SlideShare a Scribd company logo
1 of 7
Download to read offline
An Introduction to the Basics of Video Conferencing
white paper
2
Introduction
In the next few years we shall see explosive growth in the use of
video conferencing (VC) as a fundamental tool for businesses to
enhance communication and collaboration between employees,
partners and customers. The technology has developed
considerably from early adopters to its current form of mass
market roll-out. It’s anticipated that nearly half of information
workers will have some type of personal video solution in 2016,
up from just 15% today*. With VC becoming a core component of
IT infrastructure that enables communication and collaboration,
businesses will be looking to providers of telephony, business
applications and network infrastructure services to include this
capability as part of their offering.
This report will examine the basic components of the
technology, considerations for deploying VC solutions, and will
introduce the Polycom® RealPresence™ software platform to
readers.
What is Video Conferencing and how does it work?
To set the foundations for future elaboration, at the simplest
level, a video conference is an online meeting (or a meeting
over distance) that takes place between two parties, where
each participant can see an image of the other, and where both
parties are able to speak and listen to the other participants
in real time. The components necessary to make this happen
include:-
•	 a microphone, webcam and speakers
•	 a display
•	 a software program that captures the voice stream from the
microphone, encodes it, transmits to the other participant,
and simultaneously decodes the digital voice stream
being received from the remote participant in the video
conference (most commonly referred to as a “Codec”.)
•	 a software program that bridges both parties together
across a digital connection, managing the exchange of
voice and video between participants. At either end of the
connection, the video and voice traffic is combined and
delivered to each participant in the form of a real-time video
image and audio stream
•	 an optional management tool for the scheduling of VC
sessions
At a slightly more advanced level, it is also possible to provide
the ability to share content from a device during a video call. The
quality and type of content that can be shared depends on the
rate of data exchange during the call.
Terminology used by VC users to describe the process of
dialling into and participating in a virtual meeting is known as
“joining a bridge”. Different virtual meeting rooms are assigned
unique “bridge numbers”, and users join a video call by “dialling
a bridge number”.
Point-to-Point Video Conferencing
Video-enabled meetings happen in two distinct ways: either
point-to-point or with multi-point. In point-to-point, the simplest
scenario is where one person or group is connected to another.
The physical components (i.e. microphone and camera) that
enable the meeting to take place are often integrated in to
desktop computing solutions like a laptop or tablet, or can be
combined into dedicated, room-based hardware solutions.
Where desktop solutions tend to be used by individuals, room-
based solutions utilise dedicated VC technology where groups
of people can be seen, heard and can naturally participate in the
meeting.
Multi-point Video Conferencing
In multi-point video calls, three or more locations are connected
together, where all participants can see and hear each other, as
well as see any content being shared during the meeting.
white paper An Introduction to the Basics of Video Conferencing
An example of point-to-point video conferencing
A use-case scenario of multi-point video conferencing
Source: *Forrester - Preparing for Uneven Corporate
Adoption of Video Communications, May 9, 2011
3
In this scenario, digital information streams of voice, video and
content are processed by a central, independent software
program. Combining the individual participant’s video and voice
traffic, the program re-sends a collective data stream back to
meeting participants in the form of real-time audio and video
imagery.
Individuals can participate in a meeting in an “audio only” mode,
or combine audio with video images of the meeting on screen.
Depending upon the technical capability of the VC system being
used, images seen by participants are either classified as “Active
Speaker” or “Continuous Presence”.
In “Active Speaker” mode, the screen only provides an image
of the person that is speaking at any point in time. In more
advanced solutions with “Continuous Presence” mode, the
bridge divides the image on the screen into a number of
different areas. The person speaking at any point in time is
presented in a large central area, and other meeting participants
are shown displayed around the central image. The “Continuous
Presence” mode thus allows meeting participants to view and
interact with all meeting participants in a ‘virtual meeting room’.
The software program which creates the “virtual meeting room”
and the digital processing hardware on which it resides, is often
called a Video Bridge, or “bridge”, for short. Another term for a
bridge which is often used is a VC “multi-point control unit” or
“MCU”.
Whereas point-to-point VC is relatively simple, the creation and
management of multi-point video conferences can be complex.
An MCU must be able to create, control and facilitate multiple
simultaneous live VC meetings. A further complexity is added
when different locations may connect to the meeting over digital
or analogue streams at different speeds, with different data
transport and signalling protocols employed to facilitate the
communication.
