SlideShare a Scribd company logo
1 of 16
Domain Adaptation between Heterogeneous Sensor Signals for
Machinery Fault Classification
Team SLRA
Incheon National University
์ • ์šฉ ํƒœ, ์‹  ์Šน ํ˜ธ, ํ‘œ ์‹  ํ˜•
2022.06.09
Team SLRA
Introduction
(1) ๊ณ„์ธก(Sensing)
PHM (Prognostics and Health Management)
(2) ์„ค๋น„ ๊ฑด๊ฐ•์ง€ํ‘œ ์ถ”์ถœ (Health indicator extraction)
(3) ์ง„๋‹จ(Diagnostics)
4) ์˜ˆ์ธก(Prognostics)
โ PHM์˜ 5๊ฐ€์ง€ ์ค‘์š” Task
โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ๋ฆฌ๋Ÿ‰์„ ๊ณ„์ธกํ•˜๋Š” ๋‹จ๊ณ„
โ€ข ์„ค๋น„๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง€๋Š” ๊ณ„์ธก ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ์ •๋ณด๋ฅผ ๋ฝ‘์•„
๋‚ด๊ณ  ์ด๋ฅผ ํ‘œํ˜„
โ€ข ๊ณ„์ธก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ „๋ฌธ๊ฐ€ ์ง€์‹๊ณผ ์ธ๊ณต ์ง€๋Šฅ์  ๋ถ„์„์„ ํ†ตํ•ด
์„ค๋น„ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ์ง„๋‹จ
โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ ๋˜๋Š” ์ž”์—ฌ ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ์ˆ 
5) ๊ด€๋ฆฌ(Management)
โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ ๊ด€๋ จ ์ง„๋‹จ ๋ฐ ์˜ˆ์ธก ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜
์ •๋น„ ์‹œ์ , ์ •๋น„๋Œ€์ƒ, ์ •๋น„ ๊ธฐ๊ฐ„์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ธฐ์ˆ 
๏ถ Fault Diagnostics(๊ณ ์žฅ ์ง„๋‹จ)
โ€ข ๊ณ ์žฅ ๋ถ„๋ฅ˜๋Š” ์„ค๋น„์‹œ์Šคํ…œ์ด ์ด์ƒ์œผ๋กœ ํŒ์ •๋˜๋ฉด ์–ด๋–ค ์ด์ƒ์ธ์ง€๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ณผ์ •์ž„
โ€ข ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ์กฐ๊ธฐ์— ํƒ์ง€ํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•จ์œผ๋กœ์จ ์‚ฌ์ „ ์กฐ์น˜๋ฅผ ํ†ตํ•ด ์‹œ์Šคํ…œ ์šด์˜์˜ ํšจ์œจ์„ฑ์„ ์ตœ๋Œ€ํ™”
ํ•  ์ˆ˜ ์žˆ์Œ
Fault
Detection
Fault
Diagnosis
Fault
Isolation
Fault
Classification
๏ƒ˜ ๊ณ ์žฅ ์ง„๋‹จ ์ด๋ž€ ๋ถ€ํ’ˆ ํ˜น์€ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ์ง„๋‹จํ•˜
๋Š” ๋ฐฉ๋ฒ•
โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ๊ฐ์ง€ ๋ฐ ๊ฒ€์ถœ
โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ๋ถ„๋ฅ˜
โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์—์„œ ๊ฒฐํ•จ์ด ๋ฐœ์ƒํ•œ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ๊ตฌ๋ถ„ ๋ฐ ๋ถ„๋ฆฌ
๏ถ Fault Classification(๊ณ ์žฅ ๋ถ„๋ฅ˜)
2
Team SLRA
Practical Issues on Fault Classification
โ€ข ์„ค๋น„์˜ ์ด์ƒ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋‹ค์ˆ˜์˜ ์„ผ์„œ๋ฅผ ์„ค์น˜ํ•˜์—ฌ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•ด์•ผ ํ•จ
โ€ข ํ•˜์ง€๋งŒ, ์ƒˆ๋กญ๊ฒŒ ์„ค์น˜๋œ ์„ผ์„œ๋ฅผ ์ดˆ๊ธฐ์— ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์Œ์˜ ์ด์Šˆ์‚ฌํ•ญ์„ ํ•ด๊ฒฐํ•ด์•ผ ํ•จ
โ‘  ์‹ ์„ค ์„ผ์„œ๋Š” ๊ฑฐ์˜ ๊ฐ€๋™์ด ๋˜์ง€ ์•Š์•˜์œผ๋ฏ€๋กœ, ์ด์ƒ ์ง„๋‹จ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ํ™•๋ณด๋˜์–ด ์žˆ์ง€ ์•Š์Œ
๏‚ง ์‹ ์„ค ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ๋ ˆ์ด๋ธ”์ด ์ถฉ๋ถ„ํžˆ ๋ˆ„์ ๋  ๋•Œ๊นŒ์ง€ ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์—†์Œ
โ‘ก ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ์„ผ์„œ์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ์™€ ๋‹ค์†Œ ์ƒ์ดํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ
์ด๊ธฐ์ข…์˜ ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•ด์„œ๋„ ์ถฉ๋ถ„ํžˆ ๋†’์€ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”
ํ•จ
Existing
Sensor
New
Sensor
Unlabeled Data
3
Team SLRA
Brief review on domain adaptation
โ€ข ์ƒˆ๋กœ์šด ์ด๊ธฐ์ข…์˜ ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์—†์Œ
๏‚ง ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•˜์—ฌ, ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์ด์ „์—๋Š” ์ƒˆ๋กœ์šด ์„ผ์„œ์— ๋Œ€ํ•œ ๊ณ ์žฅ ๋ถ„๋ฅ˜ ๋ถˆ๊ฐ€ํ•จ
โ€ข ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ ํ™•๋ณด ๋ฐ ๋ ˆ์ด๋ธ”๋ง ๊ณผ์ •์—๋Š” ๋งŽ์€ ๋น„์šฉ์ด ํ•„์š”ํ•จ
๏‚ง ๋ฐ์ดํ„ฐ ํ™•๋ณด ๋ฐ ๋ ˆ์ด๋ธ”๋ง ๊ณผ์ • ์—†์ด ๊ธฐ์กด ์„ผ์„œ์˜ ์ •๋ณด๋ฅผ ์ ์‘ ์‹œ์ผœ ์ƒˆ๋กœ์šด ์„ผ์„œ์— ๋Œ€ํ•ด ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ ์ž ํ•จ
Train
data
Test
data
Source
domain
Target
domain
Domain Adaptation
Traditional ML Latent-Space Transformation
Find a common space where source and target are close
โ€ข ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” Test data์™€ Train data์˜
๋ถ„ํฌ๊ฐ€ ๊ฐ™์œผ๋ฏ€๋กœ, Train data๋กœ ํ•™์Šต๋œ
๋ชจ๋ธ์„ ์˜ˆ์ธก์— ์‚ฌ์šฉํ•จ
โ€ข ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” Target domain๊ณผ ํ•™์Šต์—
์‚ฌ์šฉํ•˜๋Š” Source domain์˜ data์˜ ๋ถ„ํฌ๊ฐ€
๋‹ค๋ฅด๋ฏ€๋กœ, ์ ์‘์„ ํ†ตํ•ด ์˜ˆ์ธก์— ์‚ฌ์šฉํ•จ
4
Team SLRA
โ€ข Classical Test Error
๐œ€๐‘ก๐‘’๐‘ ๐‘ก โ‰ค ๐œ€๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› +
๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ๐‘–๐‘ก๐‘ฆ
๐‘›
โ€ข Adaptation Target Error
๏ƒ˜ ์ตœ๋Œ€ํ•œ ์ ์€ parameter๋กœ training error๊ฐ€ ์ตœ์†Œ์ธ Model ์ฐพ๊ธฐ
๐‘…๐ท๐‘‡
ฮท โ‰ค ๐‘…๐‘† ฮท + ๐‘‘๐ป ๐‘†, ๐‘‡ +
4
๐‘›
๐‘‘ log
2๐‘’๐‘›
๐‘‘
+ log
4
๐›ฟ
+ 4
1
๐‘›
๐‘‘ log
2๐‘›
๐‘‘
+ log
4
๐›ฟ
+ ๐›ฝ
๏ถ Ben-David et al., 2006
Complexity(VC dimension)
Regularization term
Minimize ๐‘…๐‘† ฮท , ๐‘‘๐ป ๐‘†, ๐‘‡
Minimize ๐‘…๐‘† ฮท
Maximize ๐œ€
๐‘‘๐ป = 2 1 โˆ’ 2๐œ€
5
Brief review on domain adaptation
Objective
Team SLRA
Domain adaptation models
๏‚ง DANN(Domain Adversarial Neural Networks) ๏‚ง ADDA(Adversarial Discriminative Domain Adaptation)
โ€ข Domain adaptation์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ๋‹ค์Œ์˜ ๋‘๊ฐ€์ง€ ๋ชจ๋ธ์„ ํ™œ์šฉํ•จ
๏ถ DANN ๋ชจ๋ธ์˜ ํŠน์ง•
โ€ข Source domain๊ณผ Target domain์— ๋Œ€ํ•˜์—ฌ ๋™์ผํ•œ Feature extractor์„ ์‚ฌ์šฉํ•จ
โ€ข Feature extractor ๋ชจ๋ธ์€ Source data์™€ Target data์— ์ƒ๊ด€ ์—†์ด robustํ•œ
Feature์„ ์ถ”์ถœํ•˜๋„๋ก ํ•™์Šต๋จ
๏ถ ADDA ๋ชจ๋ธ์˜ ํŠน์ง•
โ€ข Source Domain๊ณผ Target Domain์— ๋Œ€ํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ Encoder์„ ์‚ฌ์šฉํ•จ
โ€ข ๊ฐ๊ฐ์˜ Encoder์€ Source data์™€ Target data์˜ ํŠน์ง•์„ ์ž˜ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ
Feature์„ ์ถ”์ถœํ•˜๋„๋ก ํ•™์Šต๋จ
6
Team SLRA
Experimental design
Existing
Sensor
New
Sensor
๏ถ Wavelet Scalogram ๏ถ Domain adaptation model
Target Domain Data์˜
๊ณ ์žฅ ๋ถ„๋ฅ˜ ์ง„ํ–‰
๏ถ Fault Classification
Vibration
(Source)
Data
Acoustic
(Target)
Data
๏ถData ์‚ฌ์šฉ
โ€ข Existing Sensor ์˜ data ๋Š” Vibration
Data๋กœ ํ•˜๊ณ , Source Domain Data๋กœ
์‚ฌ์šฉ
โ€ข New Sensor์˜ data๋Š” Acoustic Data๋กœ
ํ•˜๊ณ , Target Domain Data๋กœ ์‚ฌ์šฉ
โ€ข Vibration Domain์˜ Data๋ฅผ Acoustic
Domain์˜ Data๋กœ Domain adaptatio์„
์ง„ํ–‰ํ•จ
7
<Bearing Simulator>
์‹คํ—˜ ์žฅ๋น„
โ–ช๏ธŽ ์ •์ƒ
โ–ช๏ธŽ ๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ
โ–ช๏ธŽ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ
โ–ช๏ธŽ ๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ
4 Class
.
0
Team SLRA
Experimental design
Existing
Sensor
New
Sensor
๏ถ Wavelet Scalogram ๏ถ Domain adaptation model
Target Domain Data์˜
๊ณ ์žฅ ๋ถ„๋ฅ˜ ์ง„ํ–‰
๏ถ Fault Classification
์ฃผํŒŒ์ˆ˜ ๋ถ„ํ•ด๋Šฅ ์‹œ๊ฐ„ ๋ถ„ํ•ด๋Šฅ
WT
๏ถ์‹ ํ˜ธ์ฒ˜๋ฆฌ(Wavelet Scalogram)
โ€ข ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜์˜ ๊ด€์ ์„ ๋ชจ๋‘ ๊ณ ๋ ค
ํ•  ์ˆ˜ ์žˆ๋„๋ก ์‹ ํ˜ธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•
์ž„
โ€ข Scalogram ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„ ๋ฐ
์ฃผํŒŒ์ˆ˜์˜ ๊ฐ•๋„ ์ •๋ณด๋ฅผ ๋™์‹œ์— ๋ฐ˜์˜
ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•จ
โ€ข STFT์˜ ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜์˜ trade-off
๋ฌธ์ œ๋ฅผ ์™„ํ™”
8
F
T
์‹œ๊ฐ„
๊ด€์ 
์ฃผํŒŒ์ˆ˜
๊ด€์ 
Team SLRA
Experimental results
โ€ข Source data ๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•œ ๋ชจ๋ธ์„ Target data ์—
์ ์šฉ์‹œ์ผฐ์„ ๋•Œ๋Š” ํ‰๊ท  28.5%์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ–์œผ๋ฏ€๋กœ,
๋žœ๋ค์œผ๋กœ ์„ ํƒํ•˜๋Š” ์„ฑ๋Šฅ๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š์Œ
โ€ข ADDA๋ชจ๋ธ์— ๊ฒฝ์šฐ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š”
75.50%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด์™ธ์˜ Test data์— ๋Œ€ํ•ด์„œ
ํ‰๊ท  50.67%์˜ ์„ฑ๋Šฅ์„ ๋ณด์ž„
โ€ข DANN๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š”
73.75%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด์™ธ์˜ Test data์— ๋Œ€ํ•ด์„œ
๋„ ํ‰๊ท  69.33%์˜ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„
๏ถ Vibration Scalogram ๏ถ Acoustic Scalogram
โ€ข ADDA๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๊ฐ๊ฐ์˜ Domain์— ๋Œ€ํ•œ Encoder์„
๊ฐœ๋ณ„์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋”์šฑ ์„ฑ๋Šฅ์ด ์ข‹์„ ๊ฒƒ์œผ๋กœ
์˜ˆ์ƒํ•˜์˜€์ง€๋งŒ, DANN์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์ด ๋”์šฑ ์ข‹์Œ
โ€ข ์ด์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ๋ถ„์„์ด ํ•„์š”ํ•จ
โ€ข ๋‹ค๋งŒ, ์ „ํ˜€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์ƒํ™ฉ์—์„œ๋„ ์ค€์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด
์ž„์— ์˜๋ฏธ๊ฐ€ ์žˆ์Œ
Source Domain Target Domain
Source Vibration
Target Acoustic
0.26 0.32 0.28 0.28
0.755 0.51 0.51 0.5
0.7375 0.74 0.64 0.7
Source only
ADDA
DANN
train test1 test2 test3
์ •์ƒ
๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ
๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ ์ •์ƒ
๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ
๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ
9
Team SLRA
Conclusions
Introduction
Highlights
Results
โ€ข ์„ค๋น„์˜ ์ด์ƒ ์ง„๋‹จ ์ •ํ™•๋„์˜ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ด์ข…์˜ ์„ผ์„œ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์‚ฌ์šฉํ•  ๋•Œ, ํ•ด๋‹น ์„ผ์„œ์— ๋Œ€ํ•ด์„œ๋Š” ์ด์ƒ์ง„๋‹จ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์—†์Œ
โ€ข ๋˜ํ•œ ์‹ ์„ค๋œ ์ด์ข…์˜ ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ์„ผ์„œ์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ์™€๋Š” ๋‹ค์†Œ ์ƒ์ดํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ
โ€ข ์ด์— ๋”ฐ๋ผ ์ด๊ธฐ์ข…์˜ ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํžˆ ๋†’์€ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•จ
โ€ข ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด Scalogram์„ ๋งŒ๋“ค์–ด ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ๊ณ ๋ คํ•˜๊ณ ์ž ํ•จ
โ€ข Domain adaptation ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์‹ ์„ค ์„ผ์„œ์˜ ์‹ ํ˜ธ๋ฐ์ดํ„ฐ์—๋„ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ ์ž ํ•จ
โ€ข ๊ธฐ์กด์„ผ์„œ๋ฅผ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ ๋ชจ๋ธ์„ ํ†ตํ•ด ์‹ ์„ค ์„ผ์„œ์— ๋Œ€ํ•œ ๊ณ ์žฅ ๋ถ„๋ฅ˜๋ฅผ ์ง„ํ–‰ํ•˜๋ฉด, ๋žœ๋ค์œผ๋กœ ์„ ํƒํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์ž„
โ€ข ๋ฐ˜๋ฉด์— Domain adaptation ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜๋ฉด, ADDA์˜ ๊ฒฝ์šฐ ์•ฝ 50% DANN์˜ ๊ฒฝ์šฐ ์•ฝ 70%์˜ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„
โ€ข ๋ ˆ์ด๋ธ”์ด ์ „ํ˜€ ์—†๋Š” ์ƒํ™ฉ์—์„œ ์‹ ์„ค์„ผ์„œ์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜์˜จ ๊ฒƒ์€ ์˜๋ฏธ ์žˆ๋Š” ๊ฒฐ๊ณผ๋กœ ๋ณด์ž„
10
Team SLRA
Future works
โ€ข ์‹ ์„ค ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋˜๋Š” ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†์œผ๋ฏ€๋กœ, ๋น„์ง€๋„ ๋ฐฉ์‹์˜ Domain adaptation ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•จ
โ€ข ํ•˜์ง€๋งŒ, ์„ค๋น„์˜ ๊ฐ€๋™์„ ํ†ตํ•ด ์ผ๋ถ€์˜ ๋ ˆ์ด๋ธ”์ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•œ๋‹ค๋ฉด, ์ค€์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ Domain adaptation ๋ชจ๋ธ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅ
๏‚ง ์ถ”๊ฐ€์ ์œผ๋กœ ์ค€์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ Domain adaptation๋ชจ๋ธ์„ ์ ์šฉํ•  ๊ฒฝ์šฐ ํ˜„์žฌ์˜ ๋ชจ๋ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋จ
โ€ข ํ˜„์žฌ ์ด๊ธฐ์ข…์˜ ์„ผ์„œ์— ๋Œ€ํ•ด, Domain adaptation ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์Œ
โ€ข ์ด๊ธฐ์ข… ์„ผ์„œ ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ ์ƒํ™ฉ์—๋„ ์ ์šฉํ•˜์—ฌ, ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ํŒ๋‹จ
๏‚ง ์‚ฌ์ด์ฆˆ๊ฐ€ ๋‹ค๋ฅธ ๋‘ ๋ฒ ์–ด๋ง์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•  ๊ณ„ํš์— ์žˆ์Œ
๏‚ง ๋ฒ ์–ด๋ง ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์˜ ์ž‘๋™ํ™˜๊ฒฝ์ด ๋‹ค๋ฅธ ๊ฒฝ์šฐ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•  ๊ณ„ํš์— ์žˆ์Œ
Modeling
Scenario
11
Thank You
12
Team SLRA
โ€ข Source/Target domain distance
๏ƒ˜ H-divergence ๋ฅผ Domain ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋กœ ์‚ฌ์šฉ (divergence โ€“ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ)
๐‘‘๐ป ๐ท๐‘†
๐‘‹
, ๐ท๐‘‡
๐‘‹
= 2๐‘ ๐‘ข๐‘
๐œ‚โˆˆ๐ป
๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘†
๐‘‹
๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘‡
๐‘‹
[๐œ‚ ๐‘ฅ = 1] โ€ข H : hypothesis class
โ€ข ฮท : classifier
๐›ฟ(๐‘ƒ๐‘Ÿ, ๐‘ƒ
๐‘”) = ๐‘ ๐‘ข๐‘
๐ดโˆˆโˆ‘
๐‘ƒ๐‘Ÿ(๐ด) โˆ’ ๐‘ƒ
๐‘”(๐ด)
A
๐‘ƒ๐‘Ÿ(๐ด) ๐‘ƒ
๐‘”(๐ด)
๐‘ƒ
๐‘”
๐‘ƒ๐‘Ÿ
โ€ข Total Variation distance
๏ƒ˜ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์˜ ์ธก์ •๊ฐ’์ด ๋ฒŒ์–ด์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํฐ ๊ฐ’
1. H-divergence
Appendix - DANN Background
Team SLRA
โ€ข Source/Target domain distance
๏ƒ˜ H-divergence ๋ฅผ Domain ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋กœ ์‚ฌ์šฉ (divergence โ€“ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ)
โ€ข H : hypothesis class
โ€ข ฮท : classifier
1. H-divergence
๐‘‘๐ป ๐ท๐‘†
๐‘‹
, ๐ท๐‘‡
๐‘‹
= 2๐‘ ๐‘ข๐‘
๐œ‚โˆˆ๐ป
๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘†
๐‘‹
๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘‡
๐‘‹
[๐œ‚ ๐‘ฅ = 1]
โ€ข Source domain๊ณผ Target domain์„ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์ด ๋ชฉํ‘œ
๏ƒผ ฮท x ์ด Domain์— ์ƒ๊ด€ ์—†์ด label์„ 1์ด๋ผ๊ณ  ํ•  ํ™•๋ฅ ์ด 1์ด๋ผ๋ฉด ๊ฑฐ๋ฆฌ๋Š” 0
Appendix - DANN Background
Team SLRA
๐‘‘๐ป ๐‘†, ๐‘‡ = 2 1 โˆ’ ๐‘š๐‘–๐‘›
๐œ‚โˆˆ๐ป
1
๐‘›
โˆ‘๐‘–=1
