SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 04, Issue 05 (May. 2014), ||V5|| PP 06-12
International organization of Scientific Research 6 | P a g e
Design and Fabrication of motorized automated Object lifting
jack
Ivan Sunit Rout1
, Dipti Ranjan Patra1
, Sidhartha Sankar Padhi1
,
Jitendra Narayan Biswal1
, Tushar Kanti Panda1
1
(Assistant Professor, Department of Mechanical Engineering, C.V.Raman College of Engineering,
Bhubaneswar, India)
Abstract: - With the increasing levels of technology, the efforts are being put to produce any kind of work that
has been continuously decreasing. The efforts required in achieving the desired output can be effectively and
economically be decreased by the implementation of better designs. Power screws are used to convert rotary
motion into reciprocating motion. An object lifting jack is an example of a power screw in which a small force
applied in a horizontal plane is used to raise or lower a large load. In this fabricated model, an electric motor
will be integrated with the object lifting jack and the electricity needed for the operation will be taken from the
d.c battery and thereby the mechanical advantage will be increased.
Keywords: - Object lifting jack, automation, limit switch, lead screw
I. INTRODUCTION
Our research survey in this regard revealed that in several automobile garages , revealed the facts that
mostly some difficult methods were adopted in lifting the vehicles for reconditioning, repair and maintenance.
This fabricated model has mainly concentrated on this difficulty, and hence a suitable device has been designed,
such that the vehicle and heavy objects can be lifted from floor land without the application of impact force. The
fabrication part of it has been considered with almost case for its simplicity and economy, such that this can be
accommodated as one of its essential tools on automobile garages. The object lifting jack has been developed to
cater to the needs of small and medium automobile garages, which are normally man powered with minimum
skilled labour. In most of the garages the vehicles are lifted by using screw jack. This needs high man power and
skilled labour. In order to avoid all such disadvantages, the automated motorized object lifting jack has been
designed in such a way that it can be used to lift the vehicle very smoothly without any impact force. The
operation is made simple so that even unskilled labour can use it with ease. The d.c motor is coupled with the
lead screw by gear arrangement, the lead screw rotation depends upon the rotation of d.c motor. This is an era of
automation where it is broadly defined as replacement of manual effort by mechanical power in all degrees of
automation. The operation remains to be an essential part of the system although with changing demands on
physical input, the degree of mechanization is increased.
1.1 Need for automation
 To achieve mass production.
 To reduce human effort.
 To increase the efficiency of the jack.
 To reduce the work load.
 To reduce the production cost.
 To reduce the production time.
 To reduce the material handling.
 To reduce the fatigue of workers.
1.2 Principle of operation
The lead screw is considered as an inclined plane with inclination α. When the load is being raised or
lowered, following forces act at a point on this inclined plane.
1.2.1 Load (W): It always acts in vertically downward direction.
1.2.2 Normal reaction (N): It acts perpendicular (normal) to the inclined plane.
1.2.3 Frictional force (µN): It acts opposite to the motion. When the load is moving the inclined plane, frictional
force acts along the inclined plane in downward direction and when the load is moving down the inclined plane,
frictional force acts along the inclined plane in upward direction.
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 7 | P a g e
1.2.4 Effort(P): It acts in a direction perpendicular to the load (W). It may act towards right to overcome the
friction and raise the load.
When load is raised,
For an equilibrium of horizontal forces, P = µN cos α + N sin α ….(1)
For an equilibrium of vertical forces, W = N cos α - µN sin α ….(2)
Dividing equation (1) by (2) we get,
P = W (µ cosα + sin α) ….(3)
cos α - µ sin α
The coefficient of friction µ is expressed as µ= tan θ ….(4)
Substituting equation (4) in (3) we get,
P = W tan (θ + α) ….(5)
The torque T required to raise the load is given by, T = tan (θ + α) ….(6)
When load is lowered,
For an equilibrium of horizontal forces, P = µN cos α - N sin α ….(7)
For an equilibrium of vertical forces, W = N cos α + µN sin α ….(8)
Dividing equation (7) by (8) we get,
P = W (µ cosα - sin α) ….(9)
cos α + µ sin α
Substituting equation (4) in (9) we get,
P = W tan (θ - α) ….(10)
The torque T required to raise the load is given by, T = tan (θ - α) ….(11)
Fig 1: Forces acting in an inclined plane
1.3 Components of fabricated model
The main parts of the automated motorized object lifting jack are as follows:
1.3.1 D.C motor
An electric motor is a machine which converts electrical energy into mechanical energy. Its action is
based on the principle that when a current carrying conductor is placed on a magnetic field, it experiences a
magnetic force whose direction is given by Fleming’s left hand rule. When a motor is in operation, it develops
torque. This torque can produce mechanical rotation. D.C motors are also like generators classified into shunt
wound or series wound or compound wound motors.
1.3.2 Lead Screw
A lead screw is a portable device consisting of s screw mechanism used to raise or lower the load. The
lead screw can be short, tall, fat or thin depending on the amount of pressure they will be under and space that
they need to fit into. It is made of various types of metals but the screw itself is made of lead. A large amount of
heat is generated in it and long lifts can cause serious overheating. To retain the efficiency, it must be used
under ambient temperatures, otherwise lubricants must be applied. These are oil lubricants intended to enhance
the equipment’s capabilities. Apart from proper maintenance, to optimize the capability and usefulness of lead
screw it is imperative to employ it according to its design and construction.
1.3.3 Batteries
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 8 | P a g e
In isolated systems away from the grid, batteries are used for storage of excess solar energy which can
be converted into electrical energy. In fact for small units with output less than one kilowatt, batteries seem to be
