SlideShare a Scribd company logo
1 of 44
Download to read offline
St
e
e
l
a
l
l
o
yt
y
p
e Ke
yn
o
t
e
sf
o
r
a
p
p
l
i
c
a
t
i
o
n
F
CA
W SMA
W
Pr
o
d
u
c
t
n
a
me A
WSc
l
a
s
s
. Pr
o
d
u
c
t
n
a
me A
WSc
l
a
s
s
.
3
0
4 Ge
n
e
r
a
l [
P]
DW-
3
0
8 E3
0
8
T
0
-
1
/
-
4 [
P]
NC-
3
8 E3
0
8
-
1
6
[
P]
DW-
3
0
8
P E3
0
8
T
1
-
1
/
-
4
3
0
4
H Hi
g
ht
e
mp
e
r
a
t
u
r
eo
p
e
r
a
t
i
o
n [
P]
DW-
3
0
8
H E3
0
8
HT
1
-
1
/
-
4(
Bi
-
f
r
e
e
) [
P]
NC-
3
8
H E3
0
8
H-
1
6
L
o
wc
a
r
b
o
n(
0
.
0
4
%ma
x
.
)

Ge
n
e
r
a
l [
P]
DW-
3
0
8
L E3
0
8
L
T
0
-
1
/
-
4 [
P]
NC-
3
8
L E3
0
8
L
-
1
6
[
P]
DW-
3
0
8
LP E3
0
8
L
T
1
-
1
/
-
4
[
P]
DW-
3
0
8
LH E3
0
8
L
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
)
3
0
4
,
3
0
4
LGa
u
g
ep
l
a
t
e [
P]
DW-
T3
0
8
L E3
0
8
L
T
0
-
1
/
-
4 −
−
− −
−
−
3
0
4
,
3
0
4
L L
o
wCr
(
VI
)
i
nf
u
me [
P]
DW-
3
0
8
L-
XR E3
0
8
L
T
0
-
1
/
-
4 −
−
− −
−
−
[
P]
DW-
3
0
8
LP-
XR E3
0
8
L
T
1
-
1
/
-
4
Cr
y
o
g
e
n
i
ct
e
mp
e
r
a
t
u
r
e(
2
7
Jmi
n
.
/
−
1
9
6
°
C) [
P]
DW-
3
0
8
L
TP E3
0
8
L
T
1
-
1
/
-
4 [
P]
NC-
3
8
L
T E3
0
8
L
-
1
6
[
P]
DW-
3
0
8
L
T E3
0
8
L
T
0
-
1
/
-
4
T
I
Gr
o
df
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
g
wi
t
h
o
u
t
b
a
c
kp
u
r
g
i
n
gg
a
s
−
−
− −
−
− −
−
− −
−
−
Ge
n
e
r
a
l [
P]
DW-
3
1
6
L E3
1
6
L
T
0
-
1
/
-
4 [
P]
NC-
3
6 E3
1
6
-
1
6
[
P]
DW-
3
1
6
LP E3
1
6
L
T
1
-
1
/
-
4 [
P]
NC-
3
6
L E3
1
6
L
-
1
6
[
P]
DW-
3
1
6
H E3
1
6
L
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
)
Ga
u
g
ep
l
a
t
e [
P]
DW-
T3
1
6
L E3
1
6
L
T
0
-
1
/
-
4 −
−
− −
−
−
L
o
wCr
(
VI
)
i
nf
u
me [
P]
DW-
3
1
6
L-
XR E3
1
6
L
T
0
-
1
/
-
4 −
−
− −
−
−
[
P]
DW-
3
1
6
LP-
XR E3
1
6
L
T
1
-
1
/
-
4
3
1
6
,
3
1
6
L Hi
g
ht
e
mp
e
r
a
t
u
r
eo
p
e
r
a
t
i
o
n [
P]
DW-
3
1
6
H E3
1
6
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
) −
−
− −
−
−
Cr
y
o
g
e
n
i
ct
e
mp
e
r
a
t
u
r
e
(
2
7
Jmi
n
.
/
−
1
9
6
°
C)
(
3
1
6
L
)
[
P]
DW-
3
1
6
L
T E3
1
6
L
T
1
-
1
/
-
4 [
P]
NC-
3
6
L
T E3
1
6
L
-
1
6
3
1
6
LMo
d
.

Ur
e
a(
l
o
wf
e
r
r
i
t
ec
o
n
t
e
n
t
) −
−
− −
−
− [
P]
NC-
3
1
6
MF −
−
−
T
I
Gr
o
df
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
g
wi
t
h
o
u
t
b
a
c
kp
u
r
g
i
n
gg
a
s
−
−
− −
−
− −
−
− −
−
−
Ge
n
e
r
a
l [
P]
DW-
3
0
9
L E3
0
9
L
T
0
-
1
/
-
4 [
P]
NC-
3
9 E3
0
9
-
1
6
[
P]
DW-
3
0
9
LP E3
0
9
L
T
1
-
1
/
-
4 [
P]
NC-
3
9
L E3
0
9
L
-
1
6
[
P]
DW-
3
0
9
LH E3
0
9
L
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
)
Di
s
s
i
mi
l
a
r
me
t
a
l
a
n
do
v
e
r
l
a
y
we
l
d
i
n
g
Ga
u
g
ep
l
a
t
e [
P]
DW-
T3
0
9
L E3
0
9
L
T
0
-
1
/
-
4 −
−
−
L
o
wCr
(
VI
)
i
nf
u
me [
P]
DW-
3
0
9
L-
XR E3
0
9
L
T
0
-
1
/
-
4 −
−
−
[
P]
DW-
3
0
9
LP-
XR E3
0
9
L
T
1
-
1
/
-
4
T
I
Gr
o
df
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
gwi
t
h
o
u
t
b
a
c
kp
u
r
g
i
n
gg
a
s −
−
− −
−
− −
−
− −
−
−
Ge
n
e
r
a
l [
P]
DW-
3
0
9
MoL E3
0
9
L
Mo
T
0
-
1
/
-
4 [
P]
NC-
3
9
MoL E3
0
9
L
Mo
-
1
6
[
P]
DW-
3
0
9
MoLP E3
0
9
L
Mo
T
1
-
1
/
-
4
Hi
g
hf
e
r
r
i
t
ec
o
n
t
e
n
t [
P]
DW-
3
1
2 E3
1
2
T
0
-
1
/
-
4 [
P]
NC-
3
2 E3
1
2
-
1
6
3
1
0
,
3
1
0
S Ge
n
e
r
a
l [
P]
DW-
3
1
0 E3
1
0
T
0
-
1
/
-
4 [
P]
NC-
3
0 E3
1
0
-
1
6
Ge
n
e
r
a
l [
P]
DW-
3
4
7 E3
4
7
T
0
-
1
/
-
4 [
P]
NC-
3
7 E3
4
7
-
1
6
3
2
1
,
3
4
7 Hi
g
ht
e
mp
e
r
a
t
u
r
eo
p
e
r
a
t
i
o
n [
P]
DW-
3
4
7
H E3
4
7
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
) −
−
− −
−
−
L
o
wc
a
r
b
o
n [
P]
DW-
3
4
7
LH E3
4
7
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
) [
P]
NC-
3
7
L E3
4
7
L
-
1
6
T
I
Gr
o
df
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
gwi
t
h
o
u
t
b
a
c
kp
u
r
g
i
n
gg
a
s −
−
− −
−
− −
−
− −
−
−
Ge
n
e
r
a
l [
P]
DW-
3
1
7
L E3
1
7
L
T
0
-
1
/
-
4 [
P]
NC-
3
1
7
L E3
1
7
L
-
1
6
3
1
7
L [
P]
DW-
3
1
7
LP E3
1
7
L
T
1
-
1
/
-
4
[
P]
DW-
3
1
7
LH E3
1
7
L
T
1
-
1
/
-
4(
Bi
-
f
r
e
e
)
L
e
a
nd
u
p
l
e
x(
AST
MS3
2
1
0
1
,
S3
2
3
0
4
) [
P]
DW-
2
3
0
7 E2
3
0
7
T
1
-
1
/
-
4 −
−
− −
−
−
Du
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
St
a
n
d
a
r
dd
u
p
l
e
x(
AST
MS3
1
8
0
3
,
S3
2
2
0
5
) [
P]
DW-
2
2
0
9 E2
2
0
9
T
1
-
1
/
-
4 [
P]
NC-
2
2
0
9 E2
2
0
9
-
1
6
[
P]
DW-
3
2
9
AP E2
2
0
9
T
1
-
1
/
-
4
T
I
Gr
o
df
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
gwi
t
h
o
u
t
b
a
c
kp
u
r
g
i
n
gg
a
s [
P]
TG-
X2
2
0
9 −
−
− −
−
− −
−
−
Su
p
e
r
d
u
p
l
e
x(
AST
MS3
2
7
5
0
,
S3
2
7
6
0
) [
P]
DW-
2
5
9
4 E2
5
9
4
T
1
-
1
/
-
4 [
P]
NC-
2
5
9
4 E2
5
9
4
-
1
6
4
1
0 Ge
n
e
r
a
l −
−
− −
−
− [
P]
CR-
4
0 E4
1
0
-
1
6
1
3
Cr
-
4
Ni Ma
r
t
e
n
s
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
f
o
r
h
y
d
r
ot
u
r
b
i
n
e [
P]
DW-
4
1
0
Ni
Mo E4
1
0
Ni
Mo
T
1
-
1
/
-
4 [
P]
CR-
4
1
0
NM E4
1
0
Ni
Mo
-
1
6
[
P]
MX-
A4
1
0
Ni
Mo EC4
1
0
Ni
Mo
F
e
r
r
i
t
i
c1
3
Cr
-
Nb [
P]
DW-
4
1
0
Cb E4
0
9
Nb
T
0
-
1 [
P]
CR-
4
0
Cb E4
0
9
Nb
-
1
6
4
0
5
,
4
0
9 Bu
f
f
e
r
l
a
y
e
r
f
o
r
1
3
Cr
o
v
e
r
l
a
ywe
l
d
i
n
g [
P]
DW-
4
3
0
CbS E4
3
0
Nb
T
0
-
1 [
P]
CR-
4
3
Cb E4
3
0
Nb
-
1
6
[
P]
CR-
4
3
CbS −
−
−
4
3
0 1
7
Cr
-
Nbf
o
r
c
a
r
e
x
h
a
u
s
t
s
y
s
t
e
m [
P]
MX-
A4
3
0
M −
−
− −
−
− −
−
−
Al
l
o
y6
2
5a
n
d8
2
5

Ov
e
r
l
a
ywe
l
d
i
n
g

d
i
s
s
i
mi
l
a
r
j
o
i
n
t [
P]
DW-
N6
2
5 ENi
Cr
Mo
3
T
1
-
1
/
-
4 [
P]
NI
-
C6
2
5 −
−
−
Ni
a
l
l
o
y Cl
a
d
d
i
n
ga
n
dg
i
r
t
hwe
l
d
i
n
go
f
c
l
a
dp
i
p
e(
5
G,
6
G) [
P]
DW-
N6
2
5
P ENi
Cr
Mo
3
T
1
-
1
/
-
4 [
P]
NI
-
C6
2
5 −
−
−
Al
l
o
y6
0
0a
n
d8
0
0

Di
s
s
i
mi
l
a
r
j
o
i
n
t [
P]
DW-
N8
2 ENi
Cr
3
T
0
-
4 [
P]
NI
-
C7
0
A ENi
Cr
F
e
-
1
Al
l
o
yC2
7
6 [
P]
DW-
NC2
7
6 ENi
Cr
Mo
4
T
1
-
4 −
−
− −
−
−
L
NGs
t
o
r
a
g
et
a
n
k [
P]
DW-
N7
0
S −
−
− [
P]
NI
-
C7
0
S ENi
Cr
F
e
-
9
9
%Ni [
P]
DW-
N7
0
9
SP ENi
Mo
1
3
T
1
-
4
/
T
0
-
1 [
P]
NI
-
C1
S ENi
Mo
-
8
[
P]
DW-
N6
2
5 ENi
Cr
Mo
3
T
1
-
1
/
-
4
(
1
)
[
P]
d
e
s
i
g
n
a
t
e
sPREMI
ARCT
M
1
GT
A
W
St
e
e
l
a
l
l
o
yt
y
p
e Ke
yn
o
t
e
s
f
o
r
a
p
p
l
i
c
a
t
i
o
n
GMA
W SA
W
Pr
o
d
u
c
t
n
a
me A
WSc
l
a
s
s
. Pr
o
d
u
c
t
n
a
me A
WSc
l
a
s
s Pr
o
d
u
c
t
n
a
me A
WSc
l
a
s
s
(
wi
r
e
)
[
P]
TG-
S3
0
8 ER3
0
8 3
0
4 Ge
n
e
r
a
l [
P]
MG-
S3
0
8 ER3
0
8 [
P]
PF-
S1/
[
P]
US-
3
0
8 ER3
0
8
−
−
− −
−
− 3
0
4
L Ge
n
e
r
a
l [
P]
MG-
S3
0
8
LS ER3
0
8
L
Si [
P]
PF-
S1/
[
P]
US-
3
0
8
L ER3
0
8
L
[
P]
TG-
S3
0
8
L ER3
0
8
L
Ge
n
e
r
a
l [
P]
MG-
S3
1
6
LS ER3
1
6
L
S [
P]
PF-
S1
M/
[
P]
US-
3
1
6
(
Si
n
g
l
ep
a
s
s
)
ER3
1
6
−
−
− −
−
− [
P]
PF-
S1/
[
P]
US-
3
1
6
(
Mu
l
t
i
p
a
s
s
)
ER3
1
6
−
−
− −
−
− 3
1
6
,
3
1
6
L [
P]
PF-
S1
M/
[
P]
US-
3
1
6
L
(
Si
n
g
l
ep
a
s
s
)
ER3
1
6
L
[
P]
TG-
S3
0
8
L ER3
0
8
L
[
P]
PF-
S1/
[
P]
US-
3
1
6
L
(
Mu
l
t
i
p
a
s
s
)
ER3
1
6
L
[
P]
TG-
X3
0
8
L R3
0
8
L
T
1
-
5
[
P]
TG-
S3
1
6 ER3
1
6 Di
s
s
i
mi
l
a
r
me
t
a
l
a
n
do
v
e
r
l
a
y
we
l
d
i
n
g
[
P]
TG-
S3
1
6
L ER3
1
6
L Ge
n
e
r
a
l [
P]
MG-
S3
0
9 ER3
0
9 −
−
− −
−
−
−
−
− −
−
−
−
−
− −
−
− 3
2
1
,
3
4
7 Ge
n
e
r
a
l [
P]
MG-
S3
4
7
S ER3
4
7
Si [
P]
PF-
S1/
[
P]
US-
3
4
7 ER3
4
7
−
−
− −
−
− 3
1
7
L Ge
n
e
r
a
l −
−
− −
−
− [
P]
PF-
S1/
[
P]
US-
3
1
7
L ER3
1
7
L
[
P]
TG-
S3
1
6
L ER3
1
6
L
Du
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
St
a
n
d
a
r
dd
u
p
l
e
x
(
AST
MS3
1
8
0
3
,
S3
2
2
0
5
)
−
−
− −
−
− [
P]
PF-
S1
D/
[
P]
US-
2
2
0
9 ER2
2
0
9
[
P]
NO4
0
5
1 −
−
−
[
P]
TG-
S3
1
0
MF −
−
−
[
P]
TG-
X3
1
6
L R3
1
6
L
T
1
-
5 4
1
0 Ge
n
e
r
a
l [
P]
MG-
S4
1
0 ER4
1
0 −
−
− −
−
−
[
P]
TG-
S3
0
9 ER3
0
9 L
NGs
t
o
r
a
g
et
a
n
k −
−
− −
−
− [
P]
PF-
N4/
[
P]
US-
7
0
9
S
(
Ho
r
i
z
o
n
t
a
l
p
o
s
i
t
i
o
n
)
ERNi
Mo
-
8
[
P]
TG-
S3
0
9
L ER3
0
9
L
9
%Ni [
P]
PF-
N3/
[
P]
US-
7
0
9
S
(
F
l
a
t
p
o
s
i
t
i
o
n
)
ERNi
Mo
-
8
−
−
− −
−
−
−
−
− −
−
−
[
P]
TG-
X3
0
9
L R3
0
9
L
T
1
-
5
−
−
− −
−
−
−
−
− −
−
−
[
P]
TG-
S3
1
0 ER3
1
0
[
P]
TG-
S3
4
7 ER3
4
7
−
−
− −
−
−
[
P]
TG-
S3
4
7
L ER3
4
7
L
[
P]
TG-
X3
4
7 R3
4
7
T
1
-
5
[
P]
TG-
S3
1
7
L ER3
1
7
L
−
−
− −
−
−
[
P]
TG-
S2
2
0
9 ER2
2
0
9
[
P]
TG-
X2
2
0
9 −
−
−
[
P]
TG-
S2
5
9
4 ER2
5
9
4
[
P]
TG-
S4
1
0 ER4
1
0
−
−
− −
−
−
[
P]
TG-
S4
1
0
Cb −
−
−
−
−
− −
−
−
−
−
− −
−
−
[
P]
TG-
S6
2
5 ERNi
Cr
Mo
-
3
−
−
− −
−
−
[
P]
TG-
S7
0
NCb ERNi
Cr
-
3
−
−
− −
−
−
[
P]
TG-
S7
0
9
S ERNi
Mo
-
8
1
.