๐‘›
๐ผ ๐œ‚ ๐‘ฅ๐‘– = 1 +
1
๐‘›โ€ฒ
โˆ‘๐‘–=๐‘›+1
๐‘
๐ผ [๐œ‚ ๐‘ฅ๐‘– = 0]
2. empirical H-divergence
๐‘‘๐ป ๐ท๐‘†
๐‘‹
, ๐ท๐‘‡
๐‘‹
= 2๐‘ ๐‘ข๐‘
๐œ‚โˆˆ๐ป
๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘†
๐‘‹
๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘‡
๐‘‹
[๐œ‚ ๐‘ฅ = 1]
1. H-divergence
๏ƒ˜ ํ†ต๊ณ„์ ์ธ ๊ฐ’์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” Sample์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ๊ฐ’
๐‘‘๐ป ๐ท๐‘†
๐‘‹
, ๐ท๐‘‡
๐‘‹
= 2๐‘ ๐‘ข๐‘
๐œ‚โˆˆ๐ป
๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘†
๐‘‹
๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ
๐‘ฅ~๐ท๐‘‡
๐‘‹
๐œ‚ ๐‘ฅ = 0 โˆ’ 1
Pr
x~DT
X
[ฮท x = 1] = Pr
x~DT
X
ฮท x = 0 โˆ’ 1
Appendix - DANN Background
Team SLRA
3. Proxy A-distance
๐’…๐‘จ = 2 ๐Ÿ โˆ’ ๐Ÿ๐œบ
๐‘‘๐ป ๐‘†, ๐‘‡ = 2 1 โˆ’ ๐‘š๐‘–๐‘›
๐œ‚โˆˆ๐ป
1
๐‘›
โˆ‘๐‘–=1
๐‘›
๐ผ ๐œ‚ ๐‘ฅ๐‘– = 1 +
1
๐‘›โ€ฒ
โˆ‘๐‘–=๐‘›+1
๐‘
๐ผ [๐œ‚ ๐‘ฅ๐‘– = 0]
2. empirical H-divergence
Classification error (๐œ€)
Appendix - DANN Background

More Related Content

Similar to SLRA

๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค
๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค
๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์ŠคLee Seungeun
ย 
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)youngmo
ย 
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance TuningJi-Woong Choi
ย 
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement LearningKiho Suh
ย 
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...
deep encoder, shallow decoder  reevaluating non-autoregressive machine transl...deep encoder, shallow decoder  reevaluating non-autoregressive machine transl...
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...taeseon ryu
ย 
PR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of SamplesPR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of SamplesSunghoon Joo
ย 
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks pko89403
ย 
Azure ml studio_fraud_detection
Azure ml studio_fraud_detectionAzure ml studio_fraud_detection
Azure ml studio_fraud_detectionTIMEGATE
ย 
Azure ml studio_fraud_detection
Azure ml studio_fraud_detectionAzure ml studio_fraud_detection
Azure ml studio_fraud_detectionSeung-Woo Kang
ย 
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
[Pgday.Seoul 2018]  Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„[Pgday.Seoul 2018]  Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„PgDay.Seoul
ย 
Chapter 11 Practical Methodology
Chapter 11 Practical MethodologyChapter 11 Practical Methodology
Chapter 11 Practical MethodologyKyeongUkJang
ย 
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ทแ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ทNAVER D2
ย 
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธ
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธHR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธ
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธSeong-Bok Lee
ย 
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘DACON AI ๋ฐ์ด์ฝ˜
ย 
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธกABRC_DATA
ย 
Apache Htrace overview (20160520)
Apache Htrace overview (20160520)Apache Htrace overview (20160520)
Apache Htrace overview (20160520)Steve Min
ย 
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…DACON AI ๋ฐ์ด์ฝ˜
ย 
SQL performance and UDF
SQL performance and UDFSQL performance and UDF
SQL performance and UDFJAEGEUN YU
ย 
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLDKim Junghoon
ย 
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...Cloud-Barista Community
ย 

Similar to SLRA (20)

๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค
๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค
๋ฐ์ดํ„ฐ ๋ถ„์„ ํ”„๋กœ์„ธ์Šค
ย 
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)
์ฐจ์„ธ๋Œ€์ปดํ“จํŒ…ํ•™ํšŒ๋ฐœํ‘œ ์ตœ์ข…์ž๋ฃŒ(๊ถŒ์˜๋ชจ)
ย 
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning
[์˜คํ”ˆ์†Œ์Šค์ปจ์„คํŒ…]Java Performance Tuning
ย 
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning
[ํ•œ๊ตญ์–ด] Neural Architecture Search with Reinforcement Learning
ย 
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...
deep encoder, shallow decoder  reevaluating non-autoregressive machine transl...deep encoder, shallow decoder  reevaluating non-autoregressive machine transl...
deep encoder, shallow decoder reevaluating non-autoregressive machine transl...