To link these users into a common, virtual meeting, the MCU
must therefore be able to understand and translate between
several different protocols (i.e. H.264 for communication over
IP, and H.263 for ISDN). The MCU will also allow those joining
the video bridge to do so at the highest speed and the best
possible quality that their individual system can support.
Although there are two separate processes taking place here,
this is often jointly referred to as “Transcoding”.
It is important to note that not all bridges provide such
transcoding capability, and failure to do this can seriously impact
the quality and experience of video calls. When transcoding
is not provided and users dial into a bridge over a range of
different connection speeds, it is possible that the bridge may
only be able to support the video meeting by establishing the
connections at the lowest common denominator. To illustrate the
negative effect of this, consider a meeting that takes place with
most users joining the bridge from the high-speed corporate
network, but where one or two individuals dial into the meeting
from home on low-bandwidth DSL or ISDN. In this case the
experience of the many corporate users is downgraded to the
lowest common denominator of the home-users, potentially
making the video call ineffective. Where effective transcoding
is supported by the MCU, those on the corporate network will
continue to enjoy HD video quality, while remote users receive
quality commensurate with their connection speeds.
In summary, when an MCU is designed well, integrating easily
with multiple vendors and allowing users to call in at the data
rate and resolution they want or need to – the result is an easy,
seamless experience for all users, allowing people to focus on
the meeting, not the technology.
The Language of Video Conferencing
As VC technology has evolved, two main protocols have
emerged to provide the signalling control for the establishment,
control and termination of VC calls: SIP (Session Initiation
Protocol) and H.323.
For the encoding and decoding of visual information, the
industry is moving towards the industry standard known as
H.264, which was developed to provide high-quality video at
lower bandwidth over a wide range of networks and systems.
An extension to the H.264 protocol is Scalable Video Coding
(SVC), which is established to facilitate the enablement of VC on
a wider range of devices, such as tablets and mobile phones.
Bridging Architecture and Functionality
As described above, the combination of software and the
hardware that creates the virtual meeting rooms is called
a “Video Bridge”. Virtual meeting rooms are identified by
their “bridge numbers”. With multiple calls taking place
simultaneously, software analyses all the different data streams
coming into the bridge processors, and assigns data streams
accordingly.
white paper An Introduction to the Basics of Video Conferencing
4
At the simplest level, the processing workload for bridges is
dependent upon four factors:
•	 the number of locations that dial into each bridge
•	 the number of conferencing calls that each bridge must
handle simultaneously
•	 the amount of data that is being received on each digital
stream: higher resolutions of images and sound (i.e. High
Definition) generate more data that needs to be processed.
•	 the degree of transcoding that the bridge must perform
while handling calls being received at different connection
speeds and utilising different protocols.
As the workload increases, each bridge must process more
data. Performance can therefore be improved by increasing
the number of Digital Signalling Processors (DSPs) utilised to
decode and encode the digital streams entering and leaving
MCUs. If the bridging function becomes overloaded, video and
voice information may be lost, causing latency to be introduced
into calls, both of which can degrade the video meeting
experience.
Extra processing resource can be provided for the bridging
function by either utilising a more powerful bridge (with a greater
number of DSPs) or through a virtual software approach, where
the software that controls the signalling function can operate
independently of the physical hardware.
A conference call with an assigned conference number does
not have to take place, or be processed by a dedicated piece
of hardware. The call can be “virtualised”, and assigned to
whatever physical bridge has the correct resource or capacity
to handle the call. A virtualisation manager oversees which
physical bridge has the capacity, and assigns incoming calls
accordingly.
In extreme, but rare circumstances, the virtualisation manager
may assign resources for a call across several different
physical bridges that work in tandem together. Known as
“auto-cascading”, the resources within the physical bridge can
be instructed by the software to operate in a “Parent-Child”
arrangement, with one bridge “owning” the conference call, and
the others sharing the workload.
In the continuous presence mode of presentation, the bridge
will automatically provide the screen templates in which the
viewers will see the other meeting participants. The bridge can
also provide some administrative functionality for the call such
as; assigning passwords to enter each meeting, and providing
Interactive Voice Response (IVR) functionality, where call
participants can be greeted and instructed by customised voice
greetings.
Although most participants will actively dial into a VC meeting,
the bridge can be programmed to automatically dial out to
participating locations and automatically connect them in to a
meeting. For example, the bridge could automatically wake up
the cameras in remote meeting rooms, and link those meeting
rooms into a prescheduled call. Participants of such a meeting
would simply have to walk into the video room at the correct
time, and join the meeting.