less the only technically and economically available storage means. Since both the photovoltaic system and
batteries are high in capital costs , it is necessary that the overall system be optimized with respect to available
energy and local demand pattern.
1.3.4 Ball bearing
This is a type of rolling element bearing that uses balls to maintain the separation between the bearing
races. The purpose of a ball bearing is to reduce rotational friction and support and radial and axial loads. It
achieves this by using atleast two races to contain the balls and transmit the loads through the balls.
1.3.5 Spur gears
These are designed to transmit motion and power between parallel shafts which are the most economical
gears in the power transmission industry. Two types are used in this model:
1.3.5.1.Internal spur gear
These spur gears are turned inside out. In other words, the teeth are cut into the inside diameter while the
outside diameter is kept smooth. This design allows for the driving pinion to rotate internal to the gear, which, in
turn, allows for clean operation. Intended for light duty applications, these are gears always available only in
brass. When choosing a mating spur gear always remember that the difference in the number of teeth between
the internal gear and pinion should not be less than 12 or 15.
1.3.5.2 External spur gear
Perhaps the most often used and simplest gear system, external spur gears are cylindrical gears with
straight teeth parallel to the axis. They are used to transmit rotary motion between parallel shafts and the shafts
that rotate in opposite directions. They tend to be noisy at high speeds as the two gear surfaces come into contact
at once.
1.3.6 Limit Switch
It is a switch operated by the motion of a machine part or presence of an object. It is used for control of a
machine, as safety interlocks, or to count objects passing a point. It is a electromechanical device that consists of
an actuator mechanically linked to a set of contacts. When an object comes into contact with the actuator, the
device operates the contacts to make or break an electrical connection. It is used in a variety of applications and
environments because of their ruggedness, ease of installation, and reliability of operation. It can determine the
presence or absence, passing, positioning and end of travel of an object. It was first used to define the limit of
travel of an object, hence the name ‘limit switch.’
1.3.7 Control switch
It is used in order to start or stop the entire operation of the object lifting jack. The type of switch that is
used is known as a toggle switch. The toggle switch is a class of electrical switches that are manually actuated
by a mechanical lever, handle, or rocking mechanism..This is designed to provide the simultaneous actuation of
multiple sets of electrical contacts, or the control of large amounts of electric current or mains voltages.
1.3.8 Control cables
These are used in order to connect the battery to the motor and the switch.
1.3.9 Base and Frame
A base for the entire set-up has also been made. The motor is mounted on an inverted U shaped support
frame. Ball rollers are attached to four ends of the base for movement and are electrically controlled by switch.
1.4 Specification of parts
1.4.1 D.C motor
Torque 10 Kg cm
Speed 150 rpm
Voltage supply 12 V
Type D.C
1.4.2 Lead Screw
Outer diameter (do) 13.7 mm
Inner diameter (di) 11 mm
Mean diameter (d) 12.7 mm
Pitch 2 mm
1.4.3 Larger Gear
Addendum circle diameter 73.45 mm
Dedendum circle diameter 61.80 mm
Larger width of tooth 5.46 mm
Smaller width of tooth 1.44 mm
Depth of cut 6.45 mm
Thickness 12.95 mm
1.4.4 Smaller Gear
Addendum circle diameter 44.95 mm
Dedendum circle diameter 32.52 mm
Larger width of tooth 4.76 mm
Smaller width of tooth 1.14 mm
Thickness 13.06 mm
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 9 | P a g e
1.4.5 Roller
Torque 5 Kg cm
Speed 150 rpm
Voltage supply 12 V
Type D.C
Number 2
1.4.6 Base
Length 72.5 mm
Breadth 42.5 mm
Thickness 2 cm
Material used Plywood
1.4.7 Limit Switch
Number 2
Type Roller type
Two way voltage supply 12 V
1.4.8 Control Switch
Type DPCO ( Double Pole Control Off)
1.4.9 Load Panel
Diameter 9.8 cm
Thickness 5 mm
Fig 2: Fabricated model of Object lifting jack
II. DESIGN CONSIDERATIONS
The load on the screw is the load which is to be lifted W, twisting moment M, between the screw
threads and force F at the handle to rotate the screw. The load W is compressive in nature and induces the
compressive stress in the screw. It may also lead the screw to buckle. The load F produces bending and it is
maximum, when the screw is at its maximum lift. The screw also experiences twisting moment due to F, the
shear stress is also induced in the screw due to the twisting moment between the threads of screw and nut.
Step I Problem Specification
It is required to design an object lifting jack for supporting the machine parts during their repair and
maintenance. It should be a general purpose jack with a load carrying capacity of 50 KN and a maximum lifting
height of 0.3m. The jack is so operated by means of a D.C motor.
Step II Selection of Materials
(i) The frame of the object lifting jack has complex shape. It is subjected to compressive stress. Grey cast iron is
selected as the material for the frame. Cast iron is cheap and it can be given any complex shape without
involving costly machining operations. Cast iron has higher compressive strength compared with steel.
Therefore, it is technically and economically advantageous to use cast iron for the frame.
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 10 | P a g e
(ii) The screw is subjected to torsional moment, compressive force and bending moment. From strength
consideration, EN8 is selected as material for screw.
(iii) There is a relative motion between the screw and the nut, which results in friction. The friction causes wear
at the contacting surfaces. When the same material is used for these two components, the surfaces of both
components get worn out, requiring replacement. This is undesirable. The size and shape of the screw make it
costly compared with the nut. The material used for the nut is stainless steel.
Step III Design of object lifting jack
The object lifting jack is an intermittently use device and wear of threads is not an important
consideration. Therefore, instead of trapezoidal threads, the screw is provided with square threads. Square
threads have higher efficiency and provision can be made for self-locking arrangement. When the condition of