ย 
PR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of SamplesPR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of Samples
ย 
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks
DeepAR:Probabilistic Forecasting with Autogressive Recurrent Networks
ย 
Azure ml studio_fraud_detection
Azure ml studio_fraud_detectionAzure ml studio_fraud_detection
Azure ml studio_fraud_detection
ย 
Azure ml studio_fraud_detection
Azure ml studio_fraud_detectionAzure ml studio_fraud_detection
Azure ml studio_fraud_detection
ย 
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
[Pgday.Seoul 2018]  Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„[Pgday.Seoul 2018]  Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
[Pgday.Seoul 2018] Greenplum์˜ ๋…ธ๋“œ ๋ถ„์‚ฐ ์„ค๊ณ„
ย 
Chapter 11 Practical Methodology
Chapter 11 Practical MethodologyChapter 11 Practical Methodology
Chapter 11 Practical Methodology
ย 
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ทแ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
แ„‹แ…ตแ†ซแ„€แ…ฉแ†ผแ„Œแ…ตแ„‚แ…ณแ†ผแ„Žแ…ฎแ„Žแ…ฅแ†ซแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท airsแ„€แ…ขแ„‡แ…กแ†ฏแ„€แ…ต_แ„†แ…ฉแ„ƒแ…ฆแ†ฏแ„…แ…ตแ†ผแ„€แ…ชแ„‰แ…ตแ„‰แ…ณแ„แ…ฆแ†ท
ย 
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธ
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธHR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธ
HR Analytics - ํ‡ด์ง๊ฐ€๋Šฅ์„ฑ์˜ˆ์ธก๋ชจ๋ธ
ย 
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘
์œ„์„ฑ๊ด€์ธก ๋ฐ์ดํ„ฐ ํ™œ์šฉ ๊ฐ•์ˆ˜๋Ÿ‰ ์‚ฐ์ถœ AI ๊ฒฝ์ง„๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž‘
ย 
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก
๋น…๋ฐ์ดํ„ฐ ์œˆ์œˆ ์ปจํผ๋Ÿฐ์Šค-์ง€๋Šฅํ˜• ๋ณดํ—˜ ๋ถ€๋‹น์ฒญ๊ตฌํƒ์ง€์™€ ์˜ˆ์ธก
ย 
Apache Htrace overview (20160520)
Apache Htrace overview (20160520)Apache Htrace overview (20160520)
Apache Htrace overview (20160520)
ย 
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…
์ฒœ์ฒด ์œ ํ˜• ๋ถ„๋ฅ˜ ๋Œ€ํšŒ 1์œ„ ์ˆ˜์ƒ์ž ์ฝ”๋“œ ์„ค๋ช…
ย 
SQL performance and UDF
SQL performance and UDFSQL performance and UDF
SQL performance and UDF
ย 
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD
๋„คํŠธ์›Œํฌ ๊ฒฝ๋Ÿ‰ํ™” ์ด๋ชจ์ €๋ชจ @ 2020 DLD
ย 
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...
Cloud-Barista ์ œ1์ฐจ ์˜คํ”ˆ์„ธ๋ฏธ๋‚˜ : CB-Dragonfly-๋ฉ€ํ‹ฐ ํด๋ผ์šฐ๋“œ ํ†ตํ•ฉ ๋ชจ๋‹ˆํ„ฐ๋ง ํ”„๋ ˆ์ž„์›Œํฌ(1st Open Seminar...
ย 

SLRA

  • 1. Domain Adaptation between Heterogeneous Sensor Signals for Machinery Fault Classification Team SLRA Incheon National University ์ • ์šฉ ํƒœ, ์‹  ์Šน ํ˜ธ, ํ‘œ ์‹  ํ˜• 2022.06.09
  • 2. Team SLRA Introduction (1) ๊ณ„์ธก(Sensing) PHM (Prognostics and Health Management) (2) ์„ค๋น„ ๊ฑด๊ฐ•์ง€ํ‘œ ์ถ”์ถœ (Health indicator extraction) (3) ์ง„๋‹จ(Diagnostics) 4) ์˜ˆ์ธก(Prognostics) โ PHM์˜ 5๊ฐ€์ง€ ์ค‘์š” Task โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ๋ฆฌ๋Ÿ‰์„ ๊ณ„์ธกํ•˜๋Š” ๋‹จ๊ณ„ โ€ข ์„ค๋น„๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง€๋Š” ๊ณ„์ธก ๋ฐ์ดํ„ฐ์—์„œ ์œ ์˜๋ฏธํ•œ ์ •๋ณด๋ฅผ ๋ฝ‘์•„ ๋‚ด๊ณ  ์ด๋ฅผ ํ‘œํ˜„ โ€ข ๊ณ„์ธก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ „๋ฌธ๊ฐ€ ์ง€์‹๊ณผ ์ธ๊ณต ์ง€๋Šฅ์  ๋ถ„์„์„ ํ†ตํ•ด ์„ค๋น„ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ์ง„๋‹จ โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ ๋˜๋Š” ์ž”์—ฌ ์ˆ˜๋ช…์„ ์˜ˆ์ธกํ•˜๋Š” ๊ธฐ์ˆ  5) ๊ด€๋ฆฌ(Management) โ€ข ์„ค๋น„ ๊ฑด์ „์„ฑ ๊ด€๋ จ ์ง„๋‹จ ๋ฐ ์˜ˆ์ธก ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์ •๋น„ ์‹œ์ , ์ •๋น„๋Œ€์ƒ, ์ •๋น„ ๊ธฐ๊ฐ„์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ธฐ์ˆ  ๏ถ Fault Diagnostics(๊ณ ์žฅ ์ง„๋‹จ) โ€ข ๊ณ ์žฅ ๋ถ„๋ฅ˜๋Š” ์„ค๋น„์‹œ์Šคํ…œ์ด ์ด์ƒ์œผ๋กœ ํŒ์ •๋˜๋ฉด ์–ด๋–ค ์ด์ƒ์ธ์ง€๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ณผ์ •์ž„ โ€ข ์‹œ์Šคํ…œ์˜ ์ƒํƒœ๋ฅผ ์กฐ๊ธฐ์— ํƒ์ง€ํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•จ์œผ๋กœ์จ ์‚ฌ์ „ ์กฐ์น˜๋ฅผ ํ†ตํ•ด ์‹œ์Šคํ…œ ์šด์˜์˜ ํšจ์œจ์„ฑ์„ ์ตœ๋Œ€ํ™” ํ•  ์ˆ˜ ์žˆ์Œ Fault Detection Fault Diagnosis Fault Isolation Fault Classification ๏ƒ˜ ๊ณ ์žฅ ์ง„๋‹จ ์ด๋ž€ ๋ถ€ํ’ˆ ํ˜น์€ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ์ •๋ณด๋ฅผ ํ† ๋Œ€๋กœ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ์ง„๋‹จํ•˜ ๋Š” ๋ฐฉ๋ฒ• โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ๊ฐ์ง€ ๋ฐ ๊ฒ€์ถœ โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์˜ ๊ฑด์ „์„ฑ ์ƒํƒœ๋ฅผ ๋ถ„๋ฅ˜ โ€ข ํ˜„์žฌ ์„ค๋น„ ์‹œ์Šคํ…œ์—์„œ ๊ฒฐํ•จ์ด ๋ฐœ์ƒํ•œ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ๊ตฌ๋ถ„ ๋ฐ ๋ถ„๋ฆฌ ๏ถ Fault Classification(๊ณ ์žฅ ๋ถ„๋ฅ˜) 2