Video Call Management and Protocol Conversion
In order to build an architecture that scales, the software
platform must be able to provide call signalling functionality,
and dynamically manage the set-up and maintenance of a large
number of video calls. The software architecture has to be
capable of reconfiguring itself and its resources in real-time, so
that these resources are used to their best ability. In addition,
the software architecture has to understand the bandwidth
requirements of each call being placed, the policy that is
associated with each call (the prioritisation and importance of
a call), and where the participants of a call are geographically
located. By understanding this, the software platform can
utilise local resources instead of redirecting data streams & call
signalling to resources that are far away, an approach which
would eat up large amounts of bandwidth on WAN links that are
very costly.
The software platform should also be able to instantly detect any
failure of hardware resources or loss of communication across
infrastructure links, so that it can re-direct traffic and re-establish
calls utilising alternative resources, without overly impacting
video calls or their quality.
When systems on different customer premises try to join the
same video call using devices which run different protocols
(i.e. H.323, RTV or SIP), the VC platform must first perform
protocol conversion to a common language so the infrastructure
can understand and process information correctly. In other
words, the software platform should provide intrinsic gateway
functionality between devices that talk different languages.
white paper An Introduction to the Basics of Video Conferencing
5
Device Management
To enable large-scale deployment and management of VC
solutions, the software platform provides for the management
and maintenance of hardware infrastructure components
through a separate functional area: The Device Manager.
The Device Manager can help dynamically provision devices
and components of the VC infrastructure. Once component
hardware is deployed within the network and its infrastructure,
the Device Manager will monitor and help troubleshoot
problems with these devices. When software updates are
required, the Device Manager will help deploy them.
A significant contributing factor to the rise in demand for VC is
because of the ease of use by which calls can be established
by users. The scheduling and management of calls has become
easy, through the creation of user-friendly scheduling portals, or
via integration into Microsoft® Outlook™.
The Device Manager will also provide reporting, and
comprehensive details of video calls, processing the information
to evaluate current system usage, and expansion plans for the
video network.
Security
Many organisations who have invested in VC will inevitably need
to be able to assist mobile or home workers wanting to dial
into their company network, and participate in video calls with
colleagues. The software platform must therefore provide the
capability to enable, and manage this.
Likewise, VC-enabled organisations will also want to use the
technology to communicate with their partners and customers.
This will only be possible if video traffic is able to securely
traverse the firewalls from one customer to another. Firewall
traversal is a particular challenge to video, as the data firewalls
try to re-organise data packets. The implementation of a video
firewall such as the VBP (H323) can eliminate this issue.
white paper An Introduction to the Basics of Video Conferencing
The Polycom RealPresence Virtualisation Manager sits in front of the bridges, and interfaces between the outside world and the
bridging resources. This optimises how incoming video calls are handled by virtual resources at its disposal. The Virtualisation
Manager can apply business rules that help it place incoming meetings on bridges that make the most sense, either for capacity,
geography, or other priority rules.
Let us consider three examples of this approach and see how it simplifies the process:
Example
A
Customer A in California wants to meet with Customer B in New York, Customer C in London and
Customer D in Paris. The Customer has a video bridge in Denver and a video bridge in Paris and a
virtualisation manager on a server in London. In this situation, the virtualisation management software
would identify that two participants wanted to join the call from the U.S., and may, for example
purposes, direct them to the resources on the Denver bridge. Likewise, the European participants may
be directed to the Paris bridge, with overall control of the call being given to the Master Denver bridge.
Under this scheme, large amounts of video data are not shipped across a transatlantic WAN, thereby
potentially providing cost savings.
Example
B
In the above example, the U.S. customers are using an H.264 based system, and in Europe they are
using Microsoft® Lync™ enabled video conferencing based upon RTV. In this scenario, the virtualisation
management software on the London server acts as a Gateway between Microsoft, and the U.S. Video
resources, converts the Microsoft signalling, and establishes the whole call using the bridges in the U.S.
and Paris.
Example
C
In this example, the call is proceeding but the bridge in Denver suddenly stops functioning due to a
fire in the data centre. The Virtualisation Manager in London detects this, and redirects the video traffic
across the WAN link to the Paris bridge. Users connecting via H.323 simply redial to re-join the call, with
the administration and management being performed seamlessly in the background. However, for SIP
based calls there is an added advantage: the Polycom platform will detect the problem and reconnect
the participants back into the call automatically, hopefully before the user has even noticed that there
was a problem.
6
Content Management
Historically, the primary motivating factor for most companies
has been to use VC as a way of saving business travel costs.