T
h
ef
e
r
r
i
t
en
u
mb
e
r
so
r
p
e
r
c
e
n
t
a
g
ei
n
d
i
c
a
t
e
db
yF
N,
F
NWo
r
F
Si
nt
h
i
sb
r
o
c
h
u
r
ea
r
e
:
F
N:
f
e
r
r
i
t
en
u
mb
e
r
b
yDe
L
o
n
gDi
a
g
r
a
m
F
NW:
f
e
r
r
i
t
en
u
mb
e
r
b
yWRC(
We
l
d
i
n
gRe
s
e
a
r
c
hCo
u
n
c
i
l
)
Di
a
g
r
a
m-
1
9
9
2
F
S:
f
e
r
r
i
t
ep
e
r
c
e
n
t
a
g
eb
ySc
h
a
e
f
f
l
e
r
Di
a
g
r
a
m
2
.
I
n
c
o
n
e
l
i
st
h
et
r
a
d
e
ma
r
ko
f
Sp
e
c
i
a
l
Me
t
a
l
sCo
r
p
o
r
a
t
i
o
n
,
Ha
s
t
e
l
l
o
y
,
t
h
et
r
a
d
e
ma
r
ko
f
Ha
y
n
e
sI
n
t
e
r
n
a
t
i
o
n
a
l
,
I
n
c
.
a
n
dSUPER3
0
4
H,
t
h
et
r
a
d
e
ma
r
ko
f
Ni
p
p
o
nSt
e
e
l
Su
mi
t
o
moMe
t
a
l
Co
r
p
o
r
a
t
i
o
n
,
r
e
s
p
e
c
t
i
v
e
l
y
.
3
.
Ab
b
r
e
v
i
a
t
i
o
n
sa
n
dma
r
k
s
(
1
)
A
WS:
Ame
r
i
c
a
nWe
l
d
i
n
gSo
c
i
e
t
y
(
2
)
We
l
d
i
n
gp
o
s
i
t
i
o
n
s
F
:
f
l
a
t
HF
:
h
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
VU:
v
e
r
t
i
c
a
l
u
p
wa
r
do
r
v
e
r
t
i
c
a
l
u
p
h
i
l
l
(
3
)
We
l
d
i
n
gp
r
o
c
e
d
u
r
e
s
F
CA
W:
F
l
u
xCo
r
e
dAr
cWe
l
d
i
n
g
SMA
W:
Sh
i
e
l
d
e
dMe
t
a
l
Ar
cWe
l
d
i
n
g
GT
A
W:
Ga
sT
u
n
g
s
t
e
nAr
cWe
l
d
i
n
g
GMA
W:
Ga
sMe
t
a
l
Ar
cWe
l
d
i
n
g
SA
W:
Su
b
me
r
g
e
dAr
cWe
l
d
i
n
g
ESW:
El
e
c
t
r
o
s
l
a
gWe
l
d
i
n
g
(
4
)
F
CW:
F
l
u
xCo
r
e
dWi
r
e
2
(A) Austenite
(A) Austenite
(M) Martensite
(M) Martensite
(M)+(F)
(M)+(F)
(A)+(M)+(F)
(A)+(M)+(F)
(A)+(F)
(A)+(F)
Ferrite
content
Ferrite
content
0%
0%
5%
5%
10%
10%
20%
20%
40%
40%
80%
80%
100%
100%
(F) Ferrite
(F) Ferrite
Cr eq.=%Cr+%Mo+1.5×%Si+0.5×%Nb
Ni
eq.=%Ni+30×%C+0.5×%Mn
(A)+(M)
(A)+(M)
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
:E308L, :E316L, :E309L
0
0
5 10 15 20 25 30
5
10
15
20
25
30
Ferrite content by Schaefller’s Diagram (%)
Ferrite
content
by
Ferritescope
(%)
:E308L, :E316L, :E309L
Measured position by Ferritescope
Open mark : WM surface
Solid mark : Cross section of WM
WM : weld metal
Austenitic stainless steel welding consumables
for general use
(Types 308L, 316L and 309L)
Ba
s
eme
t
a
l T
y
p
e F
CA
W
(
A
WSA5
.
2
2
)
SMA
W
(
A
WSA
5
.
4
)
GT
A
W
(
A
WSA5
.
9
)
3
0
4
,
3
0
4
L
3
0
8
L
(
2
0
Cr
-
1
0
Ni
)
DW-
3
0
8
L
DW-
3
0
8
LP
(
E3
0
8
L
T
)
NC-
3
8
L
(
E3
0
8
L
-
1
6
)
TG-
S3
0
8
L
(
ER3
0
8
L
)
3
1
6
,
3
1
6
L
3
1
6
L
(
1
8
Cr
-
1
2
Ni
-
2
.
5
Mo
)
DW-
3
1
6
L
DW-
3
1
6
LP
(
E3
1
6
L
T
)
NC-
3
6
L
(
E3
1
6
L
-
1
6
)
TG-
S3
1
6
L
(
ER3
1
6
L
)
Ca
r
b
o
ns
t
e
e
l
/
3
0
4
L
(
Ca
r
b
o
ns
t
e
e
l
/
3
0
4
)
3
0
9
L
(
2
4
Cr
-
1
2
Ni
)
DW-
3
0
9
L
DW-
3
0
9
LP
(
E3
0
9
L
T
)
NC-
3
9
L
(
E3
0
9
L
-
1
6
)
TG-
S3
0
9
L
(
ER3
0
9
L
)
T
a
b
l
e1
:
Au
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
1
.
Ge
ne
r
a
l
T
h
ea
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sa
r
e
t
y
p
i
c
a
l
l
yo
ft
h
e3
0
8L
,3
1
6L a
n
d 3
0
9L t
y
p
e
s
.
T
y
p
e3
0
8
Li
su
s
e
df
o
rwe
l
d
i
n
g3
0
4o
r3
0
4
Ls
t
a
i
n
l
e
s
s
s
t
e
e
l
s
.
T
y
p
e3
1
6
Li
sf
o
rwe
l
d
i
n
g3
1
6
Ls
t
a
i
n
l
e
s
ss
t
e
e
l
,
wh
i
l
et
y
p
e3
0
9
Li
sf
o
rwe
l
d
i
n
gd
i
s
s
i
mi
l
a
rme
t
a
l
s
,
u
n
d
e
r
-
l
a
y
i
n
go
nf
e
r
r
i
t
i
cs
t
e
e
l
so
r
b
u
f
f
e
r
-
l
a
y
i
n
go
nc
l
a
d
s
t
e
e
l
s
(
T
a
b
l
e1
)
.
Au
s
t
e
n
i
t
i
c s
t
a
i
n
l
e
s
s s
t
e
e
l
s h
a
v
e a s
i
n
g
l
e p
h
a
s
e
a
u
s
t
e
n
i
t
i
cs
t
r
u
c
t
u
r
ed
u
et
oh
e
a
tt
r
e
a
t
me
n
td
u
r
i
n
gt
h
e
s
t
e
e
l
ma
k
i
n
gp
r
o
c
e
s
s
,wh
i
l
ea
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sc
o
n
t
a
i
n5t
o1
5
% f
e
r
r
i
t
et
o
p
r
e
v
e
n
t h
o
t c
r
a
c
k
i
n
g d
u
r
i
n
g we
l
d
i
n
g
. T
y
p
i
c
a
l
mi
c
r
o
s
t
r
u
c
t
u
r
e
s
o
f
b
o
t
h3
0
4
Ls
t
a
i
n
l
e
s
s
s
t
e
e
l
b
a
s
eme
t
a
l
a
n
dNC-
3
8
Lwe
l
dme
t
a
l
a
r
es
h
o
wni
nF
i
g
u
r
e
s
1a
n
d2
,
r
e
s
p
e
c
t
i
v
e
l
y
.
T
h
ef
e
r
r
i
t
ec
o
n
t
e
n
ti
nwe
l
dme
t
a
lc
a
nb
ec
a
l
c
u
l
a
t
e
d
f
r
o
mt
h
ec
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
no
f
we
l
dme
t
a
l
b
yu
s
i
n
g
S
c
h
a
e
f
f
l
e
r
,
DeL
o
n
go
r
WR
C-
1
9
9
2d
i
a
g
r
a
ms
.
Al
l
t
h
r
e
e
d
i
a
g
r
a
msp
l
o
tt
h
eNi
c
k
e
le
q
u
i
v
a
l
e
n
t
,ma
d
eu
po
f
a
u
s
t
e
n
i
t
ef
o
r
mi
n
ge
l
e
me
n
t
ss
u
c
ha
sC
,
Mn
,
Ni
a
n
dN,
a
g
a
i
n
s
t
t
h
eC
h
r
o
mi
u
me
q
u
i
v
a
l
e
n
t
,
wh
i
c
hr
e
p
r
e
s
e
n
t
s
t
h
e
f
e
r
r
i
t
ef
o
r
mi
n
ge
l
e
me
n
t
s
s
u
c
ha
s
C
r
,
Mo
,
S
i
a
n
dMn
,
i
n
t
h
ewe
l
dme
t
a
l
.
T
h
e S
c
h
a
e
f
f
l
e
r d
i
a
g
r
a
m (
F
i
g
u
r
e3
) c
l
a
s
s
i
f
i
e
s
mi
c
r
o
s
t
r
u
c
t
u
r
e
swi
t
hNi
a
n
dC
re
q
u
i
v
a
l
e
n
t
si
nawi
d
e
r
a
n
g
e
.
T
h
e
r
e
f
o
r
e
,
i
t
c
a
ne
s
t
i
ma
t
ef
e
r
r
i
t
ec
o
n
t
e
n
t
a
swe
l
l
a
s
we
l
d
a
b
i
l
i
t
ya
n
dc
r
a
c
kr
e
s
i
s
t
a
n
c
ep
r
i
o
r
t
op
e
r
f
o
r
mi
n
g
d
i
s
s
i
mi
l
a
r
we
l
d
i
n
gb
e
t
we
e
ns
t
a
i
n
l
e
s
sa
n
dc
a
r
b
o
ns
t
e
e
l
.
Ho
we
v
e
r
,
i
nt
h
ec
a
s
eo
f
we
l
dme
t
a
l
s
wi
t
hah
i
g
hf
e
r
r
i
t
e
mi
c
r
o
s
t
r
u
c
t
u
r
e
,
s
u
c
ha
s
E
3
0
9
L
,
t
h
eS
c
h
a
e
f
f
l
e
r
d
i
a
g
r
a
m
wi
l
l
t
e
n
dt
os
h
o
wal
a
r
g
e
r
d
e
v
i
a
t
i
o
nt
h
a
naF
e
r
i
t
s
c
o
p
e
,
a
s
s
h
o
wni
nF
i
g
u
r
e4
.
T
h
eDe
L
o
n
g d
i
a
g
r
a
m (
F
i
g
u
r
e5
)e
n
a
b
l
e
samo
r
e
p
r
e
c
i
s
ec
a
l
c
u
l
a
t
i
o
no
f
f
e
r
r
i
t
ec
o
n
t
e
n
t
b
yu
s
i
n
gaF
e
r
r
i
t
e
Nu
mb
e
r(
F
N)i
nt
h
er
a
n
g
eo
f0t
o1
8
,t
h
o
u
g
ht
h
e
a
p
p
l
i
c
a
b
l
ec
h
e
mi
c
a
lc
o
mp
o
s
i
t
i
o
nr
a
n
g
ei
sn
a
r
r
o
we
r
t
h
a
nt
h
a
t
o
f
t
h
eS
c
h
a
e
f
f
l
e
r
d
i
a
g
r
a
m.
F
i
g
u
r
e3
:
Sc
h
a
e
f
f
l
e
r
d
i
a
g
r
a
m
F
i
g
u
r
e1
:
Mi
c
r
o
s
t
r
u
c
t
u
r
eo
f
3
0
4
Lt
y
p
eb
a
s
eme
t
a
l
(
f
u
l
l
ya
u
s
t
e
n
i
t
i
cs
t
r
u
c
t
u
r
e
)
F
i
g
u
r
e2
:
Mi
c
r
o
s
t
r
u
c
t
u
r
eo
f
3
0
8
Lwe
l
dme
t
a
l
(
a
u
s
t
e
n
i
t
e+
f
e
r
r
i
t
e
)
F
i
g
u
r
e4
:
Co
mp
a
r
i
s
o
no
f
f
e
r
r
i
t
ec
o
n
t
e
n
t
b
e
t
we
e
n
Sc
h
a
e
f
f
l
e
r
d
i
a
g
r
a
ma
n
dF
e
r
i
t
s
c
o
p
e
3
Cr eq.=%Cr+%Mo+1.5×%Si+0.5×%Nb
16
10
11
12
13
14
15
16
17
18
19
20
21
17 18 19 20 21 22 23 24 25 26 27
Ni
eq.=%Ni+30×%C+30×%N+0.5×%Mn
0%
0%
2%
2%
4%
4%
5%
5%
6%
6%
12.3%
12.3%
13.8%
13.8%
15.3%
15.3%
7.6%
7.6%
9.2%
9.2%
10.7%
10.7%
:E308L, :E316L, :E309L
Austenite
Austenite
Austenite
+
Martensite
Austenite
+
Martensite
Ferrite
content
Ferrite
content
0
0
2
2
4
4
5
5
6
6
8
8
10
10
12
12
14
14
16
16
18
18
FN
FN
Austenite+Ferrite
Austenite+Ferrite
Cr eq.=%Cr+%Mo+0.7×%Nb
10
12
14
16
18
Ni
eq.=%Ni+35×%C+20×%N+0.25×%Cu
A
A
AF
AF
0
0
2
2
6
6
4
4
8
8
10
10
14
14
12
12
16
16
20
20
24
24
28
28
35
35
45
45
55
55
65
65
75
75
85
85
95
95
100
100
90
90
80
80
70
70
60
60
50
50
40
40
30
30
26
26
22
22
F
F
18 20 22 24 26 28 30
:E308L, :E316L, :E309L
18
18
FA
FA
Carbon or low-alloy steel
Carbon or low-alloy weld
304 or 304L clad
E308 or E308L
weld metal
304 or 304L clad
DW-309L
weld metal
T
h
eWR
C
-
1
9
9
2d
i
a
g
r
a
m (
F
i
g
u
r
e6
)a
l
l
o
wso
n
et
o
e
s
t
i
ma
t
et
h
ef
e
r
r
i
t
ec
o
n
t
e
n
ti
nt
h
ewe
l
dme
t
a
l
so
f
E
3
0
9
La
s
we
l
l
a
sd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
,
wh
i
c
hi
sq
u
i
t
e
h
i
g
hi
nf
e
r
r
i
t
ec
o
n
t
e
n
t
.
T
a
b
l
e2s
h
o
wsHu
e
yc
o
r
r
o
s
i
o
nt
e
s
t
r
e
s
u
l
t
s(
6
5
%n
i
t
r
i
c
a
c
i
dt
e
s
t
)o
fa
l
lwe
l
dme
t
a
l
swi
t
h3
0
8a
n
d3
1
6t
y
p
e
s
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
.
I
nt
h
eHu
e
yt
e
s
t
,
s
p
e
c
i
me
n
s
a
r
eb
o
i
l
e
di
na6
5
%n
i
t
r
i
ca
c
i
ds
o
l
u
t
i
o
n
,
a
n
d
t
h
ei
n
t
e
r
g
r
a
n
u
l
a
rc
o
r
r
o
s
i
o
n s
u
s
c
e
p
t
i
b
i
l
i
t
y r
e
s
u
l
t
i
n
g
f
r
o
mp
r
e
c
i
p
i
t
a
t
i
o
no
fc
h
r
o
mi
u
m(
C
r
)c
a
r
b
i
d
e
sa
n
dσ
p
h
a
s
ei
s
e
v
a
l
u
a
t
e
d
.
T
y
p
e3
0
8o
r3
1
6s
t
a
i
n
l
e
s
ss
t
e
e
lwe
l
dme
t
a
l
s
,wh
i
c
h
c
o
n
t
a
i
nh
i
g
h
e
rC
rc
o
n
t
e
n
t
,h
a
v
eb
e
t
t
e
rc
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
ea
g
a
i
n
s
t
s
u
c
ho
x
i
d
i
z
i
n
ga
c
i
d
sa
sn
i
t
r
i
ca
c
i
d
.
Ont
h
eo
t
h
e
rh
a
n
d
,t
h
e
ya
l
s
oe
x
p
e
r
i
e
n
c
er
e
d
u
c
e
d
i
n
t
e
r
g
r
a
n
u
l
a
rc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ewh
e
nk
e
p
ta
tt
h
e
t
e
mp
e
r
a
t
u
r
e r
a
n
g
e b
e
t
we
e
n 6
0
0 a
n
d 8
0
0
°
C f
o
r
e
x
t
e
n
d
e
d p
e
r
i
o
d
sb
e
c
a
u
s
eC i
n t
h
ewe
l
d me
t
a
l
c
o
mb
i
n
e
swi
t
hC
r
t
of
o
r
mC
rc
a
r
b
i
d
e
s
.
