Web Analytics Frieda Lee Slideshare

1,149 views

Published on

How set campaign key performance indicators using web analytics

Published in: Business, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,149
On SlideShare
0
From Embeds
0
Number of Embeds
94
Actions
Shares
0
Downloads
29
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Web Analytics Frieda Lee Slideshare

  1. 1. Web  Analy*cs   Wednesdays   Topic:  Se4ng  Campaign  KPIS   using  Web  Analy*cs   3rd  June  2010  
  2. 2. Content   1.  Short  Introduc*on  to  Starnet             10min   2.  Se4ng  KPIS  Using  Web  Analy*cs           60min   –  Standard  Web  Metrics   –  ATL  &  BTL  &  Online  Web  Analy*cs   –  Tes*ng  Matrix  for  Analy*cs   –  AICP  Con*nuum  Analy*cs   3.  Ques*ons  &  Discussion                 10min  
  3. 3. Starnet  Introduc-on  
  4. 4. Cross-­‐Media  Tracking  and  Op*miza*on   Starnet provides tracking and optimization services and infrastructure that cuts across strategy, campaign and media Starnet  Measurement  And  Op0miza0on   Objec*ves,  KPI,  Tracking,  Repor*ng  and  Op*miza*on  
  5. 5. Starnet  Services:   Crea*ve  +  Media  +Strategy   Agency   Func*ons   Starnet  Services  
  6. 6. Prac*ced  at  Partnership   Starnet  rou*nely  work  with  a  wide  range  of   partners  to  op*mize  overall  client  value  
  7. 7. Senior  Team   • 16  years  data,   • 20  years  4A   analy*cs,  media,   Adver*sing   content  &  digital   • 10+  years  interac*ve   experience.     and  direct  for  major   • 4  years  digital  agency   Interna*onal  and   senior  leadership  in   Chinese  clients   China  (Measurability,   analy*cs,   Calvin   effec*veness)   Jung   Lau,   Goh,  GM   Crea*ve   Frieda   Hugh   Lee,   Seaton,   Media   Accounts   • 7  years  search  and   • 15  years  Acquisi*on,   analy*cs  experience,  3   Branding  &   years  in  china   communica*ons  (inc.   • Most  recently  global   Sony,  Pepsi,  AOL)   head  of  search  for   Blue,  (WPP)  
  8. 8. Op*miza*on  Approach   Internalize   Op*mize   • Document,   ponder,  infer   • Cull  non-­‐ causality,  set   Launch  and   performers   benchmarks   Measure   • Scale  up   Performers   • Start  spend,  and   Aim   con*nually   • Decide  based  on   porholio  of   • Quan*fy   measure  Brand   media   Volumes  of   Interac*ons  and   Intended   and  Cost  per  BI   Iterate  based     Consult   Brand-­‐ by  porholio   element.   on  Insights   Interac*ons,   • What  post-­‐click   and  Cost  per   BRAND   Interac*on     INTERACTIONS   give  you  value?   What  is  the   rela*ve  value   of  each  ac*on  
  9. 9. Porholio  Tracking  &  Op*miza*on   Methods of Optimization Media  Selec*on   Media Services Financial  Nego*a*on   - Strategy, Plan, Buy, Report Single Dashboard Throile  Spend   Cookie  +  Demographics   Tools & Technology Web  Analy*cs   - Media Tracking, Web Tracking, Database Tracking Cookie  Segmenta*on   Multi-Channel/Vendor Optimization Test  Hypothesis   Measure,  Test,  Learn   - Analysis, Execution, Portfolio Management Effec*veness  +  Efficiency  
  10. 10. Go Beyond the Click CTR,  Clicks,   Sales,  CPA,  ROI  by  Source   Impressions   Visits,  Conversion  Rate,  Drop-­‐off  rate   CPC   Display Banners SEM Media response? External Landing Page Other Inside Pages Ecommerce / TQ EDM Page Internal EDM Media  Metrics   Tracks  media  metrics,  bridges  metric   Ecommerce  Store  Tool   Google  Analy-cs    Dependent  on  Client’s  tool  of   for  SEM  &  Display,  source  level    Tracks  Page  Views,  Timespent,  EBR,,   conversion  counts   choice.  Starnet  will  integrate  this   Source  Level  Conversions   into  the  acquisi-on  campaign   (Impressions,  Clicks,  CPC,  CTR,  A/B   tes8ng)  