self-locking is fulfilled, the load itself will not turn the screw and descend down, unless an effort in the reverse
direction is applied.
III. CALCULATIONS
Observed data:
Nominal diameter of screw, d = 13.7 mm
Core diameter of screw, dc = 11 mm
Pitch of screw thread, p = 2 mm
Load W = 20 kg
Coefficient of friction, µ = 0.15
Mean diameter of screw, dm = 12.7 mm
Helix angle of screw, α = 2.680
Tangential force required at the circumference of the screw to raise the load µ = tan ø = 0.15
p = W × tan α + tan ø = 40.2 N
1- tan α.tan ø
Torque required to operate the screw = p × d + µrm
2
= 40.2 × (12.7/2) + (0.15 × 200 × 18)
= 825.27 N mm = 0.8257 Nm = 8.5 Kg cm
Efficiency of the screw = T0/T1
= 200×(12.7/2) = 27%
0.15×200×18+200×(12.7/2)
For lowering load (P) = W tan (α + ø)
= W × tan α + tan ø = 19.826 N
1-tan α.tan ø
Torque = p × d + µrm W= 0.662 N
2
Shear stress due to torque T1, τ = 16T1/ π(dc)3
= 825.27 N/mm2
= 3.15 N/mm2
Compressive stress due to axial load (σc) = W/A = 2.10 N/mm
Shear stress due to torque (σc max) = 0.5 [σc + σc
2
+ 4τ2
= 4.5 N/mm2
< 50 N/mm2
Maximum shear stress = 3.32 N/mm2
< 40 N/mm2
So, design is safe.
Spur Gear,
Gear Ratio = 1.75
Tp = 16 Tg = 28
Velocity ratio = 0.571
Np = 150 Ng = 85.714
Ap= 44.95 Ag= 73.45
Dp= 32.96 Dg= 61.80
Y = 0.175 - 0.841/no. of teeth
= π × m × Tp × Np = 40πm
160
Taking Cs = 1
Wt = P × Cs = 15.40×1 = 122.55
V 0.12566
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 11 | P a g e
Cv = 3 = 3 = 0.959
3+v 3+0.12566
Yp = 0.175 – 0.84 = 0.1224
16
Yg = 0.1449
Wt = σwp × b × π × m × Yp
15.40 = 60 × 6 × π × 0.097 × 3
0.1256 3+0.12566
46.2 + 1.93424 = 96.4521 m3
m = 2.5 standard
Addendum = 3.45 mm
Dedendum = 8.2 mm
Centre distance between the shaft = 55 mm
Wear tooth load (Ww) = Dp × b × Q × K
= 40 × 12.5 × (14/11) × 1.57
= 1000 N
Dynamic Load (Wd) = Wt + Wt
= 21v(bc + Wt) = 43.3 N
21v + bc + Wt
V = 0.341 m/s
b = 12.5 mm
C = Ke = 1063.4
1 + 1
Ep Eg
Wd = 825.4 N
Since Wd < Ww. Design is true.
Ws = σc × b × Pc × y
σc = 80 N/mm2
b = 12.5 mm
P = πm
Y = 0.1224
Ws = 958.185
Ws > WD
It is true.
IV. WORKING MECHANISM
STEP 1 The lead acid battery is used to drive the d.c motor. The d.c motor shaft is connected to the spur gear.
If power is driven to the d.c motor, it will run so that the spur gear also runs to slow down the speed of the d.c
motor. The object moving jack moves the lead screw upwards, so that the vehicle lifts from the ground. The
vehicle is lifted by using the lifting platform at the top of the jack. The motor draws power supply from the
battery. The lifting and uplifting is done by changing the battery supply to the motor.
STEP 2 After pressing the DPCO switch, the circuit is completed and from battery power is transferred to the
motor that is connected to the roller. Now the roller starts moving. Now controlling the two number of DPCO
switch which is connected to the two motors at the base the whole set-up is adjusted below the body which is
being lifted.
STEP 3 Now pressing the DPCO switch to the circuit which is connected to the motor that is coupled to the
lead screw, the circuit is completed and voltage from the battery is pass to the motor. When tapping the switch
to the positive pole, positive voltage is supplied to the d.c motor moves in clockwise direction and lead screw
moves in downward direction.
STEP 4 When tapping the switch to the negative pole, negative voltage is supplied to the d.c motor moves in
anticlockwise direction and lead screw moves in upward direction.
STEP 5 Now when the lead screw moves to the maximum limit, the limit switch at the upper end gets
activated and the circuit gets cut-off. When the lead screw moves to the minimum limit, the limit switch at the
bottom end gets activated and the circuit gets cut-off.
Design and Fabrication of motorized automated Object lifting jack
International organization of Scientific Research 12 | P a g e
V. CONCLUSION
Object lifting jacks are the ideal product to push, pull, lift, lower and position loads of anything from a
couple of kilograms to hundreds of tonnes. The need has long existed for an improved portable jack for
automotive vehicles. it is highly desirable that a jack become available that can be operated alternatively from
inside the vehicle or from a location of safety off the road on which the vehicle is located. Such a jack should be
light enough and be compact enough so that it can be stored in an automobile trunk, can be lifted up and carried
by most adults to its position of use, and yet be capable of lifting a wheel of a 4000-5000 pound vehicle off the
ground. Further, it should be stable and easily controllable by a switch so that jacking can be done from a
position of safety. It should be easily movable either to a position underneath the axle of the vehicle or some
other reinforced support surface designed to be engaged by a jack. Thus, the product has been developed
considering all the above requirements. This particular design of motorized automated object lifting jack will
prove to be beneficial in lifting and lowering of heavy loads.
REFERENCES
[1] M.M. Noor, K. Kadirgama and M.M. Rahman, Analysis Of Auto Car Jack, National Conference in
Mechanical Engineering Research and Postgraduate Students, FKM Conference Hall, UMP, Kuantan,
Pahang, Malaysia, 26-27 May 2010, 198-203.
[2] Mohd Abuzaid, Mohd Hasnain, Shabaj Alam, Sohail Khan and Surendra Agarwal, Inbuilt Hydraulic jack
in Automobile vehicles, International Journal of Innovations in Engineering and Technology,
2(2),2013,76-84.
[3] Tarachand G. Lokhande, Ashwin S. Chatpalliwar and Amar A. Bhoyar, Optimizing Efficiency of Square
Threaded Mechanical Screw Jack by Varying Helix Angle, International Journal of Modern Engineering
Research,.2(1), 2012, 504-508.
[4] P.S. Rana, P.H. Belge, N.A. Nagrare, C.A. Padwad, P.R. Daga, K.B. Deshbhratar and N.K. Mandavgade,
European Journal of Applied Engineering and Scientific Research, 1 (4), 2012,167-172.
[5] Prashant Kumar Srivastav, Vipin Kumar Pandey, Shailesh Kumar Maurya, Ajit Tiwari, Jawed Rafiq and
S.K. Dwivedi, Highly Efficient Motorized Screw Jack, International Journal of Computational
Engineering Research, 3(5), 2013, 35-41.
[6] A. S. Akinwonmi and A. Mohammed, Modification of the Existing Design of a Car Jack, Journal of
Emerging Trends in Engineering and Applied Sciences, 3 (4), 2012, 581-588.
[7] J.J. Ferreira, M.G. Boocock and M.I. Gray, Review of the risks associated with pushing and pulling heavy
loads (Health and Safety Laboratory Broad Lane Sheffield S3 7HQ, 2004).