T
h
i
si
sk
n
o
wn
a
ss
e
n
s
i
t
i
z
a
t
i
o
n
.A
WSa
n
do
t
h
e
rb
o
d
i
e
ss
p
e
c
i
f
yl
o
w
c
a
r
b
o
n we
l
d
i
n
g c
o
n
s
u
ma
b
l
e
s i
n o
r
d
e
rt
o r
a
i
s
e
i
n
t
e
r
g
r
a
n
u
l
a
r
c
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
.
S
e
n
s
i
t
i
z
e
dwe
l
dme
t
a
l
sc
a
nh
a
v
ec
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
r
e
s
t
o
r
e
dt
h
r
o
u
g
hq
u
e
n
c
h
i
n
g
,wh
i
c
hd
i
s
s
o
l
v
e
st
h
eC
r
c
a
r
b
i
d
e
sb
yf
i
r
s
th
e
a
t
i
n
gt
h
ewe
l
dme
t
a
lt
oa
b
o
u
t
1
0
5
0
°
Ca
n
dt
h
e
nc
o
o
l
i
n
gi
t
r
a
p
i
d
l
y
.
On t
h
eo
t
h
e
rh
a
n
d f
o
rs
u
c
h r
e
d
u
c
i
n
g a
c
i
d
sa
s
h
y
d
r
o
c
h
l
o
r
i
co
rs
u
l
f
u
r
i
ca
c
i
d
s
,
t
h
ea
d
d
i
t
i
o
no
fNi
,
Mo
a
n
d
/
o
rC
ui
n
c
r
e
a
s
e
sc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
,
a
n
dt
h
i
sh
a
s
l
e
dt
ot
h
ed
e
v
e
l
o
p
me
n
t
o
f
3
1
6t
y
p
es
t
a
i
n
l
e
s
s
s
t
e
e
l
s
.
2
.
3
0
9
Lt
y
p
ewe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
Mo
s
ts
t
r
u
c
t
u
r
e
sa
n
d e
q
u
i
p
me
n
ti
n o
i
lr
e
f
i
n
e
r
i
e
s
,
c
h
e
mi
c
a
lp
l
a
n
t
s
,p
o
we
rg
e
n
e
r
a
t
i
o
np
l
a
n
t
s
,c
h
e
mi
c
a
l
t
a
n
k
e
r
s
,l
i
q
u
e
f
i
e
dg
a
sp
l
a
n
t
sa
n
dc
a
r
r
i
e
r
s
,a
n
df
o
o
d
p
r
o
c
e
s
s
i
n
gp
l
a
n
t
s
c
o
n
s
i
s
t
o
f
d
i
s
s
i
mi
l
a
r
me
t
a
l
j
o
i
n
t
sa
n
d
c
l
a
ds
t
e
e
lc
o
mp
o
n
e
n
t
so
nd
i
f
f
e
r
e
n
ts
c
a
l
e
.T
h
i
si
st
o
mi
n
i
mi
z
e t
h
e ma
t
e
r
i
a
l c
o
s
t
s a
n
d ma
x
i
mi
z
e
p
e
r
f
o
r
ma
n
c
e
.
T
y
p
e3
0
9
Ls
t
a
i
n
l
e
s
ss
t
e
e
lwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sa
r
e
d
e
s
i
g
n
e
ds
ot
h
a
t
t
h
ewe
l
dme
t
a
l
s
c
a
na
c
c
o
mmo
d
a
t
et
h
e
a
d
v
e
r
s
ee
f
f
e
c
t
sc
a
u
s
e
db
yd
i
l
u
t
i
o
no
fc
a
r
b
o
no
rl
o
w-
a
l
l
o
y b
a
s
eme
t
a
l
s
.T
h
e
s
ea
d
v
e
r
s
i
t
i
e
si
n
c
l
u
d
et
h
e
f
o
r
ma
t
i
o
no
f
ma
r
t
e
n
s
i
t
e(
ab
r
i
t
t
l
es
t
r
u
c
t
u
r
e
)a
swe
l
l
a
s
a
u
s
t
e
n
i
t
i
c s
t
r
u
c
t
u
r
e
,wh
i
c
h
,a
s n
o
n
-
f
e
r
r
i
t
e
-
b
e
a
r
i
n
g
a
u
s
t
e
n
i
t
e
,i
ss
e
n
s
i
t
i
v
et
oh
o
tc
r
a
c
k
i
n
g
.T
y
p
e3
0
9L
s
t
a
i
n
l
e
s
ss
t
e
e
lwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sa
r
et
h
u
ss
u
i
t
a
b
l
e
f
o
rd
i
s
s
i
mi
l
a
rme
t
a
l
j
o
i
n
t
s
,
wh
i
c
hc
a
nc
o
n
t
a
i
nv
a
r
i
o
u
s
c
o
mb
i
n
a
t
i
o
n
s
o
f
a
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
s
s
t
e
e
l
a
n
dc
a
r
b
o
no
r
l
o
wa
l
l
o
ys
t
e
e
l
s
a
s
s
h
o
wni
nF
i
g
u
r
e
s
7a
n
d8
.
PWHT Co
r
r
o
s
i
o
nwe
i
g
h
t
l
o
s
s(
g
/
m2
・h
)
As
-
we
l
d
e
d 5
6
5
0
°
C×
2
h
r
s

AC*
1 9
1
0
5
0
°
C×
3
0
mi
n

WQ*
1 6
Pr
o
d
u
c
t
n
a
me
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n(
ma
s
s%) i
p
m(
i
n
c
h
/
mo
n
t
h
)
C Si Mn Ni Cr Mo As
-
we
l
d
e
d650°
C×2hr
s
AC*
1
1050°
C×30mi
n
WQ*
2
NC-
3
8 0
.
0
50
.
4
11
.
5 9
.
3 1
9
.
8 − 0
.
0
0
0
5
6 0
.
0
0
0
9
5 0
.
0
0
0
4
4
NC-
3
8
L0
.
0
30
.
3
71
.
5 9
.
5 1
9
.
8 − 0
.
0
0
0
5
2 0
.
0
0
0
6
9 0
.
0
0
0
4
7
NC-
3
6 0
.
0
6 0
.
4 1
.
5 1
2
.
2 1
9
.
2 2
.
2 0
.
0
0
1
7
1 − −
NC-
3
6
L0
.
0
3 0
.
4 1
.
5 1
2
.
0 1
9
.
2 2
.
1 0
.
0
0
1
3
8 − −
T
a
b
l
e2
:
Hu
e
yc
o
r
r
o
s
i
o
nt
e
s
t
r
e
s
u
l
t
so
f
a
l
l
we
l
dme
t
a
l
(
6
5
%n
i
t
r
i
ca
c
i
dt
e
s
t
)
*
1
:
Ai
r
-
c
o
o
l
i
n
g
*
2
:
Wa
t
e
r
q
u
e
n
c
h
i
n
g
F
i
g
u
r
e5
:
De
L
o
n
gd
i
a
g
r
a
m
T
a
b
l
e3
:
Ge
n
e
r
a
l
c
o
r
r
o
s
i
o
nt
e
s
t
r
e
s
u
l
t
so
f
NC-
3
6
La
l
l
we
l
d
me
t
a
l
b
y5
%d
i
l
u
t
e
ds
u
l
f
u
r
i
ca
c
i
d(
J
I
SG0
5
9
1
)
*
1
:
Ai
r
-
Co
o
l
i
n
g
*
2
:
Wa
t
e
r
Qu
e
n
c
h
i
n
g
F
i
g
u
r
e6
:
WRC-
1
9
9
2d
i
a
g
r
a
m
F
i
g
u
r
e7
:
Un
d
e
r
-
l
a
y
i
n
g
o
nf
e
r
r
i
t
i
c
s
t
e
e
l
p
a
r
t
o
f
c
l
a
ds
t
e
e
l
4
Carbon or low-alloy
base metal
DW-309L
buffer layer
E308 or E308L
weld metal
308 or 304L
base metal
Welding Current (A)
D
W
w
i
r
e
0
.
9
m
m
Stick electrode 4.0mm
D
W
w
i
r
e
1
.
2
m
m
D
W
w
i
r
e
1
.
6
m
m
M
IG
wire
1.6m
m
Deposition
Rate
(g/min)
140
120
100
80
60
40
20
0
0 100 200 300 400
Arc
voltage
(V)
Welding Current (A)
40
36
32
28
24
20
50
DW wire, 0.9mm
(CO2)
DW wire, 1.6mm
(CO2)
DW wire, 1.2mm
(CO2)
MIG wire, 1.2mm
(Ar+2%O2)
100 150 200 250 300 350 400
Over-Head
Holizontal
Vertical Upward Vertical Downward
3
.
We
l
di
ngpr
oc
e
s
s
e
s
I
na
d
d
i
t
i
o
nt
os
e
c
u
r
i
n
gt
h
er
e
q
u
i
r
e
dq
u
a
l
i
t
y
,we
l
d
i
n
g
p
r
o
c
e
d
u
r
e
smu
s
t
b
ep
e
r
f
o
r
me
dwi
t
h
i
nas
p
e
c
i
f
i
e
dt
i
me
a
n
db
u
d
g
e
t
.
On
ewa
yt
os
e
l
e
c
t
a
na
p
p
r
o
p
r
i
a
t
ewe
l
d
i
n
g
p
r
o
c
e
s
si
st
oc
o
mp
a
r
et
h
ed
e
p
o
s
i
t
i
o
nr
a
t
e
so
fGT
A
W,
S
MA
W,F
C
A
W,S
A
W a
swe
l
la
st
h
er
e
s
p
e
c
t
i
v
e
a
d
v
a
n
t
a
g
e
sa
n
dd
i
s
a
d
v
a
n
t
a
g
e
so
fe
a
c
hp
r
o
c
e
s
s
.
F
i
g
u
r
e
9s
h
o
ws
t
h
ed
e
p
o
s
i
t
i
o
nr
a
t
eo
f
e
a
c
hwe
l
d
i
n
gp
r
o
c
e
s
s
a
s
af
u
n
c
t
i
o
no
fwe
l
d
i
n
gc
u
r
r
e
n
ta
n
dF
i
g
u
r
e1
0
,t
h
e
o
p
t
i
mu
mr
a
n
g
eo
f
t
h
e
i
r
we
l
d
i
n
gp
a
r
a
me
t
e
r
s
.
Ko
b
eS
t
e
e
l
p
r
o
v
i
d
e
st
wot
y
p
e
so
fF
C
Wsf
o
rs
t
a
i
n
l
e
s
s
s
t
e
e
l
s
:
o
n
ef
o
r
f
l
a
t
a
n
dh
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
ga
n
dt
h
e
o
t
h
e
rf
o
ra
l
l
-
p
o
s
i
t
i
o
n we
l
d
i
n
g i
n
c
l
u
d
i
n
g v
e
r
t
i
c
a
l
,
h
o
r
i
z
o
n
t
a
l
a
n
do
v
e
r
h
e
a
dp
o
s
i
t
i
o
n
s
.
F
CWsf
o
rf
l
a
t
a
n
d
h
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
gc
a
np
r
o
v
i
d
et
h
eb
e
a
u
t
i
f
u
l
b
e
a
d
a
p
p
e
a
r
a
n
c
ep
a
r
t
i
c
u
l
a
rt
os
t
a
i
n
l
e
s
ss
t
e
e
lb
e
c
a
u
s
et
h
e
y
a
l
l
o
wb
e
a
ds
u
r
f
a
c
e
s
t
ob
ec
o
v
e
r
e
dwi
t
hu
n
i
f
o
r
ms
l
a
ga
s
s
h
o
wni
nF
i
g
u
r
e1
1
.
Al
l
-
p
o
s
i
t
i
o
nwe
l
d
i
n
gb
yDW-
3
0
8
L
P
i
s
s
h
o
wni
nF
i
g
u
r
e
s
1
2
.
I
na
d
d
i
t
i
o
n
,
Ko
b
e
l
c
oF
C
Wsp
r
o
v
i
d
es
t
a
b
l
ea
r
cd
u
et
o
t
h
a
tt
h
e
i
rs
mo
o
t
hwi
r
ef
e
e
d
i
n
gmi
n
i
mi
z
e
st
h
ea
r
c
l
e
n
g
t
hf
l
u
c
t
u
a
t
i
o
na
swe
l
la
sl
i
t
t
l
es
p
a
t
t
e
ra
n
df
u
me
g
e
n
e
r
a
t
i
o
n
.
T
h
es
p
a
t
t
e
r
g
e
n
e
r
a
t
i
o
nc
o
mp
a
r
i
s
o
na
n
dt
h
e
f
u
mee
mi
s
s
i
o
nr
a
t
ec
o
mp
a
r
i
s
o
nb
e
t
we
e
nDW-
3
0
8
La
n
d
t
h
es
a
me3
0
8
Lt
y
p
eF
C
Wsf
r
o
m o
t
h
e
rs
u
p
p
l
i
e
ra
r
e
s
h
o
wni
nF
i
g
u
r
e
s
1
3a
n
d1
4
,
r
e
s
p
e
c
t
i
v
e
l
y
.
We
l
d
i
n
g s
t
a
i
n
l
e
s
ss
t
e
e
li
n v
e
r
t
i
c
a
la
n
d o
v
e
r
h
e
a
d
p
o
s
i
t
i
o
n
si
sc
o
n
s
i
d
e
r
e
dt
ob
emo
r
ed
i
f
f
i
c
u
l
t
t
h
a
nmi
l
d
s
t
e
e
l
b
e
c
a
u
s
ei
t
s
mo
l
t
e
nme
t
a
l
wa
s
mo
r
el
i
k
e
l
yt
od
r
o
p
.
T
h
i
s
i
s
d
u
et
ot
h
ed
i
f
f
e
r
e
n
c
e
s
i
nt
h
ep
h
y
s
i
c
a
l
p
r
o
p
e
r
t
i
e
s
o
fs
t
a
i
n
l
e
s
ss
t
e
e
l
:
i
t
h
a
sal
o
we
rme
l
t
i
n
gp
o
i
n
t
(
1
4
0
0
-
1
4
2
7
°
C)t
h
a
nmi
l
ds
t
e
e
l(
1
5
0
0
-
1
5
2
7
°
C)
,a
n
dl
e
s
s
t
h
e
r
ma
lc
o
n
d
u
c
t
i
v
i
t
y(
0
.
0
4c
a
l
/
c
m/
s
e
c
/
°
Ci
nt
h
e0
-
1
0
0
°
Cr
a
n
g
ea
s
o
p
p
o
s
e
dt
o0
.
1
1c
a
l
/
c
m/
s
e
c
/
°
Ci
nt
h
e0
-
1
0
0
°
Cr
a
n
g
e
)
.
F
i
g
u
r
e8
:
Bu
f
f
e
r
-
l
a
y
i
n
go
f
d
i
s
s
i
mi
l
a
r
me
t
a
l
j
o
i
n
t
F
i
g
u
r
e9
:
De
p
o
s
i
t
i
o
nr
a
t
ea
saf
u
n
c
t
i
o
no
f
we
l
d
i
n
gc
u
r
r
e
n
t
F
i
g
u
r
e1
0
:
Op
t
i
mu
mr
a
n
g
e
so
f
we
l
d
i
n
gc
u
r
r
e
n
t
a
n
da
r
c
v
o
l
t
a
g
e
F
i
g
u
r
e1
1
:
Be
a
da
p
p
e
a
r
a
n
c
eo
f
DW-
3
0
8
Lh
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
gb
yDW-
3
0
8
L
F
i
g
u
r
e1
2
:
Cr
o
s
s
-
s
e
c
t
i
o
no
f
ma
c
r
o
s
t
r
u
c
t
u
r
eo
f
DW-
3
0
8
L
P
f
i
l
l
e
t
we
l
d(
3
0
4
Lb
a
s
ep
l
a
t
eo
f
3mmt
h
i
c
k
)
5
Spatter
generation
(g/min.)
Other company’s
E308LT0 type
DW-308L
200A
Ar-25%CO2
250A
100%CO2
200A
100%CO2
150A
100%CO2
0.0
0.2
0.4
0.6
0.8
1.0
DW-308L
Fumuemission
rate
(mg/min.)
0
100
200
300
400
500
600
Other company’s
E308LT0 type
100%CO2
Ar-25%CO2
Welding speed
40cm/min
30cm/min
Proper
dilution
for 1st
layer
20cm/min
30
20
10
150 200
Welding current (A)
Dilution
(%)
0
1.2mmΦ
Welding speed
40cm/min
30cm/min
20cm/min
Welding current (A)
Dilution
(%)
1.6mmΦ
40
30
20
200
10
0
Proper
dilution
for 1st
layer
250 300
4
.
Ge
ne
r
a
l
a
ppl
i
c
a
t
i
onsof
FCAW
4
.
1But
t
j
oi
nt
we
l
di
ng
Ap
p
l
i
c
a
b
l
ep
l
a
t
et
h
i
c
k
n
e
s
s
e
sa
r
e2
mmo
rmo
r
ewi
t
ha
1
.