  11. 11. Deep  Brand  Interac*on  Tracking   Flash heavy sites require use of tools to track web interactions beyond the click to determine. Determine how well each ad format / ad channel performs, and optimize based on AICP Score Insightful for multiple product lines AWARENESS INTEREST CONSIDERATION ACTION Nos. of people Nos. of people Nos. of people Nos. of people that fill who search for who click to view that decide to in a registration form, keywords, or see landing page view next page, click on a contact ads or stay on a me button page Metric Metric Metric Metric Impressions Clicks Pageviews by <Key pages need to traffic source, be pre-determined> timespent on page
  12. 12. Tools   Advanced Web Ranking Google Tools SEM SEO Baidu Tools Analytics Media Tracking
  13. 13. SeOng  KPIS  using  Analy-cs   •  Standard  Performance  Metrics   •  ATL  &  BTL  &  Online  Web  Analy*cs   •  AICP  Con*nuum  Analy*cs   •  Tes*ng  Matrix  for  Analy*cs  
  14. 14. Standard  Performance  Metrics   •  Overall  Metrics   1.  Total  #  of  visitors     2.  Total  #  of  registered  users   3.  Signup  Ra*o  -­‐  is  defined  as  total  number  of  visitors  divided  by  total  number   of  registered  user  in  a  par*cular  month.   •  Site  Performance     1.  #  of  Visits/  week/  month   2.  #  of  page  views/  week/  month   3.  #  of  unique  visitors   4.  Pages/  visit   5.  Ave.  of  *me  spent  on  site   6.  Specific  Page  performances   –  Product  Page  View   –  Distributor  Page  View   –  Flash  sec*on  Page  View   –  Email  Signup,  Ecommerce  Store,  PDF  Downloads   –  Tes*monials    
  15. 15. Standard  Performance  Metrics   •  Media  Performance  (via  Analy*cs  /  Adserver)   1.  Clickthrough  Rate  (CTR)  Banner     2.  Clickthrough  Rate  (CTR)  Adwords     3.  Cost  Per  Thousand  (CPM)   4.  Cost  per  Click  (CPC)   5.  Cost  per  Lead  (CPL)   6.  Cost  per  Ac*on  /  Acquisi*on  (CPA)   •  Customer  Data  (via  Data  Collec*on,  Database)   4.  Completeness  Index     1.  Member  Acquisi*on  Update   –  Email   –  Total  Member:  Running  Total   –  Phone   –  New  Member  vs  Period  Ago   –  Birthday   2.  Gender-­‐Age  Profile/  Segmenta*on   –  Post  Code   –  By  Gender   –  Country   –  By  Age   –  By  Gender,  By  Age       3.  Country-­‐Post  Code  Profile/  Segmenta*on   –  By  Country   –  By  Post  Code   –  By  Country,  By  Post  Code  
  16. 16. Adver*sing  Metrics  
  17. 17. Retail  KPIS  
  18. 18. ATL,  BTL,  ONLINE:  WEB  ANALYTICS  
  19. 19. Olay  Thailand  IMC   Online, Offline, Analytics, Media Tracking
  20. 20. Overall  Performance  Metrics   Olay Scorecard (Helicopter-view of Program Performance) Website Media Customer Performance Performance Data Insights Action Plan
  21. 21. Olay  Thailand:  Summary   CAMPAIGN OBJECTIVE 1.  Drive awareness, interest and interaction on Skinproof.com.th via paid search and online banner buys 2.  Drive registrations to: Phase 1 Trial, Phase 2: SEM Only, Phase 3: Ambassador Signups 3.  Determine benchmarks in TH digital media landscape 4.  Recommend and execute optimization on portfolio of media buys and creative executions
  22. 22. Integrated  Media  –  Flight  &  Sites   * Weightage in Spend was used as GRPS data is not available in media plan TVC TVC TVC TVC TVC Outdoor Outdoor Instore Instore Total Visits Direct Traffic % New Visits Visits Phase 1 Media Phase 2 Media Phase 3 Media (14 Aug – 15 Oct) (15 Oct – 7Nov) (8Nov – 31Dec)
