10 WS 2018/4/8 13:40-15:40
W
b e
1
Disclaimer
2
Yij
θAlgae σjMeans SDθFish
Sensitivity differences among
taxonomic groups Normal distributions
Log(NOEC)
Parameters were estimated
by MCMC simulations
θInvertebrate
Hayashi & Kashiwagi (2009)
Hayashi & Kashiwagi (2010)
Monte Carlo Analysis
EPAF = F
µECD - µSSD
sECD
2
+ sSSD
2
æ
è
ç
ç
ö
ø
÷
÷
µECD µSSDsECD sSSD
Calculation of predictive
distribution of EPAF
Posterior distributions of ECD
parameters
Posterior distributions of SSD
parameters
Results: Quantitative Risk Comparison
Median and 90% range of EPAF
log10(EPAF)
Large Risk→←Small Risk
Chemicals
Ammonia
Copper
Nickel
Zinc
Hayashi and Kashiwagi (2011)
3
Pearl
2015
2015 8 6
(2) 10:30-11:30
4
STS
@taiwa_kankyo
twitter
5
ML WS
STS/
"geek"
6
(1)
---
(2)
---
7
Ian Hacking: An introduction to probability and inductive logic
:
M :
:
8
9
" "
10
-3
H23
http://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/screening.pdf
11
IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change 12
Yij
θAlgae σjMeans SDθFish
Sensitivity differences among
taxonomic groups Normal distributions
Log(NOEC)
Parameters were estimated
by MCMC simulations
θInvertebrate
Hayashi & Kashiwagi (2009)
Hayashi & Kashiwagi (2010)
Monte Carlo Analysis
EPAF = F
µECD - µSSD
sECD
2
+ sSSD
2
æ
è
ç
ç
ö
ø
÷
÷
µECD µSSDsECD sSSD
Calculation of predictive
distribution of EPAF
Posterior distributions of ECD
parameters
Posterior distributions of SSD
parameters
Results: Quantitative Risk Comparison
Median and 90% range of EPAF
log10(EPAF)
Large Risk→←Small Risk
Chemicals
Ammonia
Copper
Nickel
Zinc
Hayashi and Kashiwagi (2011)
13
n d
i
g g
g r
what-if o
w
d
14
(1)
---
(2)
---
15
" "
16
10
10000
→ 10
→ 10
X 10
X → 100
17
95 " "
" "
18
" "
19
" "
20
"
→
21
" "
→
" "
" " 22
ex." "
S
T
23
(1)
---
(2)
---
24
2007 -
" " " "
25
: /
" " " "
26
/
: /
27
: /
28
: /
29
-3
H23
http://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/screening.pdf
30
" "
: /
31
me p
me u t
r
: me / u t
o d m t
s me u
e m
n me u t
me u t me
me n n n
me u t me t
cnei n cnei n o 32
" " " "
33
10
-5
34
8 b a T
n
e u H
S
S gr jc r a
n b v T
t a a b
S e u rirg
b y S
T
ork - -
p l
ork S
bs
35
" " " "
36
37
38
" "
" "
39
ex. d
ex. g g
i
ex. n
" "
o
" "
ex. 0.1/1/5/10 1
w
r
40
" " " "
41
ex." "
42
"late lessons"
43
"late lessons"
"late lessons"
"late lessons"
0
0
o o
1 l % %
" e
n a
. t s . t
. 44
"late lessons"
" s u"
s u
u s
primal cause
ac l
k
n
i
45
" "
(1) "
" " "
(2)
46
" "
(5) "late lessons" 0
0
(4) 1 l
" " s
1 o
(3) . n
t
a % %
"
e
47
48
49
" "
(2) " "" "
C.f.,
50

応用哲学会2018『リスク分析と予防原則』