2
mmd
i
a
.
wi
r
ea
n
d5
mmo
r
mo
r
ewi
t
ha1
.
6
mmd
i
a
.
wi
r
ei
nf
l
a
t
p
o
s
i
t
i
o
n
.
P
-
s
e
r
i
e
s
F
CWse
n
a
b
l
ewe
l
d
i
n
go
f
t
h
i
np
l
a
t
e
s
wi
t
h3
-
4
mmt
h
i
c
k
n
e
s
s
i
nv
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n
.
On
e
-
s
i
d
ewe
l
d
i
n
gc
a
nb
ea
p
p
l
i
e
dt
oas
i
n
g
l
eV
-
s
h
a
p
e
g
r
o
o
v
ewi
t
ha3
-
4mmr
o
o
t
o
p
e
n
i
n
gi
nf
l
a
t
,
h
o
r
i
z
o
n
t
a
l
a
n
dv
e
r
t
i
c
a
l
p
o
s
i
t
i
o
n
sb
yu
s
i
n
gab
a
c
k
i
n
gma
t
e
r
i
a
lo
f
F
B
B
-
3(
Ts
i
z
e
)
.
4
.
2Hor
i
z
ont
a
l
f
i
l
l
e
t
we
l
di
ng
Awe
l
d
i
n
gs
p
e
e
do
fa
p
p
r
o
x
i
ma
t
e
l
y3
0
-
7
0c
m/
mi
ni
s
r
e
c
o
mme
n
d
e
dt
oo
b
t
a
i
ns
mo
o
t
hb
e
a
da
p
p
e
a
r
a
n
c
ea
n
d
s
u
f
f
i
c
i
e
n
t
p
e
n
e
t
r
a
t
i
o
ni
nh
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
g
.
Wi
t
h
at
y
p
e3
0
9F
C
W,
d
i
s
s
i
mi
l
a
r
-
me
t
a
l
we
l
d
i
n
go
f
s
t
a
i
n
l
e
s
s
s
t
e
e
la
g
a
i
n
s
tc
a
r
b
o
ns
t
e
e
lc
a
nb
ep
e
r
f
o
r
me
dwi
t
ht
h
e
s
a
mewe
l
d
i
n
gc
o
n
d
i
t
i
o
n
sa
su
s
e
df
o
rs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
g
.I
no
r
d
e
rt
os
e
c
u
r
et
h
eo
p
t
i
mu
m f
e
r
r
i
t
e
c
o
n
t
e
n
t
,
h
o
we
v
e
r
,
t
h
ewe
l
d
i
n
gc
u
r
r
e
n
t
s
h
o
u
l
db
e2
0
0
A
o
rl
e
s
sa
n
dt
h
ewe
l
d
i
n
gs
p
e
e
d
,
4
0c
m/
mi
no
rs
l
o
we
r
wi
t
ha1
.
2mmd
i
a
.
F
CW.
4
-
3Ov
e
r
l
a
ya
ndc
l
a
d-
s
t
e
e
l
we
l
di
ng
T
h
ef
i
r
s
t
l
a
y
e
ro
fo
v
e
r
l
a
ywe
l
d
i
n
go
n
t
oac
a
r
b
o
ns
t
e
e
l
b
a
s
eme
t
a
l
s
h
o
u
l
db
ewe
l
d
e
dwi
t
ha3
0
9(
o
r
3
0
9
Mo
L
)
F
C
W b
yt
h
eh
a
l
fl
a
p
p
i
n
gme
t
h
o
d
.I
fd
i
l
u
t
i
o
nb
yt
h
e
b
a
s
eme
t
a
l
i
se
x
c
e
s
s
i
v
e
,
t
h
ef
e
r
r
i
t
ec
o
n
t
e
n
t
o
f
t
h
ewe
l
d
me
t
a
ld
e
c
r
e
a
s
e
s a
n
d h
o
tc
r
a
c
k
i
n
g ma
y o
c
c
u
r
.
T
h
e
r
e
f
o
r
e
,
i
ti
si
mp
o
r
t
a
n
tt
ou
s
ea
p
p
r
o
p
r
i
a
t
ewe
l
d
i
n
g
c
o
n
d
i
t
i
o
n
st
oc
o
n
t
r
o
l
d
i
l
u
t
i
o
n
,
p
a
r
t
i
c
u
l
a
r
l
y
,
o
nt
h
ef
i
r
s
t
l
a
y
e
r
.I
no
r
d
e
rt
oo
b
t
a
i
nt
h
ep
r
o
p
e
rd
i
l
u
t
i
o
nr
a
t
i
o
,
we
l
d
i
n
gc
u
r
r
e
n
t
s
s
h
o
u
l
db
e2
0
0
Ao
r
l
o
we
r
a
n
dwe
l
d
i
n
g
s
p
e
e
d
,
2
0
-
4
0c
m/
mi
nwi
t
ha1
.
2mmd
i
a
.
F
CW.
Wi
t
ha
1
.
6mmd
i
a
.
F
CW,
u
s
ewe
l
d
i
n
gc
u
r
r
e
n
t
s
i
nt
h
e2
0
0
-
2
5
0
Ar
a
n
g
ea
n
dwe
l
d
i
n
gs
p
e
e
d
s
,i
nt
h
e2
0
-
3
0c
m/
mi
n
r
a
n
g
e(
s
e
eF
i
g
u
r
e
s
1
5a
n
d1
6
)
.
F
i
g
u
r
e1
3
:
Sp
a
t
t
e
r
g
e
n
e
r
a
t
i
o
nc
o
mp
a
r
i
s
o
n
F
i
g
u
r
e1
4
:
F
u
mee
mi
s
s
i
o
nr
a
t
ec
o
mp
a
r
i
s
o
n
F
i
g
u
r
e1
5
:
Di
l
u
t
i
o
nr
a
t
i
oa
saf
u
n
c
t
i
o
no
f
we
l
d
i
n
gc
u
r
r
e
n
t
(
1
.
2
mmd
i
a
.
)
F
i
g
u
r
e1
6
:
Di
l
u
t
i
o
nr
a
t
i
oa
saf
u
n
c
t
i
o
no
f
we
l
d
i
n
gc
u
r
r
e
n
t
(
1
.
6
mmd
i
a
.
)
6
Strip overlay
Auto-GTAW overlay
Strip overlay
SMAW or FCAW
overlay
Base metal
Butt weld of shell
Strip electrode
Cavity
Arc
Molten slag
Solid slag
Weld
metal
Welding
direction
Weld pool
Molten droplet
Base metal
Flux
Molten droplet
Molten droplet
Base metal
Weld pool
Weld pool
Weld
metal
Solid slag
Molten slag
Strip electrode
Welding
direction
Flux
2mm 2mm
Consumables for overlay welding of
pressure vessels
(Types 347 and 317L stainless steels)
1
.
P
r
e
f
a
c
e
P
r
e
s
s
u
r
ev
e
s
s
e
l
ss
u
c
ha
sn
u
c
l
e
a
rr
e
a
c
t
o
r
sa
n
do
i
l
r
e
f
i
n
i
n
gr
e
a
c
t
o
r
s(
f
o
rd
e
s
u
l
f
u
r
i
z
a
t
i
o
n
)a
r
eg
e
n
e
r
a
l
l
y
c
o
mp
r
i
s
e
do
fl
e
s
se
x
p
e
n
s
i
v
e
,
h
i
g
hs
t
r
e
n
g
t
hl
o
wa
l
l
o
y
s
t
e
e
l
s
.I
n o
r
d
e
rt
o e
n
s
u
r
e a
p
p
r
o
p
r
i
a
t
e c
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
e
,h
o
we
v
e
r
,t
h
ei
n
s
i
d
e
so
ft
h
e
s
ep
r
e
s
s
u
r
e
v
e
s
s
e
l
sa
r
eo
v
e
r
l
a
y
-
we
l
d
e
dwi
t
ha
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
s
s
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
.
Wh
e
naf
a
c
i
l
i
t
yl
i
k
ead
e
s
u
l
f
u
r
i
z
a
t
i
o
nr
e
a
c
t
o
rt
h
a
t
h
a
n
d
l
e
sh
y
d
r
o
g
e
ns
u
l
f
i
d
eu
n
d
e
rh
i
g
ht
e
mp
e
r
a
t
u
r
ea
n
d
p
r
e
s
s
u
r
ei
so
u
t
o
fo
p
e
r
a
t
i
o
n
,
p
o
l
y
t
h
i
o
n
i
ca
c
i
di
so
f
t
e
n
g
e
n
e
r
a
t
e
da
n
dma
yc
a
u
s
es
t
r
e
s
sc
o
r
r
o
s
i
o
nc
r
a
c
k
s
(
S
S
C)
.T
h
e
r
e
f
o
r
e
,o
na
ni
n
t
e
r
n
a
ls
t
r
u
c
t
u
r
eo
ra
n
o
v
e
r
l
a
ywe
l
d
,t
y
p
e3
4
7s
t
a
i
n
l
e
s
ss
t
e
e
li
sc
o
mmo
n
l
y
u
s
e
d
,
i
n
s
t
e
a
do
f
c
o
n
v
e
n
t
i
o
n
a
l
a
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
.
T
y
p
e3
4
7 s
t
e
e
li
sa
b
l
et
o p
r
e
v
e
n
ti
n
t
e
r
g
r
a
n
u
l
a
r
c
o
r
r
o
s
i
o
nb
e
c
a
u
s
ei
ti
n
c
l
u
d
e
sn
i
o
b
i
u
m (
Nb
)i
ni
t
s
c
o
mp
o
s
i
t
i
o
n
.
T
y
p
e3
1
7
Ls
t
a
i
n
l
e
s
s
s
t
e
e
l
c
a
na
l
s
ob
eu
s
e
df
o
r
r
e
a
c
t
o
r
s
h
a
n
d
l
i
n
go
i
l
r
i
c
hi
ns
u
l
f
u
r
(
S
)
.
2
.
Ov
e
r
l
a
ywe
l
d
i
n
gp
r
o
c
e
d
u
r
e
An
u
mb
e
ro
fwe
l
d
i
n
gme
t
h
o
d
sa
r
ea
p
p
l
i
e
di
nt
h
e
i
n
t
e
r
n
a
l
we
l
d
i
n
go
fd
e
s
u
l
f
u
r
i
z
a
t
i
o
nr
e
a
c
t
o
r
sa
ss
h
o
wn
i
nF
i
g
u
r
e1
.S
t
r
i
po
v
e
r
l
a
ywe
l
d
i
n
gi
sa
ne
f
f
i
c
i
e
n
t
p
r
o
c
e
s
sf
o
rs
u
c
hl
a
r
g
e
-
s
i
z
e
dr
e
a
c
t
o
r
s
,
wh
i
l
ea
u
t
o
ma
t
i
c
GT
A
W i
su
s
e
df
o
rt
h
ei
n
s
i
d
e
so
fs
ma
l
l
-
d
i
a
me
t
e
r
n
o
z
z
l
e
s
.
F
C
A
W/
S
MA
Wi
s
a
p
p
l
i
e
df
o
r
o
v
e
r
l
a
ywe
l
d
i
n
g
o
fb
u
t
tj
o
i
n
tp
a
r
t
sa
n
da
l
s
of
o
ra
s
s
e
mb
l
i
n
gi
n
t
e
r
n
a
l
e
q
u
i
p
me
n
t
.
S
A
Wa
n
dE
S
Wa
r
et
wome
t
h
o
d
sf
o
r
c
a
r
r
y
i
n
go
u
t
s
t
r
i
p
o
v
e
r
l
a
ywe
l
d
i
n
g
,t
h
ep
r
o
c
e
s
st
h
a
ta
c
c
o
u
n
t
sf
o
rt
h
e
l
a
r
g
e
s
t
c
o
n
s
u
mp
t
i
o
no
fwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
.
Amo
n
g
t
h
ed
i
f
f
e
r
e
n
c
e
s
b
e
t
we
e
nt
h
et
wome
t
h
o
d
s
(
s
e
eT
a
b
l
e1
)
,
t
h
emo
s
t
s
i
g
n
i
f
i
c
a
n
t
i
st
h
a
t
S
A
W g
e
n
e
r
a
t
e
sa
na
r
ct
h
a
t
me
l
t
st
h
es
t
r
i
p
,wh
i
l
eE
S
W me
l
t
st
h
es
t
r
i
pv
i
at
h
e
e
l
e
c
t
r
i
cr
e
s
i
s
t
a
n
c
eo
fmo
l
t
e
ns
l
a
g
.
S
A
W r
e
q
u
i
r
e
sl
e
s
s
h
e
a
t
i
n
p
u
t
t
h
a
nE
S
W,
r
e
s
u
l
t
i
n
gi
nl
o
ws
u
s
c
e
p
t
i
b
i
l
i
t
yt
o
h
y
d
r
o
g
e
n
-
i
n
d
u
c
e
dd
i
s
b
o
n
d
i
n
g
.
Ont
h
eo
t
h
e
r
h
a
n
d
,
wi
t
h
E
S
W,al
o
wb
a
s
eme
t
a
ld
i
l
u
t
i
o
nr
a
t
i
op
r
o
d
u
c
e
sl
o
w
c
a
r
b
o
nwe
l
dme
t
a
l
wi
t
hs
u
p
e
r
bc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
.
I
t
a
l
s
o p
r
o
v
i
d
e
s a s
mo
o
t
h o
v
e
r
l
a
p
p
e
d c
o
n
n
e
c
t
i
o
n
,
e
s
p
e
c
i
a
l
l
ywh
e
nma
g
n
e
t
i
cc
o
n
t
r
o
l
i
s
a
p
p
l
i
e
d
.
3
.
P
r
o
p
e
r
t
i
e
so
f
Ko
b
e
l
c
oo
v
e
r
l
a
ywe
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
s
P
r
e
s
s
u
r
e v
e
s
s
e
l
s u
s
u
a
l
l
y r
e
q
u
i
r
e p
o
s
t
-
we
l
d h
e
a
t
t
r
e
a
t
me
n
t
(
P
WHT)d
u
r
i
n
gf
a
b
r
i
c
a
t
i
o
nf
o
rs
t
r
e
s
sr
e
l
i
e
f
(S
R) o
f l
o
w a
l
l
o
y b
a
s
e me
t
a
l
s a
n
d q
u
a
l
i
t
y
i
mp
r
o
v
e
me
n
to
ft
h
ema
t
e
r
i
a
l
s
.Ho
we
v
e
r
,t
h
ea
p
p
l
i
e
d
P
WHTt
e
mp
e
r
a
t
u
r
ec
a
np
r
o
d
u
c
eh
a
r
mf
u
l
i
n
t
e
r
me
t
a
l
l
i
c
c
o
mp
o
u
n
d
so
r
p
r
e
c
i
p
i
t
a
t
e
si
nt
h
ewe
l
dme
t
a
l
s
,
l
e
a
d
i
n
g
Pr
o
c
e
s
s SA
W ESW
Sc
h
e
ma
t
i
c
v
i
e
w
Ar
cg
e
n
e
r
a
t
i
o
n Y
e
s No
El
e
c
t
r
o
d
e
me
l
t
e
db
y Ar
ch
e
a
t He
a
t
o
f
mo
l
t
e
ns
l
a
g
r
e
s
i
s
t
a
n
c
e
Di
l
u
t
i
o
nr
a
t
i
o 1
5
-
2
0
% 5
-
1
0
%
Ma
g
n
e
t
i
cc
o
n
t
r
o
l No
t
p
o
s
s
i
b
l
e Po
s
s
i
b
l
e
Be
a
d
a
p
p
e
a
r
a
n
c
e
Cr
o
s
s
-
s
e
c
t
i
o
n
a
l
ma
c
r
o
s
t
r
u
c
t
u
r
e
(
Ov
e
r
l
a
p
p
e
d
c
o
n
n
e
c
t
i
o
np
a
r
t
)
T
a
b
l
e1
:
Co
n
c
e
p
t
so
f
o
v
e
r
l
a
ywe
l
d
i
n
gp
r
o
c
e
s
s
e
s
(
SA
Wa
n
dE
SW)
wi
t
hs
t
r
i
pe
l
e
c
t
r
o
d
e
s
F
i
g
u
r
e1
:
Sc
h
e
ma
t
i
cv
i
e
wo
f
p
r
e
s
s
u
r
ev
e
s
s
e
l
a
n
do
v
e
r
l
a
y
we
l
d
i
n
g
7
12 13 14 15 16 17 18 19 20 21 22 23 24 25
3
4
5
6
SAW process
(1150A-25V)
Proper dilution
for 1st layer
(SAW)
Proper dilution
for 1st layer
(ESW)
Welding speed (cm/min.)
Dilution
ratio
(%)
Weld
thickness
(mm)
ESW process
(1200A-26V)
12 13 14 15 16 17 18 19 20 21 22 23 24 25
5
0
10
15
20
25
t
oe
mb
r
i
t
t
l
e
me
n
t
a
n
dr
e
d
u
c
e
dc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
.