  23. 23. Online  Media  –  Flights  &  Sites   Teenee % New Visits Visits Mthai Pantip Banner buys to drive traffic (good volume and efficient CPCs due to financial negotiations) Phase 1 Media Phase 2 Media Phase 3 Media (14 Aug – 15 Oct) (15 Oct – 7Nov) (8Nov – 31Dec) Banners Banners Constant level SEM SEM EDM Blast for SEM efficient SEM Ambassadors, hence buyin web visits increase but these are not NEW visitors
  24. 24. Tes-ng  Matrix  
  25. 25. Tes*ng  Matrix   •  Test  Message     –  (a)  Be  one  of  the  lucky  20  to  receive  free  samples!   –  (b)  Register  now!       •  Strategy:  Op*mize  based  on  CTR  results  through  change  in  offer  message   •  Implement  2-­‐cycle  tes*ng,  one  element  at  a  *me,  over  a  two-­‐week  period.   B1-1 B1-0 B1-2 (Control) B2-2 B2-0 B2-1 (Control) Click through Click through Click through Rate (CTR) Rate (CTR) Rate (CTR) Conversion Conversion Conversion Rate Rate Rate 2-week period on launch
  26. 26. Tes*ng  Matrix   •  Type: Adwords •  Elements: Title and Descriptions 1 & 2 (T) Title (D1) Description 1 (D2) Description 2
  27. 27. Tes*ng  Matrix   •  Strategy:  Measure  CTR  of  eight  (8)  rota*ng  Ad  Copy  variants,   where  URL  is  constant.   •  Determine  the  funnel  ac*vity  from  CTR  to  Conversion  and   u*lize  op*mal  ad  copy  aqer  a  2-­‐week  period.   T (B) D1 (B) D2 (B) T (B) : D1 (B): D2 (B) T (A) T (A): D1 (B): D2 (B) D1 (A) T (B): D1 (A): D2 (B) D2 (A) T (B): D1 (B): D2 (A) T (A) T (B) T (A) T (A) D1 (A) D1 (A) D1 (A) D1 (B) D2 (A) D2 (A) D2 (B) D2 (A)
  28. 28. AICP  Con-nuum  Analy-cs  
  29. 29. The  Traffic  Journey   Awareness   Interest   Purchase   • Opening  page     • Join  PRC  Exchange     •  here  to  buy   W • Select  your  Product     • Hear  from  Bartenders     •  hat  to  buy   W • Select  your  Flavour     • Ask  a  Ques-on     •  end  me  mailer   S • The  PRC  Family     • Training  &  Events     • Product  porWolio       Awareness   Considera-on   Interest   Preference   Purchase   Preference   Considera-on   • Download  Asset     • Look  for  new  cocktail  mixes     •  ownload  Video  /  etc   D • Flavour  of  the  Month       • Tips  &  tricks     • Demos  &  Flare  Videos     • Customer  Stories    
  30. 30. The  Traffic  Journey   Visits   Visits   Visits   Unique  Visitor   Unique  Visitor   Unique  Visitor   Pages/Unique  Visitor   Pages/Unique  Visitor   Pages/Unique  Visitor   #  of  Ques-ons  Asked   #  of  where  to  buy   Length  of  Time   #  of  Joins   #  of  what  to  buy   100%-­‐EBR%   Degree  of  Interest  =  (#Qs  +   #  of  mailers   #Joins)  /  UV   Degree  of  Purchase  Intent     =  (#Purchases  +  #Contact  Us)/  UV   Awareness   Considera-on   Interest   Preference   Purchase   Visits   Visits   Unique  Visitor   Unique  Visitor   Pages/Unique  Visitor   Pages/Unique  Visitor   #  of  Demo  Loads   #  of  Downloads   #  of  Tutorial  Loads   Degree  of  Preference  =  #DLs/  UV  
  31. 31. Ac*onability   •  “Hero”  product  from  marke*ng  standpoint,  may  not   necessarily  be  the  same  based  on  web  data   •  Evolving web content based on behavioral metrics Why choose ; “why_bpc” Success stories : “pdf” Product overview : “pdt” HP displays : “display
  32. 32. Ending  Off….   •  Prevent  GIGO   •  Go  granular   •  Look  for  interes*ng  data  points  (Source,  Geo,  Time,  Referrals)   •  Keep  a  performance  scorecard  of  site  across  *me   •  Discover  and  share  
  33. 33. Thank  you  for  aeending….   …….more  to  come!  

×