Recently, organisations are beginning to understand that the
benefits of VC can impact many different parts of an organisation
including; training, marketing, education, compliance, internal
communications, advertising, PR, to name just a few.
As the usage of VC in these fields has begun to grow,
customers have discovered the potential to not only use VC to
communicate in real-time, but also to uncover the possibilities
that exist for re-using digital recordings of past events and
communications.
Moving beyond “meetings”, the same technology is being used
to create digitally encapsulated rich media, which can then be
edited, enhanced, archived, and broadcast across multiple
media. These assets can be made available to target audiences
on-demand.
For example:
•	 Live Event Multicasting: The software platform enables
the streaming of recorded webcasts, and supports both the
push and pull of video to the streaming servers.
•	 Video-On-Demand: The software platform automates the
creation of archived versions of any live event webcast so
that customers can replay them on demand, as desired.
•	 Media Management: The software platform can be used
to control how video content will be aggregated, approved,
categorised, edited and published.
•	 Storage and Archiving: The software platform establishes
rules for the lifecycle of storage for bandwidth-intensive
video content: customers can determine how the content
will be retained, transcoded and stored in the Cloud,
or across corporate resources without daily, hands-on
maintenance.
In the previous section, we explained the five basic functional
areas that constitute the software platform Polycom has
developed to enable scalable, reliable, and cost-efficient VC
solutions. The Polycom RealPresence platform breaks down the
core infrastructure for enabling VC into five main areas:
Universal Video Collaboration: Providing the bridging capability
at the core of video conferencing, this provides the software for
multipoint video, voice and content collaboration that connects
the most people at highest quality and lowest cost.
Virtualization Management: Providing the call management
and protocol conversion that allows the bridging resources to be
virtualized, this provides the software that enables multi-tenancy
and massive scale, redundancy and resiliency.
Video Resource Management: Providing the device and
software management of endpoints and infrastructure, enabling
central management, monitoring and the delivery of video
collaboration across organisations.
Universal Access and Security: The Software that easily and
securely connects video participants in and outside a customer
firewall and optimizes for a best collaboration experience.
Video Content Management: Software that enables
organisations to support their business customers for secure
video capture, content management, administration and
delivery.
white paper An Introduction to the Basics of Video Conferencing
The Polycom® RealPresence™ Platform
Polycom®
RealPresence®
Platform
Universal Video
Collaboration
Universal Access
and Security
Video Resource
Management
Video Content
Management
Virtualization
Management
Services
Core Networking & Security
About Polycom
Polycom is the global leader in open standards-based unified communications (UC) solutions for telepresence, video, and voice
powered by the Polycom® RealPresence® Platform. The RealPresence Platform interoperates with the broadest range of business,
mobile, and social applications and devices. More than 400,000 organizations trust Polycom solutions to collaborate and meet
face-to-face from any location for more productive and effective engagement with colleagues, partners, customers, specialists,
and prospects. Polycom, together with its broad partner ecosystem, provides customers with the best total cost of ownership,
interoperability, scalability, and security for video collaboration, whether on-premises, hosted, or cloud-delivered.
Visit www.polycom.com or connect with Polycom on Twitter, Facebook, and LinkedIn.
Polycom EMEA Headquarters
270 Bath Road, Slough, Berkshire SL1 4DX, UK
T +44 (0)1753 723282 | F +44 (0) 1753 723010
www.polycom.co.uk
07_2012
© 2012 POLYCOM, INC. ALL RIGHTS RESERVED. POLYCOM®, THE NAMES AND MARKS ASSOCIATED WITH POLYCOM’S PRODUCTS ARE TRADEMARKS AND/OR SERVICE MARKS OF POLYCOM, INC. AND ARE REGISTERED AND/OR
COMMON LAW MARKS IN THE UNITED STATES AND VARIOUS OTHER COUNTRIES. ALL OTHER TRADEMARKS ARE PROPERTY OF THEIR RESPECTIVE OWNERS. NO PORTION HEREOF MAY BE REPRODUCED OR TRANSMITTED IN
ANY FORM OR BY ANY MEANS, FOR ANY PURPOSE OTHER THAN THE RECIPIENT’S PERSONAL USE, WITHOUT THE EXPRESS WRITTEN PERMISSION OF POLYCOM.
Summary
With demand for VC growing rapidly, solutions need to provide
a robust, resilient, scalable, and manageable infrastructure that
delivers unparalleled quality of experience.