I
t
i
s
t
h
e
r
e
f
o
r
e n
e
c
e
s
s
a
r
y t
o c
o
n
t
r
o
l b
o
t
h we
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
sa
n
dwe
l
d
i
n
gp
r
o
c
e
d
u
r
e
si
no
r
d
e
rt
o
o
b
t
a
i
no
p
t
i
mu
m c
h
e
mi
c
a
lc
o
mp
o
s
i
t
i
o
n
sa
n
df
e
r
r
i
t
e
c
o
n
t
e
n
t
o
nt
h
eo
v
e
r
l
a
ywe
l
dme
t
a
l
.
T
a
b
l
e2s
h
o
wsa
l
lwe
l
dme
t
a
lc
h
e
mi
c
a
lc
o
mp
o
s
i
t
i
o
n
s
o
ft
y
p
e3
4
7we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
,
T
a
b
l
e3
,
a
u
s
t
e
n
i
t
i
c
s
t
a
i
n
l
e
s
ss
t
e
e
lwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
rs
t
r
i
po
v
e
r
l
a
y
we
l
d
i
n
ga
n
dT
a
b
l
e4
,
c
h
e
mi
c
a
lc
o
mp
o
s
i
t
i
o
n
so
ft
y
p
e
3
4
7we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
f
o
r
s
t
r
i
po
v
e
r
l
a
ywe
l
d
i
n
g
.
As
a
l
l
o
f
Ko
b
e
l
c
owe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sa
r
eo
p
t
i
mi
z
e
d
i
nt
e
r
mso
f
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
df
e
r
r
i
t
ec
o
n
t
e
n
t
,
t
h
e
yp
e
r
f
o
r
mwe
l
l
a
g
a
i
n
s
t
c
r
a
c
k
i
n
ga
n
de
mb
r
i
t
t
l
e
me
n
t
d
u
r
i
n
gP
WHT
.
Wh
i
l
ei
t
i
swe
l
l
k
n
o
wnt
h
a
t
Nbi
nt
y
p
e
3
4
7s
t
a
i
n
l
e
s
ss
t
e
e
lh
a
sa
na
d
v
e
r
s
ee
f
f
e
c
to
ns
l
a
g
r
e
mo
v
a
l
,Ko
b
e
l
c
o
’
s t
y
p
e 3
4
7 c
o
n
s
u
ma
b
l
e
s a
r
e
d
e
s
i
g
n
e
df
o
rs
u
p
e
r
bs
l
a
gr
e
mo
v
a
b
i
l
i
t
ya
ss
h
o
wni
n
T
a
b
l
e1
.
4
.
Spe
c
i
a
l
c
a
r
ef
orov
e
r
l
a
ywe
l
di
ng
Wh
e
no
v
e
r
l
a
ywe
l
d
i
n
gi
sc
o
n
d
u
c
t
e
do
nc
a
r
b
o
no
rl
o
w
a
l
l
o
ys
t
e
e
l
s
,
t
h
eb
a
s
eme
t
a
l
d
i
l
u
t
i
o
nr
a
t
i
oma
yf
l
u
c
t
u
a
t
e
d
e
p
e
n
d
i
n
go
nt
h
ewe
l
d
i
n
gp
a
r
a
me
t
e
r
su
s
e
da
t
t
h
ef
i
r
s
t
l
a
y
e
r
,
c
a
u
s
i
n
gc
h
a
n
g
e
si
nc
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sf
r
o
m
wh
a
t
i
s
r
e
q
u
i
r
e
di
nt
h
ewe
l
dme
t
a
l
.
F
i
g
u
r
e2s
h
o
wst
h
e
i
n
f
l
u
e
n
c
eo
fwe
l
d
i
n
gs
p
e
e
do
nwe
l
dt
h
i
c
k
n
e
s
sa
n
d
d
i
l
u
t
i
o
nr
a
t
i
oi
ns
t
r
i
po
v
e
r
l
a
ywe
l
d
i
n
g
.
I
t
c
a
nb
es
e
e
n
t
h
a
tt
h
eb
a
s
eme
t
a
ld
i
l
u
t
i
o
n r
a
t
i
o v
a
r
i
e
sg
r
e
a
t
l
y
a
c
c
o
r
d
i
n
gt
oc
h
a
n
g
e
s
i
nwe
l
d
i
n
gs
p
e
e
d
.
I
t
i
s
,
t
h
e
r
e
f
o
r
e
,
n
e
c
e
s
s
a
r
y t
o c
o
n
f
i
r
m t
h
ewe
l
d
i
n
g c
o
n
d
i
t
i
o
n
si
n
a
d
v
a
n
c
es
u
c
ha
swe
l
d
i
n
gc
u
r
r
e
n
t
,a
n
ds
t
r
i
ps
t
i
c
k
-
o
u
t
l
e
n
g
t
h
.
Pr
o
c
e
s
s GT
A
W SMA
W F
CA
W
Pr
o
d
u
c
t
n
a
me TG-
S3
4
7 TG-
S347L NC-
3
7 NC-
3
7
L DW-
3
4
7
A
WSc
l
a
s
s
. A5
.
9
ER3
4
7
A5
.
9
ER3
4
7
L
A5
.
4
E3
4
7
-
1
6
A5
.
4
E3
4
7
L
-
1
6
A5
.
2
2
E3
4
7
T0
-
1
/
4
Po
l
a
r
i
t
y DCEN ACo
r
DCEP DCEP
Sh
i
e
l
d
i
n
g
g
a
s 1
0
0
%Ar − − CO2o
r
Ar
+
CO2
C 0
.
0
5 0
.
0
3 0
.
0
6 0
.
0
4 0
.
0
2
Si 0
.
4
0 0
.
3
9 0
.
5
5 0
.
5
8 0
.
3
7
Mn 2
.
1 1
.
5 1
.
5 2
.
3 1
.
2
Ni 1
0
.
0 9
.
4 1
0
.
1 9
.
7 1
0
.
3
Cr 1
9
.
3 1
8
.
9 1
9
.
6 1
9
.
1 1
8
.
3
Mo 0
.
0
7 0
.
1
1 0
.
0
4 0
.
0
3 0
.
0
6
Nb 0
.
6
0 0
.
6
6 0
.
6
7 0
.
5
9 0
.
6
0
F
N 6 1
0 8 8 5
F
NW 7 1
0 6 8 5
Pr
o
c
e
s
s
Ap
p
l
i
c
a
t
i
o
n
SA
W ESW
St
r
i
p*
2 F
l
u
x St
r
i
p*
2 F
l
u
x
T
y
p
e
3
0
8
L
Si
n
g
l
el
a
y
e
r − − US-
B3
0
9
L PF-
B7
FK
Do
u
b
l
el
a
y
e
r
*
1 US-
B3
0
8
L PF-
B1 US-
B3
0
8
L PF-
B7
FK
T
y
p
e
3
1
6
L Do
u
b
l
el
a
y
e
r
*
1 − − US-
B3
1
6
ELPF-
B7
FK
T
y
p
e
3
1
7
L Do
u
b
l
el
a
y
e
r
*
1 − − US-
B3
1
7
L PF-
B7
FK
T
y
p
e
3
4
7
Si
n
g
l
el
a
y
e
rUS-
B3
4
7
LPPF-
B1
FP US-
B3
0
9
LCbPF-
B7
FK
US-
B24.
13LNb PF-
B7
HM
Do
u
b
l
el
a
y
e
r
*
1 US-
B3
4
7
LDPF-
B1
FK US-
B3
4
7
LDPF-
B7
FK
Bu
f
f
e
r
l
a
y
e
r US-
B3
0
9
L PF-
B1 US-
B3
0
9
L PF-
B7
FK
Pr
o
c
e
s
s SA
W ESW
Ap
p
l
i
c
a
t
i
o
n Si
n
g
l
el
a
y
e
rDo
u
b
l
el
a
y
e
r Si
n
g
l
el
a
y
e
r Do
u
b
l
el
a
y
e
r
Pr
o
d
u
c
t
n
a
me
US-
B347LP
/
PF-
B1FP
US-
B347LD
/
PF-
B1FK
US-
B309LCb
/
PF-
B7FK
US-
B24.
13LNb
/
PF-
B7HM
US-
B347LD
/
PF-
B7FK
Ba
s
eme
t
a
l
o
r
b
u
f
f
e
r
l
a
y
e
r
ASTM
A3
8
7Gr
2
2
US-
B3
0
9
L
/
PF-
B1 AST
MA3
8
7Gr
2
2 US-
B3
0
9
L
/
PF-
B7
FK
C 0
.
0
5 0
.
0
4 0
.
0
3 0
.
0
4 0
.
0
3
Si 0
.
5
8 0
.
5
0 0
.
6
0 0
.
4
9 0
.
4
2
Mn 1
.
4 1
.
3 1
.
8 1
.
4 1
.
8
Ni 1
0
.
0 1
0
.
4 1
0
.
7 9
.
6 1
0
.
1
Cr 1
9
.
4 1
9
.
4 1
9
.
2 1
8
.
7 1
8
.
5
Mo 0
.
1
9 0
.
0
4 0
.
1
2 0
.
2
8 0
.
0
3
Nb 0
.
5
3 0
.
5
3 0
.
5
0 0
.
5
6 0
.
5
3
F
N 9 8 8 8 5
F
NW 7 7 7 8 6
T
a
b
l
e4
:
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
t
y
p
e3
4
7s
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
s
t
r
i
po
v
e
r
l
a
ywe
l
d
i
n
g
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
c
l
a
d
d
i
n
gwe
l
dme
t
a
l
(
ma
s
s%)
T
a
b
l
e2
:
Al
l
we
l
dme
t
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
t
y
p
e3
4
7
s
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
a
l
l
we
l
dme
t
a
l
(
ma
s
s%)
SMA
Wa
n
dF
CA
W:
Al
l
we
l
dme
t
a
l
o
f
ACa
n
d1
0
0
%CO2
,
r
e
s
p
e
c
t
i
v
e
l
y
.
T
a
b
l
e3
:
We
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
s
t
r
i
po
v
e
r
l
a
ywe
l
d
i
n
g
*
1Do
u
b
l
el
a
y
e
r
:
T
h
ef
i
r
s
t
l
a
y
e
r
o
f
t
h
ed
o
u
b
l
el
a
y
e
r
r
e
q
u
i
r
e
sb
u
f
f
e
r
l
a
y
e
r
we
l
d
i
n
gwi
t
hat
y
p
e3
0
9
Ls
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
.
*
2St
r
i
ps
i
z
e
:
0
.
4
mmt
h
i
c
k×2
5
,
5
0a
n
d7
5mmwi
d
eo
r
0
.
5
mmt
h
i
c
k×3
0
,
6
0a
n
d9
0mmwi
d
e
F
i
g
u
r
e2
:
I
n
f
l
u
e
n
c
eo
f
we
l
d
i
n
gs
p
e
e
d
(
St
r
i
pe
l
e
c
t
r
o
d
ewi
d
t
h
:
7
5
mm)
8
Welding standard, super and lean duplex
stainless steels:
AWS E(R)2209, E(R)2594 and E2307
Austenitic phase
Ferritic phase
Ph
o
t
o1
:
Mi
c
r
o
s
t
r
u
c
t
u
r
eo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
Ph
o
t
o2
:
Ch
e
mi
c
a
l
T
a
n
k
e
r
Bu
l
k
h
e
a
d
Ph
o
t
o3
:
St
o
n
e
c
u
t
t
e
r
sBr
i
d
g
e
ma
i
nt
o
we
r
,
r
i
s
i
n
go
v
e
r
1
7
5m
a
b
o
v
es
e
al
e
v
e
l
(
Ho
n
gK
o
n
g
)
1
.
Pr
e
f
a
c
e
Du
p
l
e
x s
t
a
i
n
l
e
s
ss
t
e
e
l
,wh
i
c
h h
a
s a d
u
a
l
-
p
h
a
s
e
mi
c
r
o
s
t
r
u
c
t
u
r
ec
o
n
s
i
s
t
i
n
go
ff
e
r
r
i
t
i
ca
n
da
u
s
t
e
n
i
t
i
c
g
r
a
i
n
s
,a
s s
h
o
wn i
n P
h
o
t
o 1
,o
v
e
r
c
o
me
s t
h
e
we
a
k
n
e
s
s
e
sa
s
s
o
c
i
a
t
e
dwi
t
ht
wot
y
p
e
so
fs
t
e
e
lb
y
o
f
f
e
r
i
n
gh
i
g
h
e
rr
e
s
i
s
t
a
n
c
et
os
t
r
e
s
sc
o
r
r
o
s
i
o
nc
r
a
c
k
i
n
g
t
h
a
n a
u
s
t
e
n
i
t
i
c s
t
a
i
n
l
e
s
s s
t
e
e
la
n
d b
e
t
t
e
rn
o
t
c
h
t
o
u
g
h
n
e
s
st
h
a
nf
e
r
r
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
.
Du
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
lp
l
a
y
s a
n i
mp
o
r
t
a
n
tr
o
l
e i
n s
u
c
h d
i
v
e
r
s
e
a
p
p
l
i
c
a
t
i
o
n
s a
s p
e
t
r
o
-
c
h
e
mi
c
a
l p
l
a
n
t
s
, c
h
e
mi
c
a
l
c
a
r
r
i
e
r
s
,
o
f
f
s
h
o
r
es
t
r
u
c
t
u
r
e
sa
n
db
r
i
d
g
e
sa
ss
h
o
wni
n
P
h
o
t
o
s
2a
n
d3
.
T
h
i
s
a
r
t
i
c
l
ewi
l
l
d
i
s
c
u
s
s
t
h
ef
e
a
t
u
r
e
s
o
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
sa
swe
l
la
st
h
e
i
rmo
s
ts
u
i
t
a
b
l
e
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
.
2
.
Fe
a
t
ur
e
sof
dupl
e
xs
t
a
i
nl
e
s
ss
t
e
e
l
s
T
h
emi
c
r
o
s
t
r
u
c
t
u
r
eo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
s
h
o
ws
t
h
a
t
t
h
ea
u
s
t
e
n
i
t
i
cg
r
a
i
n
sh
a
v
ep
r
e
c
i
p
i
t
a
t
e
do
nac
o
mp
l
e
t
e
l
y
f
e
r
r
i
t
i
cp
h
a
s
ewi
t
hap
h
a
s
eb
a
l
a
n
c
eo
fa
p
p
r
o
x
i
ma
t
e
l
y
5
0
%f
e
r
r
i
t
ea
n
d5
0
%a
u
s
t
e
n
i
t
e
.
As
t
h
i
s
c
o
n
d
i
t
i
o
ni
st
h
e
mo
s
t
s
t
a
b
l
eo
fmi
c
r
o
s
t
r
u
c
t
u
r
e
s
,
t
h
ef
e
a
t
u
r
e
so
fd
u
p
l
e
x
s
t
a
i
n
l
e
s
s
s
t
e
e
l
c
a
nb
eh
i
g
h
l
i
g
h
t
e
d
.
I
nc
o
mp
a
r
i
s
o
nwi
t
ha
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
,d
u
p
l
e
x
s
t
a
i
n
l
e
s
s
s
t
e
e
l
o
f
f
e
r
s
t
h
ef
o
l
l
o
wi
n
ga
d
v
a
n
t
a
g
e
s
:
·
s
ma
l
l
e
rt
h
e
r
ma
le
x
p
a
n
s
i
o
nc
o
e
f
f
i
c
i
e
n
ta
n
dl
a
r
g
e
r
t
h
e
r
ma
l
c
o
n
d
u
c
t
i
v
i
t
y
,
·
h
i
g
h
e
r
r
o
o
mt
e
mp
e
r
a
t
u
r
es
t
r
e
n
g
t
h
,
·
e
x
c
e
l
l
e
n
tr
e
s
i
s
t
a
n
c
ea
g
a
i
n
s
tp
i
t
t
i
n
gc
o
r
r
o
s
i
o
na
n
d
s
t
r
e
s
s
c
o
r
r
o
s
i
o
nc
r
a
c
k
i
n
g

b
u
t
a
l
s
os
o
med
i
s
a
d
v
a
n
t
a
g
e
s
:
·
h
i
g
h
e
r
n
i
t
r
o
g
e
n(
N)
c
o
n
t
e
n
t
·
l
a
r
g
e
rmi
c
r
o
s
t
r
u
c
t
u
r
et
r
a
n
s
f
o
r
ma
t
i
o
nc
a
u
s
e
db
yh
e
a
t
t
r
e
a
t
me
n
t
a
n
de
a
s
i
e
r
p
r
o
p
e
r
t
yd
e
t
e
r
i
o
r
a
t
i
o
ni
n
c
l
u
d
i
n
g
c
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
T
h
ee
f
f
e
c
t
so
fmi
c
r
o
s
t
r
u
c
t
u
r
e t
r
a
n
s
f
o
r
ma
t
i
o
n a
r
e
p
a
r
t
i
c
u
l
a
r
l
yn
o
t
i
c
e
a
b
l
ea
t
t
h
eh
e
a
t
a
f
f
e
c
t
e
dz
o
n
e(
HAZ
)
a
n
dwi
l
l
b
ed
i
s
c
u
s
s
e
dl
a
t
e
r
.
Du
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
li
sp
r
o
d
u
c
e
dma
i
n
l
yi
nt
h
r
e
e
g
r
a
d
e
si
nr
e
l
a
t
i
o
nt
oc
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
s
:
s
t
a
n
d
a
r
d
,
s
u
p
e
r
a
n
dl
e
a
n
.
