aparicio (UGR-UPV)     Hola Vaults Using DDA (Complas 07)
                                                                              s            6 September 2007   10 / 30
Algorithm Implementation non linear frictional law II
        DDA’s displacements ∆s at each time step small → linearization:

                                                                 ∂H(s0 )
                              H(s0 + ∆s) = H(s0 ) +                      · ∆s
                                                                  ∂∆s
        Potential energy:

                                                            ∂H(s0 )
                                 Π = H(s0 ) · ∆s +                  · ∆s2
                                                              ∂s
        Minimization:

                           ∂Π              ∂H(s0 )
                               = H(s0 ) +          · ∆s
                          ∂∆s                ∂s
        Stiffness matrix and force vector:

                                             ∂H(s0 )
                                       K =                   F = H(s0 )
                                               ∂s
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)       6 September 2007   11 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   12 / 30
Masonry Bridges




       Stability through thousands of
       semi–rigid interacting blocks: High
       Computational Cost


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   13 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   14 / 30
Initial Data


        Experiment of arches performed with properties (Delbeq 1982):
                                        Property               CASE 1           CASE 2
                                     Brick Density           2500 g/cm3       2500 g/cm3
                                    Young Modulus             1E9 N/m2         1E9 N/m2
                                   Poisson Modulus               0.2              0.2
                                     Friction Angle              30◦              30◦
                                       Cohesion                0 N/m2           0 N/m2
                                     Filling density         2000 kg/m3       2000 kg/m3
                                 Embankment density          1200 kg/m3       1200 kg/m3
                                Block ultimate stress σY       10 MPa           10 MPa

        Two different geometries. Properties uncertain (variability in real
        materials)




R.Bravo J.L.Perez-Aparicio (UGR-UPV)     Hola Vaults Using DDA (Complas 07)           6 September 2007   15 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   16 / 30
CASE 1. Collapse loads
           Ultimate collapse load with different number of joints




                   Load

                                                0.5



                                                                     N◦ joints     Critical Load     Critical Load   Error
                      5          4                                               Experimental (kN)    DDA (kN)        %
                                                      6.7                7              250               280        12.2
Filling                                                                 15              206               210         1.6
                                                                        25              206               205        -0.8
                                                                        59              205               205         0.1
                                                                       199              205               205          0

                                          1
                            10


   R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)                 6 September 2007         17 / 30
Number of joints vs elastic behaviour
         Low number of blocks bad results in stress and strains
         Elastic block (area S and gravity centre (x0 , y0 ) puntual load
         (Fx ,Fy ) at (x,y)

                                                                       
             1 ν               0          x             (x − x0 )Fx
       S·E 
             ν 1               0       y =          (y − y0 )Fy         
      1 − ν2                  1−ν
             0 0               2
                                        γxy   (y − y0 )/2Fx + (x − x0 )/2Fy
       Elastic Stiffness Matrix[K ]                          Puntual Load Vector[F ]


                                                  Strain/Stresse Constant over each block
                x−x0        ν(y −y0 )             and dependent on (x,y)
  x         =    S·E Fx − S·E Fy
                                                  Averaged by block’s area S
                                 −y
  y        =   − ν(x−x0 ) Fx + yS·E0 Fy
                   S·E                            Need to increase number of blocks to
                       −y
γxy    = (1    + ν) yS·E0 Fx + x−x0 Fy
                                   S·E            obtain accurate results
 R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)    6 September 2007   18 / 30
Example
         Vert.P. load Fy = 1kN at (x, y ) = (0.5, 1.75), L1 = 1m , L2 = 2m
         Material properties E = 105 N/m and ν = 0
         DDA’s reactions → Contact forces. 3 Punt. loads
                Fy                     Fy


                (x,y)                  (x,y)
                                                                                                        DDA                     Analytical
        L2       (x0,y0)               (x0,y0)                       σv N/mm2                         3.75 · 103           σv = Fy /A = 1 · 103
                                                                                             v       3.75 · 10−2           v = σv /E = 1 · 10
                                                                                                                                              −2