The Polycom RealPresence Platform is the software
infrastructure that underlies Polycom’s VC, and binds it together
by integrating with core networking and security infrastructure.
This enables secure collaboration for any number of users
across heterogeneous networks, with up to 50% less bandwidth
consumption than other competitor solutions. By delivering an
architecture based upon open standards, Polycom has created
a flexible, state-of-the-art VC platform that provides superior
investment protection, at the lowest total cost of ownership.
white paper An Introduction to the Basics of Video Conferencing

More Related Content

Recently uploaded

Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 

Recently uploaded (20)

Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 

Featured

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 

Featured (20)

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 

An Introduction to the Basics of Video Conferencing

  • 1. An Introduction to the Basics of Video Conferencing white paper
  • 2. 2 Introduction In the next few years we shall see explosive growth in the use of video conferencing (VC) as a fundamental tool for businesses to enhance communication and collaboration between employees, partners and customers. The technology has developed considerably from early adopters to its current form of mass market roll-out. It’s anticipated that nearly half of information workers will have some type of personal video solution in 2016, up from just 15% today*. With VC becoming a core component of IT infrastructure that enables communication and collaboration, businesses will be looking to providers of telephony, business applications and network infrastructure services to include this capability as part of their offering. This report will examine the basic components of the technology, considerations for deploying VC solutions, and will introduce the Polycom® RealPresence™ software platform to readers. What is Video Conferencing and how does it work? To set the foundations for future elaboration, at the simplest level, a video conference is an online meeting (or a meeting over distance) that takes place between two parties, where each participant can see an image of the other, and where both parties are able to speak and listen to the other participants in real time. The components necessary to make this happen include:- • a microphone, webcam and speakers • a display • a software program that captures the voice stream from the microphone, encodes it, transmits to the other participant, and simultaneously decodes the digital voice stream being received from the remote participant in the video conference (most commonly referred to as a “Codec”.) • a software program that bridges both parties together across a digital connection, managing the exchange of voice and video between participants. At either end of the connection, the video and voice traffic is combined and delivered to each participant in the form of a real-time video image and audio stream • an optional management tool for the scheduling of VC sessions At a slightly more advanced level, it is also possible to provide the ability to share content from a device during a video call. The quality and type of content that can be shared depends on the rate of data exchange during the call. Terminology used by VC users to describe the process of dialling into and participating in a virtual meeting is known as “joining a bridge”. Different virtual meeting rooms are assigned unique “bridge numbers”, and users join a video call by “dialling a bridge number”. Point-to-Point Video Conferencing Video-enabled meetings happen in two distinct ways: either point-to-point or with multi-point. In point-to-point, the simplest scenario is where one person or group is connected to another. The physical components (i.e. microphone and camera) that enable the meeting to take place are often integrated in to desktop computing solutions like a laptop or tablet, or can be combined into dedicated, room-based hardware solutions. Where desktop solutions tend to be used by individuals, room- based solutions utilise dedicated VC technology where groups of people can be seen, heard and can naturally participate in the meeting. Multi-point Video Conferencing In multi-point video calls, three or more locations are connected together, where all participants can see and hear each other, as well as see any content being shared during the meeting. white paper An Introduction to the Basics of Video Conferencing An example of point-to-point video conferencing A use-case scenario of multi-point video conferencing Source: *Forrester - Preparing for Uneven Corporate Adoption of Video Communications, May 9, 2011
  • 3. 3 In this scenario, digital information streams of voice, video and content are processed by a central, independent software program. Combining the individual participant’s video and voice traffic, the program re-sends a collective data stream back to meeting participants in the form of real-time audio and video imagery. Individuals can participate in a meeting in an “audio only” mode, or combine audio with video images of the meeting on screen. Depending upon the technical capability of the VC system being used, images seen by participants are either classified as “Active Speaker” or “Continuous Presence”. In “Active Speaker” mode, the screen only provides an image of the person that is speaking at any point in time. In more advanced solutions with “Continuous Presence” mode, the bridge divides the image on the screen into a number of different areas. The person speaking at any point in time is presented in a large central area, and other meeting participants are shown displayed around the central image. The “Continuous Presence” mode thus allows meeting participants to view and interact with all meeting participants in a ‘virtual meeting room’. The software program which creates the “virtual meeting room” and the digital processing hardware on which it resides, is often called a Video Bridge, or “bridge”, for short. Another term for a bridge which is often used