z= e^(1-i/3) = e.e^(-i/3)
we know that e^-ix = cos x - i sin x
so e^(-i/3) = cos /3 - i sin/3 = 1/2 - i3 /2
real part of e.e^(-i/3) = e/2
imaginary part = - e3 /2
Solution
z= e^(1-i/3) = e.e^(-i/3)
we know that e^-ix = cos x - i sin x
so e^(-i/3) = cos /3 - i sin/3 = 1/2 - i3 /2
real part of e.e^(-i/3) = e/2
imaginary part = - e3 /2

z= e^(1-i3) = e.e^(-i3)we know that e^-ix = cos x - i sin xso .pdf

  • 1.
    z= e^(1-i/3) =e.e^(-i/3) we know that e^-ix = cos x - i sin x so e^(-i/3) = cos /3 - i sin/3 = 1/2 - i3 /2 real part of e.e^(-i/3) = e/2 imaginary part = - e3 /2 Solution z= e^(1-i/3) = e.e^(-i/3) we know that e^-ix = cos x - i sin x so e^(-i/3) = cos /3 - i sin/3 = 1/2 - i3 /2 real part of e.e^(-i/3) = e/2 imaginary part = - e3 /2