                                                                                                            S tres s dis tributio
                                                                                                                                n
                L1              Fy/2        Fy/2                                    50
                                                                                                                                         Analytical
                                                                                                                                         DDA height 0.5m
                                                                                   100
                           Fy
                                                                                                                                         DDA height 0.1m

                                                                                   150


                                                                                   200
                                                                 S tres s (N/m2)



   8m                                                                              250


                                                                                   300


                                                                                   350


                                                                                   400
                        10m
                                                                                   450
                                                                                         0       1    2    3          4         5        6       7         8
                                                                                                               Y coordinate (m)

R.Bravo J.L.Perez-Aparicio (UGR-UPV)               Hola Vaults Using DDA (Complas 07)                                               6 September 2007           19 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   20 / 30
CASE 2
 Collapse analysis under:
        2.a) Variable embankment thickness
        2.b) Point loads

                                                                 Filling material + Embankment
                                  Embankment
                    h
                                                                        0.5

                            Filling material
                                                                                             Filling
                    8




                                   1                        15


 Lower and upper stability limits bounds obtained

R.Bravo J.L.Perez-Aparicio (UGR-UPV)       Hola Vaults Using DDA (Complas 07)               6 September 2007   21 / 30
CASE 2. Failure Modes
        Inestability
               Vertical < Horizontal Loads (LEFT). Peak’s Elevation
               Vertical > Horizontal Loads (RIGHT)




               Formation of alternative hinges
        Failure compression
               Tresca Failure Criteria:
                                                 σY = (σI − σII )
               σI , σII principal stresses, σY yield stress. Other suitable criteria
               Druger Pracker (Owen in combined Finite Discrete Element
               Method).
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   22 / 30
CASE 2.a) Variable embankment. Failure Angles
        Comparison hinges’ angles
        LEFT: excessive horizontal loads
        RIGHT: excessive vertical loads
        Five hinges for both cases




                                                                                           78°

                                              60°



                                             18°                                         26°




        Numerical results agree well with experimental data

                                    Limit    Numerical         Experimental
                                   Lower    18◦ 60◦ 90◦        19◦ 64◦ 90◦
                                   Upper     0◦ 26◦ 78◦         0◦ 37◦ 78◦

R.Bravo J.L.Perez-Aparicio (UGR-UPV)    Hola Vaults Using DDA (Complas 07)    6 September 2007   23 / 30
CASE 2.a) Variable embankment. Safety Factor
        Relation between applied and failure loads (both numerical and
        experimental)
        3 Failure modes:
           1   Elevation of peak (low vertical loads)
           2   Compression failure (intermediate)
           3   Peak’s descend (high vertical loads)
                                            6

                                                                                     DDA
                                                                             E xperimental
                                            5
                          S afety F actor




                                            4




                                            3




                                            2




                                            1




                                            0
                                                0       2       4       6        8     10    12
                                                               T hicknes s (m)

R.Bravo J.L.Perez-Aparicio (UGR-UPV)            Hola Vaults Using DDA (Complas 07)                6 September 2007   24 / 30
CASE 2.b) Point load & failure angles
        Response analysis under 2 variable concentrated loads
        (symmetric loads). Rest same as CASE 2. Embankment
        thickness fixed to 0.5 m
        Lower bound limit same failure mode as case 2
        Formation of 3 hinges




                                                                  63°




                                    Limit    Numerical         Experimental
                                   Lower    18◦ 60◦ 90◦        19◦ 64◦ 90◦
                                   Upper      63◦ 90◦            57◦ 90◦
R.Bravo J.L.Perez-Aparicio (UGR-UPV)    Hola Vaults Using DDA (Complas 07)    6 September 2007   25 / 30
CASE 2.b) Point load & safety factor
        Similar failure as that of embankment load
        High sensitivity in initial branch: comparison not good (bad load
        transmission due to first order formulation?)