More Related Content

What's hot

IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...
IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...
IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...IRJET Journal
 
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET Journal
 
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...IAEME Publication
 
ELECTROMAGNETIC ENGINE
ELECTROMAGNETIC ENGINEELECTROMAGNETIC ENGINE
ELECTROMAGNETIC ENGINEAvin Ganapathi
 
IRJET- Smart Shock Absorber
IRJET- Smart Shock AbsorberIRJET- Smart Shock Absorber
IRJET- Smart Shock AbsorberIRJET Journal
 
Final semester Project
Final semester Project Final semester Project
Final semester Project Yadav Paras
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
power generation through speed breakers
power generation through speed breakerspower generation through speed breakers
power generation through speed breakersPradip Kumar
 
Magnetic repulsion piston engine
Magnetic repulsion piston engineMagnetic repulsion piston engine
Magnetic repulsion piston engineVISHAL SATSANGI
 
Implementation of uni directional shaft for energy conservation
Implementation of uni directional shaft for energy conservationImplementation of uni directional shaft for energy conservation
Implementation of uni directional shaft for energy conservationAlexander Decker
 
IRJET- Gyro Balanced Two Wheeler
IRJET- Gyro Balanced Two WheelerIRJET- Gyro Balanced Two Wheeler
IRJET- Gyro Balanced Two WheelerIRJET Journal
 
Power generation through speed breaker
Power generation through speed breakerPower generation through speed breaker
Power generation through speed breakervaibhav patel
 
Generation Of Power using Railway Track
Generation Of Power using Railway TrackGeneration Of Power using Railway Track
Generation Of Power using Railway TrackIRJET Journal
 
Suitability of Composite Material for Flywheel Analysis
Suitability of Composite Material for Flywheel Analysis Suitability of Composite Material for Flywheel Analysis
Suitability of Composite Material for Flywheel Analysis IJMER
 
Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay Mahajan
 
IRJET-Springless Type Magnetic Suspension
IRJET-Springless Type Magnetic SuspensionIRJET-Springless Type Magnetic Suspension
IRJET-Springless Type Magnetic SuspensionIRJET Journal
 

What's hot (20)

IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...
IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...
IRJET- Floating Oscillator based Electric Generator using Mechanical Energy H...
 
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
IRJET - Fabrication of Pendulum Machine for Generation of Electricity through...
 
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...
DESIGN AND DEVELOPMENT OF PROTOTYPE OF MAGNETIC ENGINE USING NEODYMIUM IRON B...
 
U4101128133
U4101128133U4101128133
U4101128133
 
ELECTROMAGNETIC ENGINE
ELECTROMAGNETIC ENGINEELECTROMAGNETIC ENGINE
ELECTROMAGNETIC ENGINE
 
IRJET- Smart Shock Absorber
IRJET- Smart Shock AbsorberIRJET- Smart Shock Absorber
IRJET- Smart Shock Absorber
 
Final semester Project
Final semester Project Final semester Project
Final semester Project
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Flywheel
FlywheelFlywheel
Flywheel
 
power generation through speed breakers
power generation through speed breakerspower generation through speed breakers
power generation through speed breakers
 
Magnetic repulsion piston engine
Magnetic repulsion piston engineMagnetic repulsion piston engine
Magnetic repulsion piston engine
 
Implementation of uni directional shaft for energy conservation
Implementation of uni directional shaft for energy conservationImplementation of uni directional shaft for energy conservation
Implementation of uni directional shaft for energy conservation
 
IRJET- Gyro Balanced Two Wheeler
IRJET- Gyro Balanced Two WheelerIRJET- Gyro Balanced Two Wheeler
IRJET- Gyro Balanced Two Wheeler
 
Power generation through speed breaker
Power generation through speed breakerPower generation through speed breaker
Power generation through speed breaker
 
Flywheel Presentation
Flywheel PresentationFlywheel Presentation
Flywheel Presentation
 
Generation Of Power using Railway Track
Generation Of Power using Railway TrackGeneration Of Power using Railway Track
Generation Of Power using Railway Track
 
Suitability of Composite Material for Flywheel Analysis
Suitability of Composite Material for Flywheel Analysis Suitability of Composite Material for Flywheel Analysis
Suitability of Composite Material for Flywheel Analysis
 
solar wood cutter final
solar wood cutter finalsolar wood cutter final
solar wood cutter final
 
Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project
 
IRJET-Springless Type Magnetic Suspension
IRJET-Springless Type Magnetic SuspensionIRJET-Springless Type Magnetic Suspension
IRJET-Springless Type Magnetic Suspension
 

Similar to B04550612

IRJET- Footstep Power Generation
IRJET-  	  Footstep Power GenerationIRJET-  	  Footstep Power Generation
IRJET- Footstep Power GenerationIRJET Journal
 