is a VC “multi-point control unit” or “MCU”. Whereas point-to-point VC is relatively simple, the creation and management of multi-point video conferences can be complex. An MCU must be able to create, control and facilitate multiple simultaneous live VC meetings. A further complexity is added when different locations may connect to the meeting over digital or analogue streams at different speeds, with different data transport and signalling protocols employed to facilitate the communication. To link these users into a common, virtual meeting, the MCU must therefore be able to understand and translate between several different protocols (i.e. H.264 for communication over IP, and H.263 for ISDN). The MCU will also allow those joining the video bridge to do so at the highest speed and the best possible quality that their individual system can support. Although there are two separate processes taking place here, this is often jointly referred to as “Transcoding”. It is important to note that not all bridges provide such transcoding capability, and failure to do this can seriously impact the quality and experience of video calls. When transcoding is not provided and users dial into a bridge over a range of different connection speeds, it is possible that the bridge may only be able to support the video meeting by establishing the connections at the lowest common denominator. To illustrate the negative effect of this, consider a meeting that takes place with most users joining the bridge from the high-speed corporate network, but where one or two individuals dial into the meeting from home on low-bandwidth DSL or ISDN. In this case the experience of the many corporate users is downgraded to the lowest common denominator of the home-users, potentially making the video call ineffective. Where effective transcoding is supported by the MCU, those on the corporate network will continue to enjoy HD video quality, while remote users receive quality commensurate with their connection speeds. In summary, when an MCU is designed well, integrating easily with multiple vendors and allowing users to call in at the data rate and resolution they want or need to – the result is an easy, seamless experience for all users, allowing people to focus on the meeting, not the technology. The Language of Video Conferencing As VC technology has evolved, two main protocols have emerged to provide the signalling control for the establishment, control and termination of VC calls: SIP (Session Initiation Protocol) and H.323. For the encoding and decoding of visual information, the industry is moving towards the industry standard known as H.264, which was developed to provide high-quality video at lower bandwidth over a wide range of networks and systems. An extension to the H.264 protocol is Scalable Video Coding (SVC), which is established to facilitate the enablement of VC on a wider range of devices, such as tablets and mobile phones. Bridging Architecture and Functionality As described above, the combination of software and the hardware that creates the virtual meeting rooms is called a “Video Bridge”. Virtual meeting rooms are identified by their “bridge numbers”. With multiple calls taking place simultaneously, software analyses all the different data streams coming into the bridge processors, and assigns data streams accordingly. white paper An Introduction to the Basics of Video Conferencing
  • 4. 4 At the simplest level, the processing workload for bridges is dependent upon four factors: • the number of locations that dial into each bridge • the number of conferencing calls that each bridge must handle simultaneously • the amount of data that is being received on each digital stream: higher resolutions of images and sound (i.e. High Definition) generate more data that needs to be processed. • the degree of transcoding that the bridge must perform while handling calls being received at different connection speeds and utilising different protocols. As the workload increases, each bridge must process more data. Performance can therefore be improved by increasing the number of Digital Signalling Processors (DSPs) utilised to decode and encode the digital streams entering and leaving MCUs. If the bridging function becomes overloaded, video and voice information may be lost, causing latency to be introduced into calls, both of which can degrade the video meeting experience. Extra processing resource can be provided for the bridging function by either utilising a more powerful bridge (with a greater number of DSPs) or through a virtual software approach, where the software that controls the signalling function can operate independently of the physical hardware. A conference call with an assigned conference number does not have to take place, or be processed by a dedicated piece of hardware. The call can be “virtualised”, and assigned to whatever physical bridge has the correct resource or capacity to handle the call. A virtualisation manager oversees which physical bridge has the capacity, and assigns incoming calls accordingly. In extreme, but rare circumstances, the virtualisation manager may assign resources for a call across several different physical bridges that work in tandem together. Known as “auto-cascading”, the resources within the physical bridge can be instructed by the software to operate in a “Parent-Child” arrangement, with one bridge “owning” the conference call, and the others sharing the workload. In the continuous presence mode of presentation, the bridge will automatically provide the screen templates in which the viewers will see the other meeting participants. The bridge can also provide some administrative functionality for the call such as; assigning passwords to enter each meeting, and providing Interactive Voice Response (IVR) functionality, where call participants can be greeted and instructed by customised voice greetings. Although most participants will actively dial into a VC meeting, the bridge can be programmed to automatically dial out to participating locations and automatically connect them in to a meeting. For example, the bridge