                                         10
                                                                                             DDA
                                                                                     E xperimental
                                         8
                       S afety F actor




                                         6




                                         4




                                         2




                                         0
                                              0   20    40     60     80     100    120     140   160    180
                                                                       Load (kN)



R.Bravo J.L.Perez-Aparicio (UGR-UPV)                   Hola Vaults Using DDA (Complas 07)               6 September 2007   26 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   27 / 30
Conclusions
        Basic simulation of masonry behaviour under different conditions

        Results fit well to experimental data

        3 failure modes simulated

        Tresca criteria for stress failure

        Need to improve higher order DDA’s formulation

        Need to introduce statistical variability on input parameters

        Contact law applied to DDA


R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   28 / 30
Contents
 1    Introduction
 2    DDA’s Formulation
 3    Non Linear Frictional law and Algorithm Implementation
 4    Masonry Bridges
 5    Experimental and numerical cases
 6    CASE 1
         Collapse loads
         Number of joints vs elastic behaviour
 7    CASE 2
         Description of the problem
         Failure Modes
         Variable embankment thickness
              Failure Angles
              Safety Factor
          Point Load
              Failure Angles
              Safety Factor
 8    Conclusions
 9    Acknowledgements
R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   29 / 30
Acknowledgements



 Authors gratitude the support offered by the following research
 projects:



        80019/A04 Ministerio de Fomento.


        E/03/B/F/PP-149.038. Ag. Leonardo da Vinci.




R.Bravo J.L.Perez-Aparicio (UGR-UPV)   Hola Vaults Using DDA (Complas 07)   6 September 2007   30 / 30

More Related Content

Featured

Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Featured (20)

PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 

Complas 2007

  • 1. COLLAPSE OF MASONRY VAULTS AND ARCHES USING NONLINEAR DISCRETE NUMERICAL METHODS Rafael Bravo Pareja rbravo@ugr.es1 José Luis Pérez Aparicio jopeap@upvnet.upv.es2 1 Department of Structural Mechanics & Hydraulic Engineering University of Granada, SPAIN 2 Department of Continuum and Structural Mechanics Polytechnic University of Valencia SPAIN R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 1 / 30
  • 2. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 3. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 4. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 5. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 6. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 7. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 8. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 9. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 10. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 2 / 30
  • 11. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 3 / 30
  • 12. Introduction I Relatively new discipline in computational mechanics Numerical solutions of problems for which constitutive laws are not available Interactions of hundreds of blocks emerge physical properties of practical importance Masonry structures discontinuous. Discontinuous Deformation Analysis (DDA) better suited than Continuum Mechanics R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 4 / 30
  • 13. Introduction II Masonry structures composed of blocks. Stability achieved by contact & friction qv qh C1 C2 W 2D experiments of masonry vaults (cut stone) at real scale described. Experimental & numerical results compared R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 5 / 30
  • 14. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 6 / 30
  • 15. Formulation I Based on Newtonian Mechanics Hamilton’s principle: ∂Πi (Ui ) − =0; i = 1, ..., n ∂Ui Discretization: Ui = T Di Discrete equation of motion: ∂Π(Di ) − =0; i = 1, ..., n ∂Di R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 7 / 30
  • 16. Formulation II Expansion provides matrix formulation: ¨ ˙ M Di + C Di + KDi = F (Di , t) ; i = 1, ..., n Initial conditions: Di (0) = Di0 ; ˙ ˙ Di (0) = Di0      ˆ K11 ˆ K12 ˆ K13 · · · ˆ K1n D1 ˆ F1   ˆ22 K ˆ23 · · · K ˆ2n  D2  F2  K    ˆ    ˆ K33 · · · ˆ    ˆ  K3n  D3  = F3  .. .  .   .        −Sim− . .  .   .  . . . ˆ Knn Dn ˆ Fn Off–diagonal terms indicate interaction → contact R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 8 / 30
  • 17. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 9 / 30
  • 18. Non Linear Frictional law and Algorithm Implementation I Contact law models frictional behavior of rocky materials. (A. Nardin, G. Zavarise, BA. Scherefler (2003)) Tangential behaviour. Sliding starts tangential force Ft ≥ Fr = Coulomb friction (regularized) + Softening law H(s) (Non linear) Fr = Ks · s + a · s2 + b · s + c if Ft < Fr H(s) Fr = N · tan φ + a · s2 + b · s + c if Ft ≥ Fr Ks tangential penalty. Coulomb Law (Linear) a, b and c experimental Fr H(s) data Ks = 107 N/m2 Applied Non Linear Law 6 a = −1.5 · 10 Stick Sliding 5 b = 2.0 · 10 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) s 6 September 2007 10 / 30
  • 19. Algorithm Implementation non linear frictional law II DDA’s displacements ∆s at each time step small → linearization: ∂H(s0 ) H(s0 + ∆s) = H(s0 ) + · ∆s ∂∆s Potential energy: ∂H(s0 ) Π = H(s0 ) · ∆s + · ∆s2 ∂s Minimization: ∂Π ∂H(s0 ) = H(s0 ) + · ∆s ∂∆s ∂s Stiffness matrix and force vector: ∂H(s0 ) K = F = H(s0 ) ∂s R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 11 / 30
  • 20. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 12 / 30
  • 21. Masonry Bridges Stability through thousands of semi–rigid interacting blocks: High Computational Cost R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 13 / 30
  • 22. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 14 / 30
  • 23. Initial Data Experiment of arches performed with properties (Delbeq 1982): Property CASE 1 CASE 2 Brick Density 2500 g/cm3 2500 g/cm3 Young Modulus 1E9 N/m2 1E9 N/m2 Poisson Modulus 0.2 0.2 Friction Angle 30◦ 30◦ Cohesion 0 N/m2 0 N/m2 Filling density 2000 kg/m3 2000 kg/m3 Embankment density 1200 kg/m3 1200 kg/m3 Block ultimate stress σY 10 MPa 10 MPa Two different geometries. Properties uncertain (variability in real materials) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 15 / 30
  • 24. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 16 / 30
  • 25. CASE 1. Collapse loads Ultimate collapse load with different number of joints Load 0.5 N◦ joints Critical Load Critical Load Error 5 4 Experimental (kN) DDA (kN) % 6.7 7 250 280 12.2 Filling 15 206 210 1.6 25 206 205 -0.8 59 205 205 0.1 199 205 205 0 1 10 R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 17 / 30
