Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

応用哲学会2018『リスク分析と予防原則』

4,448 views

Published on

予防原則についてリスク分析の実務者からの見解として発表しました。応用哲学会での発表であり、科学哲学やSTS的論点との繋がりを強く意識した内容となっています。

Published in: Environment
  • Be the first to comment

応用哲学会2018『リスク分析と予防原則』

  1. 1. 10 WS 2018/4/8 13:40-15:40 W b e 1
  2. 2. Disclaimer 2
  3. 3. Yij θAlgae σjMeans SDθFish Sensitivity differences among taxonomic groups Normal distributions Log(NOEC) Parameters were estimated by MCMC simulations θInvertebrate Hayashi & Kashiwagi (2009) Hayashi & Kashiwagi (2010) Monte Carlo Analysis EPAF = F µECD - µSSD sECD 2 + sSSD 2 æ è ç ç ö ø ÷ ÷ µECD µSSDsECD sSSD Calculation of predictive distribution of EPAF Posterior distributions of ECD parameters Posterior distributions of SSD parameters Results: Quantitative Risk Comparison Median and 90% range of EPAF log10(EPAF) Large Risk→←Small Risk Chemicals Ammonia Copper Nickel Zinc Hayashi and Kashiwagi (2011) 3
  4. 4. Pearl 2015 2015 8 6 (2) 10:30-11:30 4
  5. 5. STS @taiwa_kankyo twitter 5
  6. 6. ML WS STS/ "geek" 6
  7. 7. (1) --- (2) --- 7
  8. 8. Ian Hacking: An introduction to probability and inductive logic : M : : 8
  9. 9. 9
  10. 10. " " 10
  11. 11. -3 H23 http://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/screening.pdf 11
  12. 12. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 12
  13. 13. Yij θAlgae σjMeans SDθFish Sensitivity differences among taxonomic groups Normal distributions Log(NOEC) Parameters were estimated by MCMC simulations θInvertebrate Hayashi & Kashiwagi (2009) Hayashi & Kashiwagi (2010) Monte Carlo Analysis EPAF = F µECD - µSSD sECD 2 + sSSD 2 æ è ç ç ö ø ÷ ÷ µECD µSSDsECD sSSD Calculation of predictive distribution of EPAF Posterior distributions of ECD parameters Posterior distributions of SSD parameters Results: Quantitative Risk Comparison Median and 90% range of EPAF log10(EPAF) Large Risk→←Small Risk Chemicals Ammonia Copper Nickel Zinc Hayashi and Kashiwagi (2011) 13
  14. 14. n d i g g g r what-if o w d 14
  15. 15. (1) --- (2) --- 15
  16. 16. " " 16
  17. 17. 10 10000 → 10 → 10 X 10 X → 100 17
  18. 18. 95 " " " " 18
  19. 19. " " 19
  20. 20. " " 20
  21. 21. " → 21
  22. 22. " " → " " " " 22
  23. 23. ex." " S T 23
  24. 24. (1) --- (2) --- 24
  25. 25. 2007 - " " " " 25
  26. 26. : / " " " " 26
  27. 27. / : / 27
  28. 28. : / 28
  29. 29. : / 29
  30. 30. -3 H23 http://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/screening.pdf 30
  31. 31. " " : / 31
  32. 32. me p me u t r : me / u t o d m t s me u e m n me u t me u t me me n n n me u t me t cnei n cnei n o 32
  33. 33. " " " " 33
  34. 34. 10 -5 34
  35. 35. 8 b a T n e u H S S gr jc r a n b v T t a a b S e u rirg b y S T ork - - p l ork S bs 35
  36. 36. " " " " 36
  37. 37. 37
  38. 38. 38
  39. 39. " " " " 39
  40. 40. ex. d ex. g g i ex. n " " o " " ex. 0.1/1/5/10 1 w r 40
  41. 41. " " " " 41
  42. 42. ex." " 42
  43. 43. "late lessons" 43
  44. 44. "late lessons" "late lessons" "late lessons" 0 0 o o 1 l % % " e n a . t s . t . 44
  45. 45. "late lessons" " s u" s u u s primal cause ac l k n i 45
  46. 46. " " (1) " " " " (2) 46
  47. 47. " " (5) "late lessons" 0 0 (4) 1 l " " s 1 o (3) . n t a % % " e 47
  48. 48. 48
  49. 49. 49
  50. 50. " " (2) " "" " C.f., 50

×