could automatically wake up the cameras in remote meeting rooms, and link those meeting rooms into a prescheduled call. Participants of such a meeting would simply have to walk into the video room at the correct time, and join the meeting. Video Call Management and Protocol Conversion In order to build an architecture that scales, the software platform must be able to provide call signalling functionality, and dynamically manage the set-up and maintenance of a large number of video calls. The software architecture has to be capable of reconfiguring itself and its resources in real-time, so that these resources are used to their best ability. In addition, the software architecture has to understand the bandwidth requirements of each call being placed, the policy that is associated with each call (the prioritisation and importance of a call), and where the participants of a call are geographically located. By understanding this, the software platform can utilise local resources instead of redirecting data streams & call signalling to resources that are far away, an approach which would eat up large amounts of bandwidth on WAN links that are very costly. The software platform should also be able to instantly detect any failure of hardware resources or loss of communication across infrastructure links, so that it can re-direct traffic and re-establish calls utilising alternative resources, without overly impacting video calls or their quality. When systems on different customer premises try to join the same video call using devices which run different protocols (i.e. H.323, RTV or SIP), the VC platform must first perform protocol conversion to a common language so the infrastructure can understand and process information correctly. In other words, the software platform should provide intrinsic gateway functionality between devices that talk different languages. white paper An Introduction to the Basics of Video Conferencing
  • 5. 5 Device Management To enable large-scale deployment and management of VC solutions, the software platform provides for the management and maintenance of hardware infrastructure components through a separate functional area: The Device Manager. The Device Manager can help dynamically provision devices and components of the VC infrastructure. Once component hardware is deployed within the network and its infrastructure, the Device Manager will monitor and help troubleshoot problems with these devices. When software updates are required, the Device Manager will help deploy them. A significant contributing factor to the rise in demand for VC is because of the ease of use by which calls can be established by users. The scheduling and management of calls has become easy, through the creation of user-friendly scheduling portals, or via integration into Microsoft® Outlook™. The Device Manager will also provide reporting, and comprehensive details of video calls, processing the information to evaluate current system usage, and expansion plans for the video network. Security Many organisations who have invested in VC will inevitably need to be able to assist mobile or home workers wanting to dial into their company network, and participate in video calls with colleagues. The software platform must therefore provide the capability to enable, and manage this. Likewise, VC-enabled organisations will also want to use the technology to communicate with their partners and customers. This will only be possible if video traffic is able to securely traverse the firewalls from one customer to another. Firewall traversal is a particular challenge to video, as the data firewalls try to re-organise data packets. The implementation of a video firewall such as the VBP (H323) can eliminate this issue. white paper An Introduction to the Basics of Video Conferencing The Polycom RealPresence Virtualisation Manager sits in front of the bridges, and interfaces between the outside world and the bridging resources. This optimises how incoming video calls are handled by virtual resources at its disposal. The Virtualisation Manager can apply business rules that help it place incoming meetings on bridges that make the most sense, either for capacity, geography, or other priority rules. Let us consider three examples of this approach and see how it simplifies the process: Example A Customer A in California wants to meet with Customer B in New York, Customer C in London and Customer D in Paris. The Customer has a video bridge in Denver and a video bridge in Paris and a virtualisation manager on a server in London. In this situation, the virtualisation management software would identify that two participants wanted to join the call from the U.S., and may, for example purposes, direct them to the resources on the Denver bridge. Likewise, the European participants may be directed to the Paris bridge, with overall control of the call being given to the Master Denver bridge. Under this scheme, large amounts of video data are not shipped across a transatlantic WAN, thereby potentially providing cost savings. Example B In the above example, the U.S. customers are using an H.264 based system, and in Europe they are using Microsoft® Lync™ enabled video conferencing based upon RTV. In this scenario, the virtualisation management software on the London server acts as a Gateway between Microsoft, and the U.S. Video resources, converts the Microsoft signalling, and establishes the whole call using the bridges in the U.S. and Paris. Example C In this example, the call is proceeding but the bridge in Denver suddenly stops functioning due to a fire in the data centre. The Virtualisation Manager in London detects this, and redirects the video traffic across the WAN link to the Paris bridge. Users connecting via H.323 simply redial to re-join the call, with the administration and management being performed seamlessly in the background. However, for SIP based calls there is an added advantage: the Polycom platform will detect the problem and reconnect the participants back into the call automatically, hopefully before the user has even noticed that there was a problem.