IRJET- Foot Step Power Generation
IRJET- Foot Step Power GenerationIRJET- Foot Step Power Generation
IRJET- Foot Step Power GenerationIRJET Journal
 
IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)IRJET Journal
 
DESIGN OF POWER GENERATING SPEED BREAKER
DESIGN OF POWER GENERATING SPEED BREAKERDESIGN OF POWER GENERATING SPEED BREAKER
DESIGN OF POWER GENERATING SPEED BREAKERIRJET Journal
 
Power generation from speed breakers
Power generation from speed breakersPower generation from speed breakers
Power generation from speed breakersBiswajit Pratihari
 
Power Generation Using Rumblers
Power Generation Using RumblersPower Generation Using Rumblers
Power Generation Using RumblersIRJET Journal
 
Design and Development of Foot Step Power Generator as an Alternative Source ...
Design and Development of Foot Step Power Generator as an Alternative Source ...Design and Development of Foot Step Power Generator as an Alternative Source ...
Design and Development of Foot Step Power Generator as an Alternative Source ...IRJET Journal
 
power generation through speed breakers
power generation through speed breakerspower generation through speed breakers
power generation through speed breakersPradip Kumar
 
Electricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleElectricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleIRJET Journal
 
Two speed gear box mini project
Two speed gear box mini projectTwo speed gear box mini project
Two speed gear box mini projectAravind Ganesh
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
IRJET- Design and Fabrication of Job Weight Operated Material Handling Equipment
IRJET- Design and Fabrication of Job Weight Operated Material Handling EquipmentIRJET- Design and Fabrication of Job Weight Operated Material Handling Equipment
IRJET- Design and Fabrication of Job Weight Operated Material Handling EquipmentIRJET Journal
 
IRJET- Foot Step Power Generation
IRJET-  	  Foot Step Power GenerationIRJET-  	  Foot Step Power Generation
IRJET- Foot Step Power GenerationIRJET Journal
 
IRJET- Automated Machine Design through Software Controller Support
IRJET- Automated Machine Design through Software Controller SupportIRJET- Automated Machine Design through Software Controller Support
IRJET- Automated Machine Design through Software Controller SupportIRJET Journal
 

Similar to B04550612 (20)

IRJET- Footstep Power Generation
IRJET-  	  Footstep Power GenerationIRJET-  	  Footstep Power Generation
IRJET- Footstep Power Generation
 
IRJET- Foot Step Power Generation
IRJET- Foot Step Power GenerationIRJET- Foot Step Power Generation
IRJET- Foot Step Power Generation
 
IRJET-V5I12299.pdf
IRJET-V5I12299.pdfIRJET-V5I12299.pdf
IRJET-V5I12299.pdf
 
IRJET-V5I12299.pdf
IRJET-V5I12299.pdfIRJET-V5I12299.pdf
IRJET-V5I12299.pdf
 
IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)IRJET- Power Generation using GYM Equipment (Lat Pull Down)
IRJET- Power Generation using GYM Equipment (Lat Pull Down)
 
DESIGN OF POWER GENERATING SPEED BREAKER
DESIGN OF POWER GENERATING SPEED BREAKERDESIGN OF POWER GENERATING SPEED BREAKER
DESIGN OF POWER GENERATING SPEED BREAKER
 
Power generation from speed breakers
Power generation from speed breakersPower generation from speed breakers
Power generation from speed breakers
 
Power Generation Using Rumblers
Power Generation Using RumblersPower Generation Using Rumblers
Power Generation Using Rumblers
 
Design and Development of Foot Step Power Generator as an Alternative Source ...
Design and Development of Foot Step Power Generator as an Alternative Source ...Design and Development of Foot Step Power Generator as an Alternative Source ...
Design and Development of Foot Step Power Generator as an Alternative Source ...
 
power generation through speed breakers
power generation through speed breakerspower generation through speed breakers
power generation through speed breakers
 
Electricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill TricycleElectricity Generation using Treadmill Tricycle
Electricity Generation using Treadmill Tricycle
 
Two speed gear box mini project
Two speed gear box mini projectTwo speed gear box mini project
Two speed gear box mini project
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
66 ICRIET-178.pdf
66 ICRIET-178.pdf66 ICRIET-178.pdf
66 ICRIET-178.pdf
 
TOOL WEAR
TOOL WEARTOOL WEAR
TOOL WEAR
 
IRJET- Design and Fabrication of Job Weight Operated Material Handling Equipment
IRJET- Design and Fabrication of Job Weight Operated Material Handling EquipmentIRJET- Design and Fabrication of Job Weight Operated Material Handling Equipment
IRJET- Design and Fabrication of Job Weight Operated Material Handling Equipment
 
IRJET- Foot Step Power Generation
IRJET-  	  Foot Step Power GenerationIRJET-  	  Foot Step Power Generation
IRJET- Foot Step Power Generation
 
IRJET- Automated Machine Design through Software Controller Support
IRJET- Automated Machine Design through Software Controller SupportIRJET- Automated Machine Design through Software Controller Support
IRJET- Automated Machine Design through Software Controller Support
 
A0470101011
A0470101011A0470101011
A0470101011
 
Regenerative braking
Regenerative brakingRegenerative braking
Regenerative braking
 

More from IOSR-JEN

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Recently uploaded

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 

Recently uploaded (20)