  • 26. Number of joints vs elastic behaviour Low number of blocks bad results in stress and strains Elastic block (area S and gravity centre (x0 , y0 ) puntual load (Fx ,Fy ) at (x,y)      1 ν 0 x (x − x0 )Fx S·E  ν 1 0  y = (y − y0 )Fy  1 − ν2 1−ν 0 0 2 γxy (y − y0 )/2Fx + (x − x0 )/2Fy Elastic Stiffness Matrix[K ] Puntual Load Vector[F ] Strain/Stresse Constant over each block x−x0 ν(y −y0 ) and dependent on (x,y) x = S·E Fx − S·E Fy Averaged by block’s area S −y y = − ν(x−x0 ) Fx + yS·E0 Fy S·E Need to increase number of blocks to −y γxy = (1 + ν) yS·E0 Fx + x−x0 Fy S·E obtain accurate results R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 18 / 30
  • 27. Example Vert.P. load Fy = 1kN at (x, y ) = (0.5, 1.75), L1 = 1m , L2 = 2m Material properties E = 105 N/m and ν = 0 DDA’s reactions → Contact forces. 3 Punt. loads Fy Fy (x,y) (x,y) DDA Analytical L2 (x0,y0) (x0,y0) σv N/mm2 3.75 · 103 σv = Fy /A = 1 · 103 v 3.75 · 10−2 v = σv /E = 1 · 10 −2 S tres s dis tributio n L1 Fy/2 Fy/2 50 Analytical DDA height 0.5m 100 Fy DDA height 0.1m 150 200 S tres s (N/m2) 8m 250 300 350 400 10m 450 0 1 2 3 4 5 6 7 8 Y coordinate (m) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 19 / 30
  • 28. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 20 / 30
  • 29. CASE 2 Collapse analysis under: 2.a) Variable embankment thickness 2.b) Point loads Filling material + Embankment Embankment h 0.5 Filling material Filling 8 1 15 Lower and upper stability limits bounds obtained R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 21 / 30
  • 30. CASE 2. Failure Modes Inestability Vertical < Horizontal Loads (LEFT). Peak’s Elevation Vertical > Horizontal Loads (RIGHT) Formation of alternative hinges Failure compression Tresca Failure Criteria: σY = (σI − σII ) σI , σII principal stresses, σY yield stress. Other suitable criteria Druger Pracker (Owen in combined Finite Discrete Element Method). R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 22 / 30
  • 31. CASE 2.a) Variable embankment. Failure Angles Comparison hinges’ angles LEFT: excessive horizontal loads RIGHT: excessive vertical loads Five hinges for both cases 78° 60° 18° 26° Numerical results agree well with experimental data Limit Numerical Experimental Lower 18◦ 60◦ 90◦ 19◦ 64◦ 90◦ Upper 0◦ 26◦ 78◦ 0◦ 37◦ 78◦ R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 23 / 30
  • 32. CASE 2.a) Variable embankment. Safety Factor Relation between applied and failure loads (both numerical and experimental) 3 Failure modes: 1 Elevation of peak (low vertical loads) 2 Compression failure (intermediate) 3 Peak’s descend (high vertical loads) 6 DDA E xperimental 5 S afety F actor 4 3 2 1 0 0 2 4 6 8 10 12 T hicknes s (m) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 24 / 30
  • 33. CASE 2.b) Point load & failure angles Response analysis under 2 variable concentrated loads (symmetric loads). Rest same as CASE 2. Embankment thickness fixed to 0.5 m Lower bound limit same failure mode as case 2 Formation of 3 hinges 63° Limit Numerical Experimental Lower 18◦ 60◦ 90◦ 19◦ 64◦ 90◦ Upper 63◦ 90◦ 57◦ 90◦ R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 25 / 30
  • 34. CASE 2.b) Point load & safety factor Similar failure as that of embankment load High sensitivity in initial branch: comparison not good (bad load transmission due to first order formulation?) 10 DDA E xperimental 8 S afety F actor 6 4 2 0 0 20 40 60 80 100 120 140 160 180 Load (kN) R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 26 / 30
  • 35. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 27 / 30
  • 36. Conclusions Basic simulation of masonry behaviour under different conditions Results fit well to experimental data 3 failure modes simulated Tresca criteria for stress failure Need to improve higher order DDA’s formulation Need to introduce statistical variability on input parameters Contact law applied to DDA R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 28 / 30
  • 37. Contents 1 Introduction 2 DDA’s Formulation 3 Non Linear Frictional law and Algorithm Implementation 4 Masonry Bridges 5 Experimental and numerical cases 6 CASE 1 Collapse loads Number of joints vs elastic behaviour 7 CASE 2 Description of the problem Failure Modes Variable embankment thickness Failure Angles Safety Factor Point Load Failure Angles Safety Factor 8 Conclusions 9 Acknowledgements R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 29 / 30
  • 38. Acknowledgements Authors gratitude the support offered by the following research projects: 80019/A04 Ministerio de Fomento. E/03/B/F/PP-149.038. Ag. Leonardo da Vinci. R.Bravo J.L.Perez-Aparicio (UGR-UPV) Hola Vaults Using DDA (Complas 07) 6 September 2007 30 / 30