  • 6. 6 Content Management Historically, the primary motivating factor for most companies has been to use VC as a way of saving business travel costs. Recently, organisations are beginning to understand that the benefits of VC can impact many different parts of an organisation including; training, marketing, education, compliance, internal communications, advertising, PR, to name just a few. As the usage of VC in these fields has begun to grow, customers have discovered the potential to not only use VC to communicate in real-time, but also to uncover the possibilities that exist for re-using digital recordings of past events and communications. Moving beyond “meetings”, the same technology is being used to create digitally encapsulated rich media, which can then be edited, enhanced, archived, and broadcast across multiple media. These assets can be made available to target audiences on-demand. For example: • Live Event Multicasting: The software platform enables the streaming of recorded webcasts, and supports both the push and pull of video to the streaming servers. • Video-On-Demand: The software platform automates the creation of archived versions of any live event webcast so that customers can replay them on demand, as desired. • Media Management: The software platform can be used to control how video content will be aggregated, approved, categorised, edited and published. • Storage and Archiving: The software platform establishes rules for the lifecycle of storage for bandwidth-intensive video content: customers can determine how the content will be retained, transcoded and stored in the Cloud, or across corporate resources without daily, hands-on maintenance. In the previous section, we explained the five basic functional areas that constitute the software platform Polycom has developed to enable scalable, reliable, and cost-efficient VC solutions. The Polycom RealPresence platform breaks down the core infrastructure for enabling VC into five main areas: Universal Video Collaboration: Providing the bridging capability at the core of video conferencing, this provides the software for multipoint video, voice and content collaboration that connects the most people at highest quality and lowest cost. Virtualization Management: Providing the call management and protocol conversion that allows the bridging resources to be virtualized, this provides the software that enables multi-tenancy and massive scale, redundancy and resiliency. Video Resource Management: Providing the device and software management of endpoints and infrastructure, enabling central management, monitoring and the delivery of video collaboration across organisations. Universal Access and Security: The Software that easily and securely connects video participants in and outside a customer firewall and optimizes for a best collaboration experience. Video Content Management: Software that enables organisations to support their business customers for secure video capture, content management, administration and delivery. white paper An Introduction to the Basics of Video Conferencing The Polycom® RealPresence™ Platform Polycom® RealPresence® Platform Universal Video Collaboration Universal Access and Security Video Resource Management Video Content Management Virtualization Management Services Core Networking & Security
  • 7. About Polycom Polycom is the global leader in open standards-based unified communications (UC) solutions for telepresence, video, and voice powered by the Polycom® RealPresence® Platform. The RealPresence Platform interoperates with the broadest range of business, mobile, and social applications and devices. More than 400,000 organizations trust Polycom solutions to collaborate and meet face-to-face from any location for more productive and effective engagement with colleagues, partners, customers, specialists, and prospects. Polycom, together with its broad partner ecosystem, provides customers with the best total cost of ownership, interoperability, scalability, and security for video collaboration, whether on-premises, hosted, or cloud-delivered. Visit www.polycom.com or connect with Polycom on Twitter, Facebook, and LinkedIn. Polycom EMEA Headquarters 270 Bath Road, Slough, Berkshire SL1 4DX, UK T +44 (0)1753 723282 | F +44 (0) 1753 723010 www.polycom.co.uk 07_2012 © 2012 POLYCOM, INC. ALL RIGHTS RESERVED. POLYCOM®, THE NAMES AND MARKS ASSOCIATED WITH POLYCOM’S PRODUCTS ARE TRADEMARKS AND/OR SERVICE MARKS OF POLYCOM, INC. AND ARE REGISTERED AND/OR COMMON LAW MARKS IN THE UNITED STATES AND VARIOUS OTHER COUNTRIES. ALL OTHER TRADEMARKS ARE PROPERTY OF THEIR RESPECTIVE OWNERS. NO PORTION HEREOF MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, FOR ANY PURPOSE OTHER THAN THE RECIPIENT’S PERSONAL USE, WITHOUT THE EXPRESS WRITTEN PERMISSION OF POLYCOM. Summary With demand for VC growing rapidly, solutions need to provide a robust, resilient, scalable, and manageable infrastructure that delivers unparalleled quality of experience. The Polycom RealPresence Platform is the software infrastructure that underlies Polycom’s VC, and binds it together by integrating with core networking and security infrastructure. This enables secure collaboration for any number of users across heterogeneous networks, with up to 50% less bandwidth consumption than other competitor solutions. By delivering an architecture based upon open standards, Polycom has created a flexible, state-of-the-art VC platform that provides superior investment protection, at the lowest total cost of ownership. white paper An Introduction to the Basics of Video Conferencing