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 

B04550612

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 05 (May. 2014), ||V5|| PP 06-12 International organization of Scientific Research 6 | P a g e Design and Fabrication of motorized automated Object lifting jack Ivan Sunit Rout1 , Dipti Ranjan Patra1 , Sidhartha Sankar Padhi1 , Jitendra Narayan Biswal1 , Tushar Kanti Panda1 1 (Assistant Professor, Department of Mechanical Engineering, C.V.Raman College of Engineering, Bhubaneswar, India) Abstract: - With the increasing levels of technology, the efforts are being put to produce any kind of work that has been continuously decreasing. The efforts required in achieving the desired output can be effectively and economically be decreased by the implementation of better designs. Power screws are used to convert rotary motion into reciprocating motion. An object lifting jack is an example of a power screw in which a small force applied in a horizontal plane is used to raise or lower a large load. In this fabricated model, an electric motor will be integrated with the object lifting jack and the electricity needed for the operation will be taken from the d.c battery and thereby the mechanical advantage will be increased. Keywords: - Object lifting jack, automation, limit switch, lead screw I. INTRODUCTION Our research survey in this regard revealed that in several automobile garages , revealed the facts that mostly some difficult methods were adopted in lifting the vehicles for reconditioning, repair and maintenance. This fabricated model has mainly concentrated on this difficulty, and hence a suitable device has been designed, such that the vehicle and heavy objects can be lifted from floor land without the application of impact force. The fabrication part of it has been considered with almost case for its simplicity and economy, such that this can be accommodated as one of its essential tools on automobile garages. The object lifting jack has been developed to cater to the needs of small and medium automobile garages, which are normally man powered with minimum skilled labour. In most of the garages the vehicles are lifted by using screw jack. This needs high man power and skilled labour. In order to avoid all such disadvantages, the automated motorized object lifting jack has been designed in such a way that it can be used to lift the vehicle very smoothly without any impact force. The operation is made simple so that even unskilled labour can use it with ease. The d.c motor is coupled with the lead screw by gear arrangement, the lead screw rotation depends upon the rotation of d.c motor. This is an era of automation where it is broadly defined as replacement of manual effort by mechanical power in all degrees of automation. The operation remains to be an essential part of the system although with changing demands on physical input, the degree of mechanization is increased. 1.1 Need for automation  To achieve mass production.  To reduce human effort.  To increase the efficiency of the jack.  To reduce the work load.  To reduce the production cost.  To reduce the production time.  To reduce the material handling.  To reduce the fatigue of workers. 1.2 Principle of operation The lead screw is considered as an inclined plane with inclination α. When the load is being raised or lowered, following forces act at a point on this inclined plane. 1.2.1 Load (W): It always acts in vertically downward direction. 1.2.2 Normal reaction (N): It acts perpendicular (normal) to the inclined plane. 1.2.3 Frictional force (µN): It acts opposite to the motion. When the load is moving the inclined plane, frictional force acts along the inclined plane in downward direction and when the load is moving down the inclined plane, frictional force acts along the inclined plane in upward direction.
  • 2. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 7 | P a g e 1.2.4 Effort(P): It acts in a direction perpendicular to the load (W). It may act towards right to overcome the friction and raise the load. When load is raised, For an equilibrium of horizontal forces, P = µN cos α + N sin α ….(1) For an equilibrium of vertical forces, W = N cos α - µN sin α ….(2) Dividing equation (1) by (2) we get, P = W (µ cosα + sin α) ….(3) cos α - µ sin α The coefficient of friction µ is expressed as µ= tan θ ….(4) Substituting equation (4) in (3) we get, P = W tan (θ + α) ….(5) The torque T required to raise the load is given by, T = tan (θ + α) ….(6) When load is lowered, For an equilibrium of horizontal forces, P = µN cos α - N sin α ….(7) For an equilibrium of vertical forces, W = N cos α + µN sin α ….(8) Dividing equation (7) by (8) we get, P = W (µ cosα - sin α) ….(9) cos α + µ sin α Substituting equation (4) in (9) we get, P = W tan (θ - α) ….(10) The torque T required to raise the load is given by, T = tan (θ - α) ….(11) Fig 1: Forces acting in an inclined plane 1.3 Components of fabricated model The main parts of the automated motorized object lifting jack are as follows: 1.3.1 D.C motor An electric motor is a machine which converts electrical energy into mechanical energy. Its action is based on the principle that when a current carrying conductor is placed on a magnetic field, it experiences a magnetic force whose direction is given by Fleming’s left hand rule. When a motor is in operation, it develops torque. This torque can produce mechanical rotation. D.C motors are also like generators classified into shunt wound or series wound or compound wound motors. 1.3.2 Lead Screw A lead screw is a portable device consisting of s screw mechanism used to raise or lower the load. The lead screw can be short, tall, fat or thin depending on the amount of pressure they will be under and space that they need to fit into. It is made of various types of metals but the screw itself is made of lead. A large amount of heat is generated in it and long lifts can cause serious overheating. To retain the efficiency, it must be used under ambient temperatures, otherwise lubricants must be applied. These are oil lubricants intended to enhance the equipment’s capabilities. Apart from proper maintenance, to optimize the capability and usefulness of lead screw it is imperative to employ it according to its design and construction. 1.3.3 Batteries