  • 3. Team SLRA Practical Issues on Fault Classification โ€ข ์„ค๋น„์˜ ์ด์ƒ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋‹ค์ˆ˜์˜ ์„ผ์„œ๋ฅผ ์„ค์น˜ํ•˜์—ฌ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•ด์•ผ ํ•จ โ€ข ํ•˜์ง€๋งŒ, ์ƒˆ๋กญ๊ฒŒ ์„ค์น˜๋œ ์„ผ์„œ๋ฅผ ์ดˆ๊ธฐ์— ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์Œ์˜ ์ด์Šˆ์‚ฌํ•ญ์„ ํ•ด๊ฒฐํ•ด์•ผ ํ•จ โ‘  ์‹ ์„ค ์„ผ์„œ๋Š” ๊ฑฐ์˜ ๊ฐ€๋™์ด ๋˜์ง€ ์•Š์•˜์œผ๋ฏ€๋กœ, ์ด์ƒ ์ง„๋‹จ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ํ™•๋ณด๋˜์–ด ์žˆ์ง€ ์•Š์Œ ๏‚ง ์‹ ์„ค ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ๋ ˆ์ด๋ธ”์ด ์ถฉ๋ถ„ํžˆ ๋ˆ„์ ๋  ๋•Œ๊นŒ์ง€ ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์—†์Œ โ‘ก ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ์„ผ์„œ์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ์™€ ๋‹ค์†Œ ์ƒ์ดํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ ์ด๊ธฐ์ข…์˜ ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•ด์„œ๋„ ์ถฉ๋ถ„ํžˆ ๋†’์€ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š” ํ•จ Existing Sensor New Sensor Unlabeled Data 3
  • 4. Team SLRA Brief review on domain adaptation โ€ข ์ƒˆ๋กœ์šด ์ด๊ธฐ์ข…์˜ ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์—†์Œ ๏‚ง ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•˜์—ฌ, ๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์ด์ „์—๋Š” ์ƒˆ๋กœ์šด ์„ผ์„œ์— ๋Œ€ํ•œ ๊ณ ์žฅ ๋ถ„๋ฅ˜ ๋ถˆ๊ฐ€ํ•จ โ€ข ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ ํ™•๋ณด ๋ฐ ๋ ˆ์ด๋ธ”๋ง ๊ณผ์ •์—๋Š” ๋งŽ์€ ๋น„์šฉ์ด ํ•„์š”ํ•จ ๏‚ง ๋ฐ์ดํ„ฐ ํ™•๋ณด ๋ฐ ๋ ˆ์ด๋ธ”๋ง ๊ณผ์ • ์—†์ด ๊ธฐ์กด ์„ผ์„œ์˜ ์ •๋ณด๋ฅผ ์ ์‘ ์‹œ์ผœ ์ƒˆ๋กœ์šด ์„ผ์„œ์— ๋Œ€ํ•ด ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ ์ž ํ•จ Train data Test data Source domain Target domain Domain Adaptation Traditional ML Latent-Space Transformation Find a common space where source and target are close โ€ข ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” Test data์™€ Train data์˜ ๋ถ„ํฌ๊ฐ€ ๊ฐ™์œผ๋ฏ€๋กœ, Train data๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์˜ˆ์ธก์— ์‚ฌ์šฉํ•จ โ€ข ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” Target domain๊ณผ ํ•™์Šต์— ์‚ฌ์šฉํ•˜๋Š” Source domain์˜ data์˜ ๋ถ„ํฌ๊ฐ€ ๋‹ค๋ฅด๋ฏ€๋กœ, ์ ์‘์„ ํ†ตํ•ด ์˜ˆ์ธก์— ์‚ฌ์šฉํ•จ 4
  • 5. Team SLRA โ€ข Classical Test Error ๐œ€๐‘ก๐‘’๐‘ ๐‘ก โ‰ค ๐œ€๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› + ๐‘๐‘œ๐‘š๐‘๐‘™๐‘’๐‘ฅ๐‘–๐‘ก๐‘ฆ ๐‘› โ€ข Adaptation Target Error ๏ƒ˜ ์ตœ๋Œ€ํ•œ ์ ์€ parameter๋กœ training error๊ฐ€ ์ตœ์†Œ์ธ Model ์ฐพ๊ธฐ ๐‘…๐ท๐‘‡ ฮท โ‰ค ๐‘…๐‘† ฮท + ๐‘‘๐ป ๐‘†, ๐‘‡ + 4 ๐‘› ๐‘‘ log 2๐‘’๐‘› ๐‘‘ + log 4 ๐›ฟ + 4 1 ๐‘› ๐‘‘ log 2๐‘› ๐‘‘ + log 4 ๐›ฟ + ๐›ฝ ๏ถ Ben-David et al., 2006 Complexity(VC dimension) Regularization term Minimize ๐‘…๐‘† ฮท , ๐‘‘๐ป ๐‘†, ๐‘‡ Minimize ๐‘…๐‘† ฮท Maximize ๐œ€ ๐‘‘๐ป = 2 1 โˆ’ 2๐œ€ 5 Brief review on domain adaptation Objective
  • 6. Team SLRA Domain adaptation models ๏‚ง DANN(Domain Adversarial Neural Networks) ๏‚ง ADDA(Adversarial Discriminative Domain Adaptation) โ€ข Domain adaptation์—์„œ ๊ฐ€์žฅ ๋„๋ฆฌ ํ™œ์šฉ๋˜๋Š” ๋‹ค์Œ์˜ ๋‘๊ฐ€์ง€ ๋ชจ๋ธ์„ ํ™œ์šฉํ•จ ๏ถ DANN ๋ชจ๋ธ์˜ ํŠน์ง• โ€ข Source domain๊ณผ Target domain์— ๋Œ€ํ•˜์—ฌ ๋™์ผํ•œ Feature extractor์„ ์‚ฌ์šฉํ•จ โ€ข Feature extractor ๋ชจ๋ธ์€ Source data์™€ Target data์— ์ƒ๊ด€ ์—†์ด robustํ•œ Feature์„ ์ถ”์ถœํ•˜๋„๋ก ํ•™์Šต๋จ ๏ถ ADDA ๋ชจ๋ธ์˜ ํŠน์ง• โ€ข Source Domain๊ณผ Target Domain์— ๋Œ€ํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ Encoder์„ ์‚ฌ์šฉํ•จ โ€ข ๊ฐ๊ฐ์˜ Encoder์€ Source data์™€ Target data์˜ ํŠน์ง•์„ ์ž˜ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ Feature์„ ์ถ”์ถœํ•˜๋„๋ก ํ•™์Šต๋จ 6
  • 7. Team SLRA Experimental design Existing Sensor New Sensor ๏ถ Wavelet Scalogram ๏ถ Domain adaptation model Target Domain Data์˜ ๊ณ ์žฅ ๋ถ„๋ฅ˜ ์ง„ํ–‰ ๏ถ Fault Classification Vibration (Source) Data Acoustic (Target) Data ๏ถData ์‚ฌ์šฉ โ€ข Existing Sensor ์˜ data ๋Š” Vibration Data๋กœ ํ•˜๊ณ , Source Domain Data๋กœ ์‚ฌ์šฉ โ€ข New Sensor์˜ data๋Š” Acoustic Data๋กœ ํ•˜๊ณ , Target Domain Data๋กœ ์‚ฌ์šฉ โ€ข Vibration Domain์˜ Data๋ฅผ Acoustic Domain์˜ Data๋กœ Domain adaptatio์„ ์ง„ํ–‰ํ•จ 7 <Bearing Simulator> ์‹คํ—˜ ์žฅ๋น„ โ–ช๏ธŽ ์ •์ƒ โ–ช๏ธŽ ๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ โ–ช๏ธŽ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ โ–ช๏ธŽ ๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ 4 Class . 0