A.
S
t
a
n
d
a
r
dd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
:
C
o
mp
o
s
e
do
f2
2
%
C
r
-
5
%Ni
-
3
%Mo
-
0
.
1
5
%Ni
,i
ti
s l
i
t
e
r
a
l
l
y t
h
e
s
t
a
n
d
a
r
d
.
B
.
S
u
p
e
r
d
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
:
Amo
u
n
t
so
f
Moa
n
dN
a
r
ea
d
d
e
dt
ot
h
es
t
a
n
d
a
r
di
no
r
d
e
r
t
oi
n
c
r
e
a
s
er
o
o
m
t
e
mp
e
r
a
t
u
r
e s
t
r
e
n
g
t
h a
n
d p
i
t
t
i
n
g c
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
e
.
C
.
L
e
a
nd
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
:
Amo
u
n
t
so
f
Ni
a
n
dMo
a
r
er
e
d
u
c
e
df
r
o
mt
h
es
t
a
n
d
a
r
di
no
r
d
e
r
t
ol
o
we
r
t
h
e
c
o
s
t
.
T
a
b
l
e1s
h
o
wst
h
et
y
p
i
c
a
lc
h
e
mi
c
a
lc
o
mp
o
s
i
t
i
o
n
s
o
ft
h
e t
h
r
e
e g
r
a
d
e
s o
fd
u
p
l
e
x s
t
a
i
n
l
e
s
s s
t
e
e
l
s
.
F
i
g
u
r
e1s
h
o
wsar
e
l
a
t
i
v
ec
o
mp
a
r
i
s
o
nb
e
t
we
e
nt
e
n
s
i
l
e
s
t
r
e
n
g
t
ha
n
dt
h
ep
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ei
n
d
e
x
[
P
R
E
W=
C
r
+
3
.
3
(
Mo
+
0
.
5
W)
+
1
6
N]
o
f
v
a
r
i
o
u
s
s
t
a
i
n
l
e
s
s
s
t
e
e
l
s
.
Al
a
r
g
e
rP
R
E
W me
a
n
sb
e
t
t
e
rp
i
t
t
i
n
gc
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
e
.
Gr
a
d
e UNS C S
iMn P S Cu Cr NiMo W N PREW
St
andar
d
S
3
1
8
0
30
.
0
20
.
5 1
.
50
.
0
20
.
0
0
10
.
42
2
.
16
.
0 3
.
0 − 0
.
1
23
3
.
9
S
3
2
2
0
50
.
0
20
.
4 1
.
40
.
0
30
.
0
0
10
.
32
2
.
15
.
6 3
.
1 − 0
.
1
83
5
.
2
Su
p
e
r
S
3
2
7
5
00
.
0
20
.
4 0
.
70
.
0
20
.
0
0
10
.
12
5
.
67
.
0 3
.
80
.
10
.
2
84
2
.
8
S
3
2
7
6
00
.
0
30
.
3 0
.
70
.
0
20
.
0
0
10
.
62
5
.
47
.
0 3
.
50
.
60
.
2
14
1
.
3
L
e
a
n
S
3
2
1
0
10
.
0
30
.
7 4
.
90
.
0
30
.
0
0
10
.
22
1
.
61
.
5 0
.
2 − 0
.
2
22
5
.
8
S
3
2
3
0
40
.
0
20
.
5 1
.
50
.
0
20
.
0
0
10
.
22
2
.
74
.
7 0
.
3 − 0
.
1
02
5
.
3
T
a
b
l
e1
:
T
y
p
i
c
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
d
u
p
l
e
x
s
t
a
i
n
l
e
s
ss
t
e
e
l
s(
ma
s
s
%)
PREW=
Cr
+
3
.
3
(
Mo
+
0
.
5
W)
+
1
6
N
9
FNW
0
.2
%
P
S/TS
(MPa)
1000
900
800
700
600
500
20 30 40 50 60 70 80
TS
0.2%PS
Absorbed
energy:vE
-
40°C
(J)
FNW
60
50
40
30
20
10
0
20 30 40 50 60 70 80
900
700
500
PREW = Cr+3.3(Mo+0.5W)+16N
20 30 40
304L 316L
Lean
S32101
Standard
S31803
Super
S32750
Duplex stainless steel
Austenitic stainless steel
Tensile
strength
(MPa)
F
i
g
u
r
e1
:
Re
l
a
t
i
v
ec
o
mp
a
r
i
s
o
nb
e
t
we
e
nt
e
n
s
i
l
es
t
r
e
n
g
t
ha
n
d
p
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ei
n
d
e
x(
PRE
W)
o
f
v
a
r
i
o
u
ss
t
a
i
n
l
e
s
ss
t
e
e
l
s
3
.
F
e
a
t
u
r
e
so
f
t
h
ewe
l
d
e
dz
o
n
eo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
3
.
1HAZo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
I
nd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
,
t
h
ed
u
a
l
p
h
a
s
e
so
fa
u
s
t
e
n
i
t
i
c
a
n
df
e
r
r
i
t
i
cg
r
a
i
n
sa
r
eb
a
l
a
n
c
e
di
nt
h
eh
e
a
tt
r
e
a
t
me
n
t
p
r
o
c
e
s
s
.
B
yc
o
n
t
r
a
s
t
,
a
tt
h
eHAZo
fd
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
,p
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ea
n
d me
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
sc
a
nd
e
t
e
r
i
o
r
a
t
eo
c
c
a
s
i
o
n
a
l
l
y
,b
e
c
a
u
s
et
h
e
p
h
a
s
eb
a
l
a
n
c
ea
n
dc
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
ft
h
ed
u
a
l
p
h
a
s
e
sc
h
a
n
g
ei
na
c
c
o
r
d
a
n
c
ewi
t
ht
h
ec
o
o
l
i
n
gr
a
t
e
,
wh
i
c
hi
si
n
f
l
u
e
n
c
e
db
ywe
l
d
i
n
gh
e
a
ti
n
p
u
to
rp
l
a
t
e
t
h
i
c
k
n
e
s
s
.
T
ob
emo
r
ep
r
e
c
i
s
e
,
a
t
t
h
eh
i
g
ht
e
mp
e
r
a
t
u
r
eHAZ(
HT
-
HAZ
)
c
l
o
s
et
ot
h
ewe
l
di
n
t
e
r
f
a
c
e
,
t
h
ea
u
s
t
e
n
i
t
i
cg
r
a
i
n
s
d
i
s
s
o
l
v
ei
n
t
ot
h
ef
e
r
r
i
t
i
cp
h
a
s
ef
i
r
s
t
a
n
dt
h
e
np
r
e
c
i
p
i
t
a
t
e
a
sa
u
s
t
e
n
i
t
i
cg
r
a
i
n
sd
u
r
i
n
gt
h
ec
o
o
l
i
n
gp
r
o
c
e
s
sa
n
d
c
r
e
a
t
et
h
ed
u
a
lmi
c
r
o
s
t
r
u
c
t
u
r
e
sa
tt
h
ee
n
d
.Ho
we
v
e
r
,
wh
e
nah
i
g
hc
o
o
l
i
n
gr
a
t
eo
c
c
u
r
s
d
u
et
oe
x
c
e
s
s
i
v
e
l
yl
o
w
h
e
a
t
i
n
p
u
t
,
a
u
s
t
e
n
i
t
i
cg
r
a
i
nr
e
-
p
r
e
c
i
p
i
t
a
t
i
o
ni
sd
e
l
a
y
e
d
,
a
n
dC
r
c
a
r
b
i
d
e
sa
n
d
/
o
rC
rn
i
t
r
i
d
e
sp
r
e
c
i
p
i
t
a
t
ei
n
t
ot
h
e
f
e
r
r
i
t
i
cg
r
a
i
n
s
.Asar
e
s
u
l
t
,aC
r
-
d
e
p
l
e
t
e
dl
a
y
e
rwi
l
l
f
o
r
ma
r
o
u
n
dt
h
eHAZ
,l
e
a
d
i
n
gt
oad
e
t
e
r
i
o
r
a
t
i
o
ni
n
c
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
.
Ont
h
eo
t
h
e
rh
a
n
d
,
a
t
t
h
el
o
wt
e
mp
e
r
a
t
u
r
eHAZ(
L
T
-
HAZ)
,
a
wa
yf
r
o
mt
h
ewe
l
di
n
t
e
r
f
a
c
e
,al
o
wc
o
o
l
i
n
g
r
a
t
ed
u
et
oh
i
g
hh
e
a
ti
n
p
u
tc
a
nc
a
u
s
ef
e
r
r
i
t
i
cg
r
a
i
n
c
o
a
r
s
e
n
i
n
ga
n
dp
r
e
c
i
p
i
t
a
t
i
o
no
ft
h
eσ (
s
i
g
ma
)p
h
a
s
e
,
C
r
-
c
a
r
b
i
d
e
s
,a
n
d C
r
-
n
i
t
r
i
d
e
s
,t
h
e
r
e
b
y d
e
c
r
e
a
s
i
n
g
c
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ea
n
dn
o
t
c
ht
o
u
g
h
n
e
s
s
.
T
oc
o
n
c
l
u
d
e
,t
h
eHT
-
HAZr
e
q
u
i
r
e
sr
e
l
a
t
i
v
e
l
ys
l
o
w
c
o
o
l
i
n
g s
o a
s t
o e
n
a
b
l
e t
h
e
a
u
s
t
e
n
i
t
i
cg
r
a
i
n
st
op
r
e
c
i
p
i
t
a
t
es
u
f
f
i
c
i
e
n
t
l
y
,wh
i
l
et
h
e
L
T
-
HAZn
e
e
d
smu
c
hf
a
s
t
e
rc
o
o
l
i
n
gs
oa
st
os
u
p
p
r
e
s
s
t
h
e h
a
r
mf
u
l p
r
e
c
i
p
i
t
a
t
e
s f
r
o
m p
r
e
c
i
p
i
t
a
t
i
n
g
.
Ac
c
o
r
d
i
n
g
l
yi
t
i
sn
e
c
e
s
s
a
r
yt
oc
o
n
t
r
o
l
t
h
ec
o
o
l
i
n
gr
a
t
e
t
os
a
t
i
s
f
yt
h
er
e
q
u
i
r
e
me
n
t
so
fb
o
t
ht
h
eHT
-
HAZa
n
d
L
T
-
HAZt
h
r
o
u
g
ha
p
p
r
o
p
r
i
a
t
ewe
l
dh
e
a
ti
n
p
u
t
,p
r
e
-
h
e
a
t
i
n
ga
n
di
n
t
e
r
p
a
s
s
t
e
mp
e
r
a
t
u
r
e
s
.
3
.
2We
l
dme
t
a
l
o
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
T
h
ewe
l
dme
t
a
l
o
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
i
sa
d
j
u
s
t
e
dt
o
o
b
t
a
i
n t
h
e r
e
q
u
i
r
e
d p
r
o
p
e
r
t
i
e
si
n t
h
e a
s
-
we
l
d
e
d
c
o
n
d
i
t
i
o
na
s
s
h
o
wni
nP
h
o
t
o4

i
nc
o
n
t
r
a
s
t
t
ot
h
es
t
a
b
l
e
d
i
s
t
r
i
b
u
t
i
o
no
ft
h
ef
e
r
r
i
t
i
ca
n
da
u
s
t
e
n
i
t
i
cp
h
a
s
e
si
n
d
u
p
l
e
x s
t
a
i
n
l
e
s
ss
t
e
e
l
,i
n we
l
d me
t
a
lt
h
e
y a
r
e
d
i
s
t
r
i
b
u
t
e
dmu
c
hmo
r
eh
a
p
h
a
z
a
r
d
l
y
.
F
i
g
u
r
e
s2a
n
d3s
h
o
wt
h
ec
o
r
r
e
l
a
t
i
o
n
sb
e
t
we
e
nt
h
e
f
e
r
r
i
t
en
u
mb
e
r
(
F
N)
,
i
.
e
.
t
h
ef
e
r
r
i
t
ec
o
n
t
e
n
t
,
a
n
dt
e
n
s
i
l
e
s
t
r
e
n
g
t
h
/
p
r
o
o
fs
t
r
e
s
s
,
a
n
db
e
t
we
e
nt
h
eF
Na
n
dn
o
t
c
h
t
o
u
g
h
n
e
s
so
nt
h
ewe
l
dme
t
a
l
b
yt
h
eA
WSE
2
5
9
4t
y
p
e
F
C
W,
r
e
s
p
e
c
t
i
v
e
l
y
.
I
tc
a
nb
es
e
e
ni
nb
o
t
hf
i
g
u
r
e
st
h
a
twh
e
nt
h
eF
N
i
n
c
r
e
a
s
e
s
,
r
o
o
mt
e
mp
e
r
a
t
u
r
es
t
r
e
n
g
t
hi
mp
r
o
v
e
swh
i
l
e
n
o
t
c
ht
o
u
g
h
n
e
s
sd
e
c
l
i
n
e
s
.
Ast
h
eF
Na
l
s
oi
n
f
l
u
e
n
c
e
s
p
i
t
t
i
n
g c
o
r
r
o
s
i
o
n r
e
s
i
s
t
a
n
c
e
, g
o
o
d me
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s
a
s
we
l
l
a
s
p
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
ec
a
nb
e
o
b
t
a
i
n
e
db
y s
e
l
e
c
t
i
n
g t
h
emo
s
ts
u
i
t
a
b
l
ewe
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
sa
n
d c
o
n
t
r
o
l
l
i
n
g we
l
d
i
n
g p
r
o
c
e
d
u
r
e
s
,
F
i
g
u
r
e2
:
Co
r
r
e
l
a
t
i
o
nb
e
t
we
e
nF
Na
n
dt
e
n
s
i
l
es
t
r
e
n
g
t
h
/
0
.
2
%
p
r
o
o
f
s
t
r
e
s
so
f
E2
5
9
4t
y
p
eF
CWwe
l
dme
t
a
l
F
i
g
u
r
e3
:
Co
r
r
e
l
a
t
i
o
nb
e
t
we
e
nF
Na
n
dn
o
t
c
ht
o
u
g
h
n
e
s
so
f
E2
5
9
4t
y
p
eF
CWwe
l
dme
t
a
l
Ph
o
t
o4
:
Mi
c
r
o
s
t
r
u
c
t
u
r
eo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
dme
t
a
l
1
0
Welding
direction
Welding
direction
Welding
direction
Welding
direction
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
d
d
d
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ldin
in
in
n
in
in
n
n
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
i
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
d
di
i
in
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
d
di
i
in
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
W
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
d
d
d
di
di
di
di
di
di
di
di
di
di
di
d
di
di
di
di
dire
re
re
re
re
re
re
re
re
re
re
re
re
re
re
re
rect
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
cti
i
io
io
io
io
io
io
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
n
i
di
di
di
di
di
i
di
di
di
di
di
d e
e
re
re
re
re
re
re
re
re
re
re
rec
ct
c
ct
ct
ct
ct
ct
ct
ct
ct
ti
i
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
i
di
di
di
di
i
di
di
di
di
di
di
d
d e
e
re
re
re
re
re
re
re
re
re
re
re
ec
c
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
t
ti
i
io
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
i
di
di
di
di
i
di
di
di
di
di
di
d
d e
e
re
re
re
re
re
re
re
re
re
re
re
ec
c
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
t
ti
i
io
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
i
di
di
di
di
di
di
di
di
di
di
d e
e
re
re
re
re
re
re
re
re
re
rec
ct
ct
ct
ct
ct
ct
ct
t
ct
t
ti
i
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
i
di
di
di
di
di
di
di
di
di
di
d e
e
re
re
re
re
re
re
re
re
re
rec
ct
ct
ct
ct
ct
ct
ct
t
ct
t
ti
i
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
i
di
di
di
di
di
di
di
di
di
di
d e
e
re
re
re
re
re
re
re
re
re
rec
ct
ct
ct
ct
ct
ct
ct
t
ct
t
ti
i
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
Welding
direction
Welding direction
Welding direction
Welding direction
Welding direction
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
We
Weld
ld
ld
ld
ld
ld
ld
ld
d
d
d
d
ld
ld
ld
ld
ld
ld
ld
ldin
in
in
i
in
in
n
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g d
d
di
di
di
di
di
di
di
di
di
di
di
di
di
di
di
di
di
dire
re
re
re
re
re
re
re
re
re
re
re
re
re
re
re
re
re
rec
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ctio
io
io
io
io
io
o
io
io
io
o
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
n
We
We
We
We
We
e
We
We
We
We
We
Weld
ld
ld
d
ld
ld
ld
ld
ld
ld
di
i
i
in
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
i
i
di
di
di
di
di
di
d e
e
re
re
re
re
re
re
re
re
re
re
re t
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
ti
i
i
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
We
We
We
We
We
We
We
We
We
We
We
We
We d
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
d
di
i
i
in
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
i
di
di
di
di
di
di
di
d
d e
e
re
re
re
re
re
re
re
re
re
re
re
ect
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
t
ti
i
io
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
We
We
We
We
We
We
We
We
We
We
We
We
We d
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
d
di
i
i
in
in
in
in
in
in
in
in
in
ng
g
g
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
i
di
di
di
di
di
di
di
d
d e
e
re
re
re
re
re
re
re
re
re
re
re
ect
ct
ct
ct
ct
ct
ct
ct
ct
ct
ct
t
ti
i
io
io
io
io
io
io
io
io
ion
n
n
n
n
n
n
n
n
n
We
We
We
We
We
We
We
We
We
We
We
W d
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
di
di
di
di
di
di
d e
re
re
re
re
re
re
re
re
re
re
rect
ct
ct
ct
ct
ct
ct
ct
ct
t
t
ti
io
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
We
We
We
We
We
We
We
We
We
We
We
W d
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
di
di
di
di
di
di
d e
re
re
re
re
re
re
re
re
re
re
rect
ct
ct
ct
ct
ct
ct
ct
ct
t
t
ti
io
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
We
We
We
We
We
We
We
We
We
We
We
W d
ld
ld
ld
ld
ld
ld
ld
ld
ld
di
in
in
in
in
in
in
in
in
ing
g
g
g
g
g
g
g
g
g
g
g di
di
di
di
di
di
di
di
di
di
d e
re
re
re
re
re
re
re
re
re
re
rect
ct
ct
ct
ct
ct
ct
ct
ct
t
t
ti
io
io
io
io
io
io
io
io
i n
n
n
n
n
n
n
n
n
Welding direction
i
n
c
l
u
d
i
n
gb
a
s
eme
t
a
l
d
i
l
u
t
i
o
na
n
d
/
o
rt
h
ec
o
o
l
i
n
gr
a
t
e
,
t
op
u
t
t
h
ewe
l
dme
t
a
l
F
Nwi
t
h
i
nar
a
n
g
ef
r
o
m3
0t
o6
5
.