  • 3. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 8 | P a g e In isolated systems away from the grid, batteries are used for storage of excess solar energy which can be converted into electrical energy. In fact for small units with output less than one kilowatt, batteries seem to be less the only technically and economically available storage means. Since both the photovoltaic system and batteries are high in capital costs , it is necessary that the overall system be optimized with respect to available energy and local demand pattern. 1.3.4 Ball bearing This is a type of rolling element bearing that uses balls to maintain the separation between the bearing races. The purpose of a ball bearing is to reduce rotational friction and support and radial and axial loads. It achieves this by using atleast two races to contain the balls and transmit the loads through the balls. 1.3.5 Spur gears These are designed to transmit motion and power between parallel shafts which are the most economical gears in the power transmission industry. Two types are used in this model: 1.3.5.1.Internal spur gear These spur gears are turned inside out. In other words, the teeth are cut into the inside diameter while the outside diameter is kept smooth. This design allows for the driving pinion to rotate internal to the gear, which, in turn, allows for clean operation. Intended for light duty applications, these are gears always available only in brass. When choosing a mating spur gear always remember that the difference in the number of teeth between the internal gear and pinion should not be less than 12 or 15. 1.3.5.2 External spur gear Perhaps the most often used and simplest gear system, external spur gears are cylindrical gears with straight teeth parallel to the axis. They are used to transmit rotary motion between parallel shafts and the shafts that rotate in opposite directions. They tend to be noisy at high speeds as the two gear surfaces come into contact at once. 1.3.6 Limit Switch It is a switch operated by the motion of a machine part or presence of an object. It is used for control of a machine, as safety interlocks, or to count objects passing a point. It is a electromechanical device that consists of an actuator mechanically linked to a set of contacts. When an object comes into contact with the actuator, the device operates the contacts to make or break an electrical connection. It is used in a variety of applications and environments because of their ruggedness, ease of installation, and reliability of operation. It can determine the presence or absence, passing, positioning and end of travel of an object. It was first used to define the limit of travel of an object, hence the name ‘limit switch.’ 1.3.7 Control switch It is used in order to start or stop the entire operation of the object lifting jack. The type of switch that is used is known as a toggle switch. The toggle switch is a class of electrical switches that are manually actuated by a mechanical lever, handle, or rocking mechanism..This is designed to provide the simultaneous actuation of multiple sets of electrical contacts, or the control of large amounts of electric current or mains voltages. 1.3.8 Control cables These are used in order to connect the battery to the motor and the switch. 1.3.9 Base and Frame A base for the entire set-up has also been made. The motor is mounted on an inverted U shaped support frame. Ball rollers are attached to four ends of the base for movement and are electrically controlled by switch. 1.4 Specification of parts 1.4.1 D.C motor Torque 10 Kg cm Speed 150 rpm Voltage supply 12 V Type D.C 1.4.2 Lead Screw Outer diameter (do) 13.7 mm Inner diameter (di) 11 mm Mean diameter (d) 12.7 mm Pitch 2 mm 1.4.3 Larger Gear Addendum circle diameter 73.45 mm Dedendum circle diameter 61.80 mm Larger width of tooth 5.46 mm Smaller width of tooth 1.44 mm Depth of cut 6.45 mm Thickness 12.95 mm 1.4.4 Smaller Gear Addendum circle diameter 44.95 mm Dedendum circle diameter 32.52 mm Larger width of tooth 4.76 mm Smaller width of tooth 1.14 mm Thickness 13.06 mm
  • 4. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 9 | P a g e 1.4.5 Roller Torque 5 Kg cm Speed 150 rpm Voltage supply 12 V Type D.C Number 2 1.4.6 Base Length 72.5 mm Breadth 42.5 mm Thickness 2 cm Material used Plywood 1.4.7 Limit Switch Number 2 Type Roller type Two way voltage supply 12 V 1.4.8 Control Switch Type DPCO ( Double Pole Control Off) 1.4.9 Load Panel Diameter 9.8 cm Thickness 5 mm Fig 2: Fabricated model of Object lifting jack II. DESIGN CONSIDERATIONS The load on the screw is the load which is to be lifted W, twisting moment M, between the screw threads and force F at the handle to rotate the screw. The load W is compressive in nature and induces the compressive stress in the screw. It may also lead the screw to buckle. The load F produces bending and it is maximum, when the screw is at its maximum lift. The screw also experiences twisting moment due to F, the shear stress is also induced in the screw due to the twisting moment between the threads of screw and nut. Step I Problem Specification It is required to design an object lifting jack for supporting the machine parts during their repair and maintenance. It should be a general purpose jack with a load carrying capacity of 50 KN and a maximum lifting height of 0.3m. The jack is so operated by means of a D.C motor. Step II Selection of Materials (i) The frame of the object lifting jack has complex shape. It is subjected to compressive stress. Grey cast iron is selected as the material for the frame. Cast iron is cheap and it can be given any complex shape without involving costly machining operations. Cast iron has higher compressive strength compared with steel. Therefore, it is technically and economically advantageous to use cast iron for the frame.