  • 8. Team SLRA Experimental design Existing Sensor New Sensor ๏ถ Wavelet Scalogram ๏ถ Domain adaptation model Target Domain Data์˜ ๊ณ ์žฅ ๋ถ„๋ฅ˜ ์ง„ํ–‰ ๏ถ Fault Classification ์ฃผํŒŒ์ˆ˜ ๋ถ„ํ•ด๋Šฅ ์‹œ๊ฐ„ ๋ถ„ํ•ด๋Šฅ WT ๏ถ์‹ ํ˜ธ์ฒ˜๋ฆฌ(Wavelet Scalogram) โ€ข ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜์˜ ๊ด€์ ์„ ๋ชจ๋‘ ๊ณ ๋ ค ํ•  ์ˆ˜ ์žˆ๋„๋ก ์‹ ํ˜ธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ• ์ž„ โ€ข Scalogram ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„ ๋ฐ ์ฃผํŒŒ์ˆ˜์˜ ๊ฐ•๋„ ์ •๋ณด๋ฅผ ๋™์‹œ์— ๋ฐ˜์˜ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•จ โ€ข STFT์˜ ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜์˜ trade-off ๋ฌธ์ œ๋ฅผ ์™„ํ™” 8 F T ์‹œ๊ฐ„ ๊ด€์  ์ฃผํŒŒ์ˆ˜ ๊ด€์ 
  • 9. Team SLRA Experimental results โ€ข Source data ๋ฅผ ํ†ตํ•ด ํ•™์Šตํ•œ ๋ชจ๋ธ์„ Target data ์— ์ ์šฉ์‹œ์ผฐ์„ ๋•Œ๋Š” ํ‰๊ท  28.5%์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ–์œผ๋ฏ€๋กœ, ๋žœ๋ค์œผ๋กœ ์„ ํƒํ•˜๋Š” ์„ฑ๋Šฅ๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š์Œ โ€ข ADDA๋ชจ๋ธ์— ๊ฒฝ์šฐ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š” 75.50%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด์™ธ์˜ Test data์— ๋Œ€ํ•ด์„œ ํ‰๊ท  50.67%์˜ ์„ฑ๋Šฅ์„ ๋ณด์ž„ โ€ข DANN๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ํ•™์Šต์— ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š” 73.75%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด์™ธ์˜ Test data์— ๋Œ€ํ•ด์„œ ๋„ ํ‰๊ท  69.33%์˜ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„ ๏ถ Vibration Scalogram ๏ถ Acoustic Scalogram โ€ข ADDA๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๊ฐ๊ฐ์˜ Domain์— ๋Œ€ํ•œ Encoder์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋”์šฑ ์„ฑ๋Šฅ์ด ์ข‹์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€์ง€๋งŒ, DANN์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์ด ๋”์šฑ ์ข‹์Œ โ€ข ์ด์— ๋Œ€ํ•œ ์ถ”๊ฐ€์ ์ธ ๋ถ„์„์ด ํ•„์š”ํ•จ โ€ข ๋‹ค๋งŒ, ์ „ํ˜€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์ƒํ™ฉ์—์„œ๋„ ์ค€์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด ์ž„์— ์˜๋ฏธ๊ฐ€ ์žˆ์Œ Source Domain Target Domain Source Vibration Target Acoustic 0.26 0.32 0.28 0.28 0.755 0.51 0.51 0.5 0.7375 0.74 0.64 0.7 Source only ADDA DANN train test1 test2 test3 ์ •์ƒ ๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ ๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ ์ •์ƒ ๋ฒ ์–ด๋ง ๋‚ด๋ฅœ ์ด์ƒ ๋ฒ ์–ด๋ง ์™ธ๋ฅœ ์ด์ƒ ๋ณผ ๋ฒ ์–ด๋ง ์ด์ƒ 9
  • 10. Team SLRA Conclusions Introduction Highlights Results โ€ข ์„ค๋น„์˜ ์ด์ƒ ์ง„๋‹จ ์ •ํ™•๋„์˜ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ด์ข…์˜ ์„ผ์„œ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์‚ฌ์šฉํ•  ๋•Œ, ํ•ด๋‹น ์„ผ์„œ์— ๋Œ€ํ•ด์„œ๋Š” ์ด์ƒ์ง„๋‹จ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์—†์Œ โ€ข ๋˜ํ•œ ์‹ ์„ค๋œ ์ด์ข…์˜ ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋Š” ๊ธฐ์กด ์„ผ์„œ์—์„œ ์ˆ˜์ง‘ํ•œ ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ์™€๋Š” ๋‹ค์†Œ ์ƒ์ดํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ โ€ข ์ด์— ๋”ฐ๋ผ ์ด๊ธฐ์ข…์˜ ์‹ ์„ค ์„ผ์„œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํžˆ ๋†’์€ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•จ โ€ข ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด Scalogram์„ ๋งŒ๋“ค์–ด ์‹œ๊ฐ„๊ณผ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ๊ณ ๋ คํ•˜๊ณ ์ž ํ•จ โ€ข Domain adaptation ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์‹ ์„ค ์„ผ์„œ์˜ ์‹ ํ˜ธ๋ฐ์ดํ„ฐ์—๋„ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ ์ž ํ•จ โ€ข ๊ธฐ์กด์„ผ์„œ๋ฅผ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ ๋ชจ๋ธ์„ ํ†ตํ•ด ์‹ ์„ค ์„ผ์„œ์— ๋Œ€ํ•œ ๊ณ ์žฅ ๋ถ„๋ฅ˜๋ฅผ ์ง„ํ–‰ํ•˜๋ฉด, ๋žœ๋ค์œผ๋กœ ์„ ํƒํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์ž„ โ€ข ๋ฐ˜๋ฉด์— Domain adaptation ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜๋ฉด, ADDA์˜ ๊ฒฝ์šฐ ์•ฝ 50% DANN์˜ ๊ฒฝ์šฐ ์•ฝ 70%์˜ ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„ โ€ข ๋ ˆ์ด๋ธ”์ด ์ „ํ˜€ ์—†๋Š” ์ƒํ™ฉ์—์„œ ์‹ ์„ค์„ผ์„œ์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๊ฐ€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜์˜จ ๊ฒƒ์€ ์˜๋ฏธ ์žˆ๋Š” ๊ฒฐ๊ณผ๋กœ ๋ณด์ž„ 10