I
na
d
d
i
t
i
o
n
,
b
e
c
a
u
s
et
h
ewe
l
dme
t
a
li
sl
e
s
sc
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
tt
h
a
nt
h
eb
a
s
eme
t
a
l
,wh
i
c
hi
sp
r
o
d
u
c
e
d
t
h
r
o
u
g
hap
r
o
c
e
s
s
o
f
t
h
e
r
ma
l
r
e
f
i
n
i
n
g
,
i
t
i
sd
e
s
i
g
n
e
dt
o
h
o
l
ds
l
i
g
h
t
l
yh
i
g
h
e
ra
mo
u
n
t
so
fa
l
l
o
y
i
n
ge
l
e
me
n
t
s
(
h
i
g
h
e
r
P
R
E
W)
t
h
a
nt
h
eb
a
s
eme
t
a
l
.
T
h
eNi
c
o
n
t
e
n
t
o
f
t
h
ewe
l
dme
t
a
l
i
sa
l
s
od
e
s
i
g
n
e
dt
ob
eh
i
g
h
e
rt
h
a
nt
h
a
t
o
ft
h
eb
a
s
eme
t
a
li
no
r
d
e
rt
oo
p
t
i
mi
z
et
h
er
a
t
i
oo
f
a
u
s
t
e
n
i
t
i
c a
n
d f
e
r
r
i
t
i
c g
r
a
i
n
s u
n
d
e
r a
s
-
we
l
d
e
d
c
o
n
d
i
t
i
o
n
s
i
nma
n
yc
a
s
e
s
.
B
e
c
a
u
s
et
h
ewe
l
dme
t
a
lF
N i
n
f
l
u
e
n
c
e
sme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
sa
swe
l
l
a
sp
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
,
i
t
i
s
i
mp
o
r
t
a
n
t
t
oc
h
e
c
ka
n
dc
o
n
t
r
o
l
i
t
.
(
T
ol
e
a
r
nh
o
wF
Ni
s
me
a
s
u
r
e
d
,
p
l
e
a
s
es
e
et
h
ea
p
p
e
n
d
i
x
.
)
4
.
Ko
b
e
l
c
o
’
sd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
Ko
b
e
l
c
o
’
sd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
a
r
ea
v
a
i
l
a
b
l
ef
o
r
a
l
l
g
r
a
d
e
s
o
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
a
n
d
a
r
el
i
s
t
e
di
nT
a
b
l
e2t
o
g
e
t
h
e
rwi
t
ht
h
e
i
rc
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
s
a
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s
.
Ak
e
yf
a
c
t
o
r
i
nt
h
ed
e
s
i
g
no
f
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
li
sh
o
w t
oc
o
n
t
r
o
lf
o
rt
h
e
r
e
l
a
t
i
v
e
l
y h
i
g
h a
mo
u
n
to
fn
i
t
r
o
g
e
n (
N)
,wh
i
c
h
f
r
e
q
u
e
n
t
l
y c
a
u
s
e
s p
o
r
o
s
i
t
y p
r
o
b
l
e
ms s
u
c
h a
s
b
l
o
wh
o
l
e
s
,
p
i
t
sa
n
de
l
o
n
g
a
t
e
dp
o
r
o
s
i
t
ya
swe
l
l
a
sp
o
o
r
s
l
a
gr
e
mo
v
a
l
.I
tc
a
na
l
s
oc
a
u
s
et
h
er
a
d
i
o
g
r
a
p
h
i
c
p
r
o
p
e
r
t
y(
X-
r
a
yp
r
o
p
e
r
t
y
)i
nf
l
u
xc
o
r
e
da
r
cwe
l
d
i
n
g
(
F
C
A
W)
o
r
s
h
i
e
l
d
e
dme
t
a
l
a
r
cwe
l
d
i
n
g(
S
MA
W)
t
of
a
i
l
i
nt
h
eh
o
r
i
z
o
n
t
a
lo
ro
v
e
r
h
e
a
dp
o
s
i
t
i
o
n
s
.I
no
r
d
e
rt
o
c
o
u
n
t
e
rt
h
ep
o
r
o
s
i
t
yp
r
o
b
l
e
ms
,Ko
b
e
l
c
o
’
swe
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
sa
r
ed
e
s
i
g
n
e
dt
oi
n
c
r
e
a
s
eNs
o
l
u
b
i
l
i
t
yb
y
a
d
j
u
s
t
i
n
gt
h
ewe
l
dme
t
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
s
a
n
dt
o
o
p
t
i
mi
z
e t
h
e s
l
a
g s
o
l
i
d
i
f
i
c
a
t
i
o
n t
e
mp
e
r
a
t
u
r
e a
n
d
v
i
s
c
o
s
i
t
y
.I
mp
r
o
v
i
n
gs
l
a
gr
e
mo
v
a
b
i
l
i
t
yi
sn
e
c
e
s
s
a
r
y
s
i
n
c
eNi
nt
h
ewe
l
dme
t
a
lma
k
e
st
h
a
td
i
f
f
i
c
u
l
te
v
e
n
t
h
o
u
g
ht
h
es
l
a
gg
e
n
e
r
a
t
e
df
r
o
m t
h
es
l
a
gf
o
r
mi
n
g
c
o
mp
o
n
e
n
t
si
nt
h
ec
o
a
t
i
n
gf
l
u
x(
o
nS
MA
W)o
ri
nt
h
e
f
l
u
x(
o
nF
C
A
Wo
r
S
A
W)
c
o
v
e
r
s
t
h
ewe
l
dme
t
a
l
d
u
r
i
n
g
we
l
d
i
n
g
.
P
o
o
rs
l
a
gr
e
mo
v
a
l
ma
yc
a
u
s
es
l
a
gt
or
e
ma
i
n
h
e
r
ea
n
dt
h
e
r
eo
nt
h
eb
e
a
ds
u
r
f
a
c
ea
n
dma
yp
r
e
v
e
n
t
s
mo
o
t
hwe
l
d
i
n
ga
n
d
/
o
r
c
a
u
s
es
l
a
gi
n
c
l
u
s
i
o
n
s
.
Ko
b
e
l
c
o
we
l
d
i
n
g c
o
n
s
u
ma
b
l
e
s a
r
e t
h
e
r
e
f
o
r
e d
e
s
i
g
n
e
d t
o
Gr
a
d
e We
l
d
i
n
g
p
r
o
c
e
s
s
P
r
o
d
u
c
t
n
a
me A
WSc
l
a
s
s
i
f
i
c
a
t
i
o
n
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
s(
ma
s
s
%) Me
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s
Re
ma
r
k
s
C S
i Mn Ni Cr Mo N PREW*
1 F
NW 0.
2%PS
(
MP
a
)
T
S
(
MP
a
)
E
l
(
%)
v
E0
°
C
(
J
)
St
a
n
d
a
r
d
d
u
p
l
e
x
s
t
a
i
n
l
e
s
ss
t
e
e
l
GT
A
W T
G-
S
2
2
0
9 A
5
.
9
/
A
5
.
9
ME
R2
2
0
9 0
.
0
0
80
.
3
9 1
.
6
7 8
.
7 2
2
.
7 3
.
1
0 0
.
1
6 3
5
.
5 5
1 5
9
8 7
7
3 3
9 2
7
0 DCE
N,
1
0
0
%A
r
S
MA
W NC-
2
2
0
9 A
5
.
4
/
A
5
.
4
ME
2
2
0
9
-
1
6 0
.
0
2
80
.
5
4 1
.
1
4 8
.
8 2
3
.
1 3
.
3
4 0
.
1
5 3
6
.
5 5
1 6
6
7 8
4
5 3
0 9
7 DCE
P
F
CA
W DW-
3
2
9
APA5
.
2
2
/
A5
.
2
2
ME2
2
0
9
T1
-
1
/
-
40
.
0
2
30
.
5
7 0
.
6
6 9
.
4 2
3
.
0 3
.
4
0 0
.
1
4 3
6
.
4 4
9 6
0
5 8
2
3 3
0 5
5 DCE
P
,
1
0
0
%CO2
F
CA
W DW-
2
2
0
9 A5
.
2
2
/
A5
.
2
2
ME2
2
0
9
T1
-
1
/
-
40
.
0
2
80
.
6
1 0
.
7
4 9
.
1 2
2
.
7 3
.
3
0 0
.
1
3 3
5
.
6 4
6 6
3
9 8
2
0 2
8 7
3 DCEP
,
8
0
%Ar
+
2
0
%CO2
S
A
W US
-
2
2
0
9/
P
F
-
S
1
D A5
.
9
/
A5
.
9
MER2
2
0
9(
Wi
r
e
)0
.
0
2
10
.
3
1 1
.
5
6 8
.
9 2
3
.
0 3
.
2
8 0
.
1
5 3
5
.
9 5
7 6
1
8 7
9
8 2
9 6
9 DCE
P
Su
p
e
r
d
u
p
l
e
x
s
t
a
i
n
l
e
s
ss
t
e
e
l
GT
A
W T
G-
S
2
5
9
4 A
5
.
9
/
A
5
.
9
ME
R2
5
9
4 0
.
0
1
90
.
4
4 0
.
5
7 9
.
3 2
5
.
0 3
.
8
2 0
.
2
8 4
2
.
0 4
2 7
2
1 8
7
0 3
1 2
8
6 DCEN,
9
8
%Ar
+
2
%N2
S
MA
W NC-
2
5
9
4 A
5
.
4
/
A
5
.
4
ME
2
5
9
4
-
1
6 0
.
0
3
50
.
5
5 0
.
6
6 9
.
8 2
6
.
6 3
.
8
6 0
.
2
5 4
3
.
3 5
0 7
5
0 9
3
5 2
8 5
5 DCE
P
F
CA
W DW-
2
5
9
4 A5
.
2
2
/
A5
.
2
2
ME2
5
9
4
T1
-
1
/
-
40
.
0
2
60
.
5
0 1
.
1
8 9
.
6 2
5
.
7 3
.
7
9 0
.
2
4 4
2
.
0 4
9 7
1
2 9
0
5 2
7 5
5 DCEP
,
8
0
%Ar
+
2
0
%CO2
L
e
a
nd
u
p
l
e
x
s
t
a
i
n
l
e
s
ss
t
e
e
lF
CA
W DW-
2
3
0
7 A5
.
2
2
/
A5
.
2
2
ME2
3
0
7
T1
-
1
/
-
40
.
0
2
60
.
4
5 1
.
2
6 7
.
9 2
4
.
6 0
.
0
3 0
.
1
5 2
7
.
1 4
1 5
7
1 7
5
0 2
9 5
8 DCE
P
,
8
0
%A
r
+
2
0
%CO2
T
a
b
l
e2
:
Ko
b
e
l
c
o
’
swe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
,
t
h
e
i
r
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
so
f
a
l
l
we
l
dme
t
a
l
*
1
:
PREW=
Cr
+
3
.
3(
Mo
+
0
.
5
W)
+
1
6
N
Ph
o
t
o5
:
Be
a
da
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
-
s
t
r
u
c
t
u
r
eo
f
DW-
2
5
9
4b
u
t
t
j
o
i
n
t
No
t
e
:
1
.
We
l
d
i
n
gp
o
s
i
t
i
o
n
:
V
e
r
t
i
c
a
l
u
p
wa
r
d(
3
G)
2
:
We
l
d
i
n
gp
a
r
a
me
t
e
r
s
:
1
6
0
A
-
2
6
V
-
1
5
c
m/
mi
n
3
:
S
h
i
e
l
d
i
n
gg
a
sp
o
l
a
r
i
t
y
:
8
0
%A
r
-
2
0
%CO2

DCE
P
4
:
P
a
s
ss
e
q
u
e
n
c
e
:
2p
a
s
s
e
s
/
1
s
t
l
a
y
e
r

1p
a
s
s
/
2
n
dl
a
y
e
r
5
:
Wi
r
es
i
z
e
:
1
.
2mmd
i
a
.
Ph
o
t
o6
:
Be
a
da
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
-
s
t
r
u
c
t
u
r
eo
f
US-
2
2
0
9/
PF
-
S1
Db
u
t
t
j
o
i
n
t
No
t
e
:
1
.
We
l
d
i
n
gp
o
s
i
t
i
o
n
:
F
l
a
t
(
1
G)
2
:
We
l
d
i
n
gp
a
r
a
me
t
e
r
s
:
4
5
0
A
-
3
2
V
-
3
5
c
m/
mi
n
3
:
P
o
l
a
r
i
t
y
:
DCE
P
4
:
P
a
s
ss
e
q
u
e
n
c
e
:
1p
a
s
se
a
c
ha
n
d2l
a
y
e
r
s
5
:
Wi
r
es
i
z
e
:
3
.
2mmd
i
a
.
1
1
o
p
t
i
mi
z
et
h
es
l
a
gf
o
r
mi
n
gc
o
mp
o
n
e
n
t
si
nt
h
ec
o
a
t
i
n
g
o
fc
o
v
e
r
e
de
l
e
c
t
r
o
d
e
sa
n
di
nt
h
ef
l
u
xo
fF
C
Wsa
n
d
S
A
Wf
l
u
x
e
s
f
o
r
e
a
s
ys
l
a
gr
e
mo
v
a
l
.
P
h
o
t
o5s
h
o
wst
h
eb
e
a
da
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
-
s
t
r
u
c
t
u
r
e
so
fab
u
t
tj
o
i
n
twe
l
d
e
db
yDW-
2
5
9
4a
n
d
P
h
o
t
o6
,t
h
es
a
meb
yS
A
W wi
t
hUS
-
2
2
0
9wi
r
e/
P
F
-
S
1
Df
l
u
x
.
Ko
b
e
l
c
od
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
lwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
p
r
o
v
i
d
ee
x
c
e
l
l
e
n
t
me
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s(
s
e
eT
a
b
l
e2
)
,
h
i
g
hp
i
t
t
i
n
gc
o
r
r
o
s
i
o
na
n
dp
o
r
o
s
i
t
yr
e
s
i
s
t
a
n
c
ea
swe
l
l
a
s
s
u
p
e
r
bs
l
a
gr
e
mo
v
a
b
i
l
i
t
y
.
5
.
S
e
l
e
c
t
i
o
no
f
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
Wh
e
n we
l
d
i
n
g d
u
p
l
e
x s
t
a
i
n
l
e
s
s s
t
e
e
l
s
, i
t i
s
r
e
c
o
mme
n
d
e
dt
os
e
l
e
c
tt
h
ewe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
so
f
t
h
es
a
meg
r
a
d
eo
rh
i
g
h
e
r
,
d
e
p
e
n
d
i
n
go
nt
h
es
i
t
u
a
t
i
o
n
.
F
o
re
x
a
mp
l
e
,
wh
e
nwe
l
d
i
n
gs
t
a
n
d
a
r
dd
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
,
awe
l
d
i
n
gc
o
n
s
u
ma
b
l
ee
q
u
i
v
a
l
e
n
t
t
oA
WSE
2
2
0
9
o
r
E
2
5
9
4(
ah
i
g
h
e
r
g
r
a
d
e
)
c
a
nb
ec
h
o
s
e
n
.
T
h
es
e
l
e
c
t
i
o
n
g
u
i
d
ei
s
s
h
o
wni
nT
a
b
l
e3
.
I
nc
a
s
e
so
f
d
i
s
s
i
mi
l
a
r
we
l
d
i
n
gb
e
t
we
e
nc
a
r
b
o
ns
t
e
e
l
o
r
a
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
s
s
t
e
e
l
a
n
dd
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
,
3
0
9
Lo
r3
0
9Mo
Lwe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
so
rt
h
o
s
ef
o
r
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
sa
r
ea
p
p
l
i
c
a
b
l
e
.T
h
es
e
l
e
c
t
i
o
n
g
u
i
d
ei
s
s
h
o
wni
nT
a
b
l
e4
.