  • 5. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 10 | P a g e (ii) The screw is subjected to torsional moment, compressive force and bending moment. From strength consideration, EN8 is selected as material for screw. (iii) There is a relative motion between the screw and the nut, which results in friction. The friction causes wear at the contacting surfaces. When the same material is used for these two components, the surfaces of both components get worn out, requiring replacement. This is undesirable. The size and shape of the screw make it costly compared with the nut. The material used for the nut is stainless steel. Step III Design of object lifting jack The object lifting jack is an intermittently use device and wear of threads is not an important consideration. Therefore, instead of trapezoidal threads, the screw is provided with square threads. Square threads have higher efficiency and provision can be made for self-locking arrangement. When the condition of self-locking is fulfilled, the load itself will not turn the screw and descend down, unless an effort in the reverse direction is applied. III. CALCULATIONS Observed data: Nominal diameter of screw, d = 13.7 mm Core diameter of screw, dc = 11 mm Pitch of screw thread, p = 2 mm Load W = 20 kg Coefficient of friction, µ = 0.15 Mean diameter of screw, dm = 12.7 mm Helix angle of screw, α = 2.680 Tangential force required at the circumference of the screw to raise the load µ = tan ø = 0.15 p = W × tan α + tan ø = 40.2 N 1- tan α.tan ø Torque required to operate the screw = p × d + µrm 2 = 40.2 × (12.7/2) + (0.15 × 200 × 18) = 825.27 N mm = 0.8257 Nm = 8.5 Kg cm Efficiency of the screw = T0/T1 = 200×(12.7/2) = 27% 0.15×200×18+200×(12.7/2) For lowering load (P) = W tan (α + ø) = W × tan α + tan ø = 19.826 N 1-tan α.tan ø Torque = p × d + µrm W= 0.662 N 2 Shear stress due to torque T1, τ = 16T1/ π(dc)3 = 825.27 N/mm2 = 3.15 N/mm2 Compressive stress due to axial load (σc) = W/A = 2.10 N/mm Shear stress due to torque (σc max) = 0.5 [σc + σc 2 + 4τ2 = 4.5 N/mm2 < 50 N/mm2 Maximum shear stress = 3.32 N/mm2 < 40 N/mm2 So, design is safe. Spur Gear, Gear Ratio = 1.75 Tp = 16 Tg = 28 Velocity ratio = 0.571 Np = 150 Ng = 85.714 Ap= 44.95 Ag= 73.45 Dp= 32.96 Dg= 61.80 Y = 0.175 - 0.841/no. of teeth = π × m × Tp × Np = 40πm 160 Taking Cs = 1 Wt = P × Cs = 15.40×1 = 122.55 V 0.12566
  • 6. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 11 | P a g e Cv = 3 = 3 = 0.959 3+v 3+0.12566 Yp = 0.175 – 0.84 = 0.1224 16 Yg = 0.1449 Wt = σwp × b × π × m × Yp 15.40 = 60 × 6 × π × 0.097 × 3 0.1256 3+0.12566 46.2 + 1.93424 = 96.4521 m3 m = 2.5 standard Addendum = 3.45 mm Dedendum = 8.2 mm Centre distance between the shaft = 55 mm Wear tooth load (Ww) = Dp × b × Q × K = 40 × 12.5 × (14/11) × 1.57 = 1000 N Dynamic Load (Wd) = Wt + Wt = 21v(bc + Wt) = 43.3 N 21v + bc + Wt V = 0.341 m/s b = 12.5 mm C = Ke = 1063.4 1 + 1 Ep Eg Wd = 825.4 N Since Wd < Ww. Design is true. Ws = σc × b × Pc × y σc = 80 N/mm2 b = 12.5 mm P = πm Y = 0.1224 Ws = 958.185 Ws > WD It is true. IV. WORKING MECHANISM STEP 1 The lead acid battery is used to drive the d.c motor. The d.c motor shaft is connected to the spur gear. If power is driven to the d.c motor, it will run so that the spur gear also runs to slow down the speed of the d.c motor. The object moving jack moves the lead screw upwards, so that the vehicle lifts from the ground. The vehicle is lifted by using the lifting platform at the top of the jack. The motor draws power supply from the battery. The lifting and uplifting is done by changing the battery supply to the motor. STEP 2 After pressing the DPCO switch, the circuit is completed and from battery power is transferred to the motor that is connected to the roller. Now the roller starts moving. Now controlling the two number of DPCO switch which is connected to the two motors at the base the whole set-up is adjusted below the body which is being lifted. STEP 3 Now pressing the DPCO switch to the circuit which is connected to the motor that is coupled to the lead screw, the circuit is completed and voltage from the battery is pass to the motor. When tapping the switch to the positive pole, positive voltage is supplied to the d.c motor moves in clockwise direction and lead screw moves in downward direction. STEP 4 When tapping the switch to the negative pole, negative voltage is supplied to the d.c motor moves in anticlockwise direction and lead screw moves in upward direction. STEP 5 Now when the lead screw moves to the maximum limit, the limit switch at the upper end gets activated and the circuit gets cut-off. When the lead screw moves to the minimum limit, the limit switch at the bottom end gets activated and the circuit gets cut-off.
  • 7. Design and Fabrication of motorized automated Object lifting jack International organization of Scientific Research 12 | P a g e V. CONCLUSION Object lifting jacks are the ideal product to push, pull, lift, lower and position loads of anything from a couple of kilograms to hundreds of tonnes. The need has long existed for an improved portable jack for automotive vehicles. it is highly desirable that a jack become available that can be operated alternatively from inside the vehicle or from a location of safety off the road on which the vehicle is located. Such a jack should be light enough and be compact enough so that it can be stored in an automobile trunk, can be lifted up and carried by most adults to its position of use, and yet be capable of lifting a wheel of a 4000-5000 pound vehicle off the ground. Further, it should be stable and easily controllable by a switch so that jacking can be done from a position of safety. It should be easily movable either to a position underneath the axle of the vehicle or some other reinforced support surface designed to be engaged by a jack. Thus, the product has been developed considering all the above requirements. This particular design of motorized automated object lifting jack will prove to be beneficial in lifting and lowering of heavy loads. REFERENCES [1] M.M. Noor, K. Kadirgama and M.M. Rahman, Analysis Of Auto Car Jack, National Conference in Mechanical Engineering Research and Postgraduate Students, FKM Conference Hall, UMP, Kuantan, Pahang, Malaysia, 26-27 May 2010, 198-203. [2] Mohd Abuzaid, Mohd Hasnain, Shabaj Alam, Sohail Khan and Surendra Agarwal, Inbuilt Hydraulic jack in Automobile vehicles, International Journal of Innovations in Engineering and Technology, 2(2),2013,76-84. [3] Tarachand G. Lokhande, Ashwin S. Chatpalliwar and Amar A. Bhoyar, Optimizing Efficiency of Square Threaded Mechanical Screw Jack by Varying Helix Angle, International Journal of Modern Engineering Research,.2(1), 2012, 504-508. [4] P.S. Rana, P.H. Belge, N.A. Nagrare, C.A. Padwad, P.R. Daga, K.B. Deshbhratar and N.K. Mandavgade, European Journal of Applied Engineering and Scientific Research, 1 (4), 2012,167-172. [5] Prashant Kumar Srivastav, Vipin Kumar Pandey, Shailesh Kumar Maurya, Ajit Tiwari, Jawed Rafiq and S.K. Dwivedi, Highly Efficient Motorized Screw Jack, International Journal of Computational Engineering Research, 3(5), 2013, 35-41. [6] A. S. Akinwonmi and A. Mohammed, Modification of the Existing Design of a Car Jack, Journal of Emerging Trends in Engineering and Applied Sciences, 3 (4), 2012, 581-588. [7] J.J. Ferreira, M.G. Boocock and M.I. Gray, Review of the risks associated with pushing and pulling heavy loads (Health and Safety Laboratory Broad Lane Sheffield S3 7HQ, 2004).