  • 11. Team SLRA Future works โ€ข ์‹ ์„ค ์„ผ์„œ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋˜๋Š” ๋ฐ์ดํ„ฐ๋Š” ๋ ˆ์ด๋ธ”์ด ์—†์œผ๋ฏ€๋กœ, ๋น„์ง€๋„ ๋ฐฉ์‹์˜ Domain adaptation ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•จ โ€ข ํ•˜์ง€๋งŒ, ์„ค๋น„์˜ ๊ฐ€๋™์„ ํ†ตํ•ด ์ผ๋ถ€์˜ ๋ ˆ์ด๋ธ”์ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•œ๋‹ค๋ฉด, ์ค€์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ Domain adaptation ๋ชจ๋ธ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅ ๏‚ง ์ถ”๊ฐ€์ ์œผ๋กœ ์ค€์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ Domain adaptation๋ชจ๋ธ์„ ์ ์šฉํ•  ๊ฒฝ์šฐ ํ˜„์žฌ์˜ ๋ชจ๋ธ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ๋›ฐ์–ด๋‚  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋จ โ€ข ํ˜„์žฌ ์ด๊ธฐ์ข…์˜ ์„ผ์„œ์— ๋Œ€ํ•ด, Domain adaptation ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์Œ โ€ข ์ด๊ธฐ์ข… ์„ผ์„œ ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ ์ƒํ™ฉ์—๋„ ์ ์šฉํ•˜์—ฌ, ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ํŒ๋‹จ ๏‚ง ์‚ฌ์ด์ฆˆ๊ฐ€ ๋‹ค๋ฅธ ๋‘ ๋ฒ ์–ด๋ง์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•  ๊ณ„ํš์— ์žˆ์Œ ๏‚ง ๋ฒ ์–ด๋ง ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์˜ ์ž‘๋™ํ™˜๊ฒฝ์ด ๋‹ค๋ฅธ ๊ฒฝ์šฐ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•  ๊ณ„ํš์— ์žˆ์Œ Modeling Scenario 11
  • 13. Team SLRA โ€ข Source/Target domain distance ๏ƒ˜ H-divergence ๋ฅผ Domain ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋กœ ์‚ฌ์šฉ (divergence โ€“ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ) ๐‘‘๐ป ๐ท๐‘† ๐‘‹ , ๐ท๐‘‡ ๐‘‹ = 2๐‘ ๐‘ข๐‘ ๐œ‚โˆˆ๐ป ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘† ๐‘‹ ๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘‡ ๐‘‹ [๐œ‚ ๐‘ฅ = 1] โ€ข H : hypothesis class โ€ข ฮท : classifier ๐›ฟ(๐‘ƒ๐‘Ÿ, ๐‘ƒ ๐‘”) = ๐‘ ๐‘ข๐‘ ๐ดโˆˆโˆ‘ ๐‘ƒ๐‘Ÿ(๐ด) โˆ’ ๐‘ƒ ๐‘”(๐ด) A ๐‘ƒ๐‘Ÿ(๐ด) ๐‘ƒ ๐‘”(๐ด) ๐‘ƒ ๐‘” ๐‘ƒ๐‘Ÿ โ€ข Total Variation distance ๏ƒ˜ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์˜ ์ธก์ •๊ฐ’์ด ๋ฒŒ์–ด์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํฐ ๊ฐ’ 1. H-divergence Appendix - DANN Background
  • 14. Team SLRA โ€ข Source/Target domain distance ๏ƒ˜ H-divergence ๋ฅผ Domain ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋กœ ์‚ฌ์šฉ (divergence โ€“ ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ) โ€ข H : hypothesis class โ€ข ฮท : classifier 1. H-divergence ๐‘‘๐ป ๐ท๐‘† ๐‘‹ , ๐ท๐‘‡ ๐‘‹ = 2๐‘ ๐‘ข๐‘ ๐œ‚โˆˆ๐ป ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘† ๐‘‹ ๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘‡ ๐‘‹ [๐œ‚ ๐‘ฅ = 1] โ€ข Source domain๊ณผ Target domain์„ ๊ตฌ๋ถ„ํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์ด ๋ชฉํ‘œ ๏ƒผ ฮท x ์ด Domain์— ์ƒ๊ด€ ์—†์ด label์„ 1์ด๋ผ๊ณ  ํ•  ํ™•๋ฅ ์ด 1์ด๋ผ๋ฉด ๊ฑฐ๋ฆฌ๋Š” 0 Appendix - DANN Background
  • 15. Team SLRA ๐‘‘๐ป ๐‘†, ๐‘‡ = 2 1 โˆ’ ๐‘š๐‘–๐‘› ๐œ‚โˆˆ๐ป 1 ๐‘› โˆ‘๐‘–=1 ๐‘› ๐ผ ๐œ‚ ๐‘ฅ๐‘– = 1 + 1 ๐‘›โ€ฒ โˆ‘๐‘–=๐‘›+1 ๐‘ ๐ผ [๐œ‚ ๐‘ฅ๐‘– = 0] 2. empirical H-divergence ๐‘‘๐ป ๐ท๐‘† ๐‘‹ , ๐ท๐‘‡ ๐‘‹ = 2๐‘ ๐‘ข๐‘ ๐œ‚โˆˆ๐ป ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘† ๐‘‹ ๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘‡ ๐‘‹ [๐œ‚ ๐‘ฅ = 1] 1. H-divergence ๏ƒ˜ ํ†ต๊ณ„์ ์ธ ๊ฐ’์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” Sample์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ๊ฐ’ ๐‘‘๐ป ๐ท๐‘† ๐‘‹ , ๐ท๐‘‡ ๐‘‹ = 2๐‘ ๐‘ข๐‘ ๐œ‚โˆˆ๐ป ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘† ๐‘‹ ๐œ‚ ๐‘ฅ = 1 โˆ’ ๐‘ƒ๐‘Ÿ ๐‘ฅ~๐ท๐‘‡ ๐‘‹ ๐œ‚ ๐‘ฅ = 0 โˆ’ 1 Pr x~DT X [ฮท x = 1] = Pr x~DT X ฮท x = 0 โˆ’ 1 Appendix - DANN Background
  • 16. Team SLRA 3. Proxy A-distance ๐’…๐‘จ = 2 ๐Ÿ โˆ’ ๐Ÿ๐œบ ๐‘‘๐ป ๐‘†, ๐‘‡ = 2 1 โˆ’ ๐‘š๐‘–๐‘› ๐œ‚โˆˆ๐ป 1 ๐‘› โˆ‘๐‘–=1 ๐‘› ๐ผ ๐œ‚ ๐‘ฅ๐‘– = 1 + 1 ๐‘›โ€ฒ โˆ‘๐‘–=๐‘›+1 ๐‘ ๐ผ [๐œ‚ ๐‘ฅ๐‘– = 0] 2. empirical H-divergence Classification error (๐œ€) Appendix - DANN Background

Editor's Notes

  1. ์•ˆ๋…•ํ•˜์‹ญ๋‹ˆ๊นŒ ์ด๋ฒˆ ์„ธ๋ฏธ๋‚˜๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋œ ์‹ ์Šนํ˜ธ ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ์ฃผ์ œ๋Š” Support vector Machine์œผ๋กœ ์„ธ๋ฏธ๋‚˜ ์‹œ์ž‘ํ•˜์Šต๋‹ˆ๋‹ค