6
.
No
t
e
so
nu
s
a
g
e
T
h
ewe
l
d
i
n
gp
r
o
c
e
d
u
r
e
sf
o
r
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
sa
r
e
s
i
mi
l
a
r
t
ot
h
o
s
eo
f
a
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
si
ng
e
n
e
r
a
l
b
u
t
s
p
e
c
i
a
l
c
a
r
es
h
o
u
l
db
ep
a
i
di
no
r
d
e
rt
oma
x
i
mi
z
e
t
h
e
i
r
s
t
r
e
n
g
t
h
s
.
6
.
1He
a
t
i
n
p
u
t
l
i
mi
t
a
t
i
o
n
T
h
eh
e
a
ti
n
p
u
tl
i
mi
t
a
t
i
o
ni
sc
o
mmo
ni
na
l
lwe
l
d
i
n
g
p
r
o
c
e
s
s
e
s
.Ho
we
v
e
r
,d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
lc
o
n
t
a
i
n
s
h
i
g
h
e
r
a
mo
u
n
t
s
o
f
C
r
a
n
dMot
h
a
nu
s
u
a
l
.
I
f
we
l
dme
t
a
l
c
o
o
l
sd
o
wne
x
t
r
e
me
l
ys
l
o
wl
yd
u
et
oe
x
c
e
s
s
i
v
eh
e
a
t
i
n
p
u
ta
n
dr
e
ma
i
n
si
nat
e
mp
e
r
a
t
u
r
er
a
n
g
eo
f7
0
0
-
8
0
0
°
Cf
o
ral
o
n
gt
i
me
,
i
t
f
o
r
mst
h
eσ (
s
i
g
ma
)p
h
a
s
e
,
wh
i
c
hd
e
t
e
r
i
o
r
a
t
e
s
n
o
t
c
ht
o
u
g
h
n
e
s
s
.
Ont
h
eo
t
h
e
r
h
a
n
d
,
wh
e
nt
h
ec
o
o
l
i
n
gr
a
t
eo
f
t
h
ewe
l
dme
t
a
l
i
s
t
o
oh
i
g
hd
u
e
t
oe
x
t
r
e
me
l
yl
o
wh
e
a
t
i
n
p
u
t
,
C
rn
i
t
r
i
d
ep
r
e
c
i
p
i
t
a
t
e
sa
t
t
h
eHAZc
l
o
s
et
ot
h
ewe
l
di
n
t
e
r
f
a
c
ea
n
d
,
a
sar
e
s
u
l
t
,
f
o
r
msaC
r
-
d
e
p
l
e
t
e
dl
a
y
e
r
.T
h
i
swi
l
lc
a
u
s
ec
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
et
od
e
t
e
r
i
o
r
a
t
e
.
B
e
c
a
u
s
et
h
ec
o
o
l
i
n
gr
a
t
ea
l
s
o
i
n
f
l
u
e
n
c
e
st
h
ea
mo
u
n
to
fwe
l
dme
t
a
lF
N,i
ti
s
n
e
c
e
s
s
a
r
yt
oa
v
o
i
dh
e
a
ti
n
p
u
tt
h
a
ti
st
o
oh
i
g
ho
rt
o
o
l
o
w
.T
h
e Ame
r
i
c
a
n P
e
t
r
o
l
e
u
m I
n
s
t
i
t
u
t
e (AP
I)
r
e
c
o
mme
n
d
sh
e
a
ti
n
p
u
to
f5t
o2
5k
J
/
c
m a
si
t
s
g
u
i
d
e
l
i
n
e
.
6
.
2S
h
i
e
l
d
i
n
gg
a
sc
o
mp
o
s
i
t
i
o
no
nGT
A
W
T
I
Gwe
l
d
i
n
gu
s
u
a
l
l
ya
d
o
p
t
s1
0
0
%Ara
st
h
es
h
i
e
l
d
i
n
g
g
a
sf
o
rc
i
r
c
u
mf
e
r
e
n
t
i
a
l
r
o
o
t
p
a
s
swe
l
d
i
n
go
fs
t
a
i
n
l
e
s
s
s
t
e
e
l
p
i
p
e
s
.
Ho
we
v
e
r
,
i
f
1
0
0
%Ar
s
h
i
e
l
d
i
n
gg
a
si
su
s
e
d
f
o
rT
I
Gwe
l
d
i
n
gwi
t
has
o
l
i
df
i
l
l
e
rr
o
df
o
rd
u
p
l
e
x
s
t
a
i
n
l
e
s
s
s
t
e
e
l
,
t
h
ea
mo
u
n
t
o
f
Ni
nt
h
ewe
l
dme
t
a
l
ma
y
b
el
e
s
s
t
h
a
nt
h
a
t
i
nt
h
eT
I
Gf
i
l
l
e
r
r
o
d
.
T
h
i
s
r
e
s
u
l
t
s
wh
e
n
t
h
eNi
nt
h
eT
I
Gf
i
l
l
e
r
r
o
dd
o
e
s
n
o
t
c
o
mp
l
e
t
e
l
yt
r
a
n
s
f
e
r
t
ot
h
ewe
l
dme
t
a
l

i
n
s
t
e
a
d
,
s
o
meo
f
t
h
eNi
s
d
i
s
c
h
a
r
g
e
d
a
s
N2g
a
s
f
r
o
mt
h
emo
l
t
e
np
o
o
l
i
n
s
i
d
e
.
T
h
i
s
wi
l
l
c
a
u
s
ee
x
c
e
s
s
i
v
ef
e
r
r
i
t
ei
nt
h
ewe
l
dme
t
a
l
a
n
d
/
o
r
aP
R
E
Wd
r
o
p
,
r
e
s
u
l
t
i
n
gi
nt
h
ep
o
s
s
i
b
l
ed
e
t
e
r
i
o
r
a
t
i
o
n
o
f
n
o
t
c
ht
o
u
g
h
n
e
s
sa
n
dp
i
t
t
i
n
gc
o
r
r
o
s
i
o
nr
e
s
i
s
t
a
n
c
e
.
I
n
o
r
d
e
rt
oa
v
o
i
ds
u
c
hp
r
o
b
l
e
ms
,i
ti
sr
e
c
o
mme
n
d
e
dt
o
a
d
da
b
o
u
t
2
%N2g
a
s
i
n
t
ot
h
es
h
i
e
l
d
i
n
gg
a
s
,
d
e
p
e
n
d
i
n
g
o
nt
h
eNc
o
n
t
e
n
t
i
nt
h
ewe
l
dme
t
a
l
a
n
d
/
o
r
b
a
s
eme
t
a
l
.
6
.
3P
r
e
v
e
n
t
i
o
no
f
h
o
t
c
r
a
c
ko
nS
A
W
I
ts
h
o
u
l
da
l
s
ob
en
o
t
e
dt
h
a
td
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sa
r
emo
r
es
u
s
c
e
p
t
i
b
l
et
oh
o
t
c
r
a
c
k
st
h
a
ns
t
a
n
d
a
r
da
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
se
x
c
e
p
t
f
o
rf
u
l
l
ya
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
.
I
nt
h
i
s
s
e
n
s
e
,
t
h
e
r
ei
s
ah
i
g
hr
i
s
k
o
f
h
o
t
c
r
a
c
k
s
wi
t
hS
A
W,
wh
i
c
ha
p
p
l
i
e
s
h
i
g
hh
e
a
t
i
n
p
u
t
i
ng
e
n
e
r
a
l
.Ast
h
es
u
s
c
e
p
t
i
b
i
l
i
t
yt
oh
o
tc
r
a
c
k
si
s
i
n
f
l
u
e
n
c
e
db
yb
e
a
ds
h
a
p
e
sa
swe
l
l
,
i
t
i
sr
e
c
o
mme
n
d
e
d
t
oa
v
o
i
dn
a
r
r
o
wg
a
pwe
l
d
i
n
g
,
l
a
r
g
ewe
l
d
i
n
gc
u
r
r
e
n
t
s
a
n
dh
i
g
hwe
l
d
i
n
gs
p
e
e
d
s
.S
u
c
hwe
l
d
i
n
gc
o
n
d
i
t
i
o
n
s
mu
s
tb
ec
o
n
f
i
r
me
dt
h
o
r
o
u
g
h
l
yb
e
f
o
r
ea
c
t
u
a
lwe
l
d
i
n
g
t
a
k
e
s
p
l
a
c
e
.
We
l
d
i
n
g
c
o
n
s
u
ma
b
l
eg
r
a
d
e 2
3
0
7t
y
p
e 2
2
0
9t
y
p
e 2
5
9
4t
y
p
e
Du
p
l
e
x
s
t
a
i
n
l
e
s
s
s
t
e
e
l
g
r
a
d
e
Pr
o
d
u
c
t
n
a
me
Ba
s
e
me
t
a
l
GT
A
W − T
G-
S2
2
0
9 T
G-
S2
5
9
4
SMA
W NC-
2
2
0
9 NC-
2
5
9
4
F
CA
W DW-
2
3
0
7 DW-
3
2
9
AP
DW-
2
2
0
9 DW-
2
5
9
4
SA
W US-
2
2
0
9
/
PF
-
S1
D
L
e
a
n UNSS3
2
1
0
1
UNSS3
2
3
0
4 ◎ ○ ○
St
a
n
d
a
r
d UNSS3
1
8
0
3
UNSS3
2
2
0
5 × ◎ ○
Su
p
e
r UNSS3
2
7
5
0
UNSS3
2
7
6
0 × × ◎
Du
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
g
r
a
d
e
Ca
r
b
o
ns
t
e
e
l
/
L
o
w
a
l
l
o
ys
t
e
e
l
A
u
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
ss
t
e
e
l
3
0
4
Lt
y
p
e 3
1
6
Lt
y
p
e
L
e
a
n T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
3
0
7
T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
3
0
7
T
y
p
e
so
f
3
0
9
Mo
L
,
2
3
0
7
S
t
a
n
d
a
r
d T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
2
0
9
T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
2
0
9
T
y
p
e
so
f
3
0
9
Mo
L
,
2
2
0
9
S
u
p
e
r T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
5
9
4
T
y
p
e
so
f
3
0
9
L
,
3
0
9
Mo
L
,
2
5
9
4
T
y
p
e
so
f
3
0
9
Mo
L
,
2
5
9
4
T
a
b
l
e3
:
Se
l
e
c
t
i
o
no
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
we
l
d
i
n
g
c
o
n
s
u
ma
b
l
e
s
◎:
Ap
p
l
i
c
a
b
l
ewe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
so
f
s
i
mi
l
a
r
c
o
mp
o
s
i
t
i
o
nme
t
a
l
s
○:
Ap
p
l
i
c
a
b
l
ewe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
×:
No
t
a
p
p
l
i
c
a
b
l
e
T
a
b
l
e4
:
Se
l
e
c
t
i
o
no
f
d
i
s
s
i
mi
l
a
r
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
1
2
Flat butt joint
Overhead butt joint
Overhead fillet joint
Horizontal fillet joint
Horizontal
butt
joint
Vertical
butt
joints
Bottom plate
Bottom plate
Top plate
Top plate
Longi-bulkhead
Longi-bulkhead
Longi-bulkhead
Longi-bulkhead
Trans-bulkhead
(a) Longitudinal bulkhead
(Stainless-clad butt joint)
(c) Bottom plate to
trans-bulkhead
(Stainless-clad to
stainless fillet joint)
(d) Bottom plate to
longi-bulkhead
(Stainless-clad to
stainless-clad fillet joint)
(e) Bottom plate to
bottom plate
(Stainless-clad to
carbon steel butt joint)
Stainless steel and weld metal
Carbon steel and weld metal
(b) Transverse bulkhead
(Stainless butt joint)
Welding of chemical tankers
C
h
e
mi
c
a
l
t
a
n
k
e
r
s
c
a
r
r
yma
n
yc
o
r
r
o
s
i
v
el
i
q
u
i
d
ss
u
c
ha
s
p
e
t
r
o
l
e
u
ma
n
dc
h
e
mi
c
a
l
p
r
o
d
u
c
t
s
,
a
c
i
d
s
,
a
l
k
a
l
i
s
,
e
v
e
n
mo
l
a
s
s
e
s
,a
n
i
ma
lo
i
l
s
,a
n
dv
e
g
e
t
a
b
l
eo
i
l
s
.T
h
e
r
e
f
o
r
e
,
wh
i
l
ec
h
e
mi
c
a
l
t
a
n
k
e
rh
u
l
l
sma
yb
ema
d
eo
fl
o
w-
c
o
s
t
c
a
r
b
o
ns
t
e
e
l
,t
h
e
i
rc
a
r
g
ot
a
n
k
sa
n
dp
i
p
i
n
gs
y
s
t
e
ms
r
e
q
u
i
r
ec
o
r
r
o
s
i
o
n
-
r
e
s
i
s
t
a
n
ts
t
a
i
n
l
e
s
sa
n
ds
t
a
i
n
l
e
s
s
-
c
l
a
d
s
t
e
e
l
s
.
B
e
c
a
u
s
eo
f
t
h
eu
s
eo
f
s
p
e
c
i
a
l
s
t
e
e
l
ma
t
e
r
i
a
l
s
,
t
h
e
we
l
d
i
n
gp
r
o
c
e
d
u
r
e
su
s
e
dd
u
r
i
n
gt
h
ema
n
u
f
a
c
t
u
r
i
n
go
f
c
h
e
mi
c
a
l
t
a
n
k
e
r
s
a
l
s
on
e
e
ds
p
e
c
i
a
l
c
o
n
s
i
d
e
r
a
t
i
o
n
.
1
.
S
e
v
e
r
a
l
s
t
a
i
n
l
e
s
ss
t
e
e
l
t
y
p
e
sa
r
eu
s
e
d
T
h
es
t
a
i
n
l
e
s
ss
t
e
e
lg
r
a
d
e
su
s
e
di
nc
a
r
g
ot
a
n
k
sa
n
d
p
i
p
i
n
gs
y
s
t
e
ms
a
r
ema
i
n
l
ya
u
s
t
e
n
i
t
i
c3
1
6
L
,
3
1
6
L
Na
n
d
3
1
7L wh
i
c
h p
r
o
v
i
d
e e
x
c
e
l
l
e
n
tp
i
t
t
i
n
g c
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
ei
nc
h
l
o
r
i
d
e
-
r
i
c
he
n
v
i
r
o
n
me
n
t
s
.Ni
t
r
o
g
e
n
-
b
e
a
r
i
n
g3
1
6L
N o
f
f
e
r
sh
i
g
h
e
rt
e
n
s
i
l
es
t
r
e
n
g
t
ha
n
d
s
t
r
o
n
g
e
r
r
e
s
i
s
t
a
n
c
et
op
i
t
t
i
n
gc
o
r
r
o
s
i
o
n
.
I
nr
e
c
e
n
t
y
e
a
r
s
,
t
h
eu
s
eo
f
d
u
p
l
e
xs
t
a
i
n
l
e
s
s
s
t
e
e
l
:
UNSS
3
1
8
0
3h
a
s
a
l
s
o
i
n
c
r
e
a
s
e
dd
u
et
oi
t
ss
u
p
e
r
i
o
rr
e
s
i
s
t
a
n
c
et
os
t
r
e
s
s
c
o
r
r
o
s
i
o
nc
r
a
c
k
i
n
ga
n
di
t
sh
i
g
h
e
rt
e
n
s
i
l
es
t
r
e
n
g
t
h
.
T
a
b
l
e1s
h
o
wst
h
et
y
p
i
c
a
lc
h
e
mi
c
a
la
n
dme
c
h
a
n
i
c
a
l
r
e
q
u
i
r
e
me
n
t
s
f
o
r
t
h
e
s
eg
r
a
d
e
s
o
f
s
t
a
i
n
l
e
s
s
s
t
e
e
l
.
T
h
e
s
e s
t
a
i
n
l
e
s
s s
t
e
e
l ma
t
e
r
i
a
l
s a
r
e u
s
e
d f
o
r
mo
n
o
me
t
a
l
l
i
cc
o
mp
o
n
e
n
t
sa
n
d s
t
a
i
n
l
e
s
s
-
c
l
a
d s
t
e
e
l
c
o
mp
o
n
e
n
t
sf
o
rt
h
ec
a
r
g
ot
a
n
k
sa
n
dp
i
p
i
n
gs
y
s
t
e
ms
.
Du
r
i
n
gwe
l
d
i
n
g
,s
e
v
e
r
a
lc
o
mb
i
n
a
t
i
o
n
so
fma
t
e
r
i
a
l
s
h
a
v
et
ob
ej
o
i
n
e
di
na
l
l
p
o
s
i
t
i
o
n
sa
ss
h
o
wnF
i
g
u
r
e
s1
a
n
d 2
.Wh
e
n we
l
d
i
n
g t
h
e
s
e mo
n
o
me
t
a
l
l
i
c a
n
d
d
i
s
s
i
mi
l
a
rme
t
a
lj
o
i
n
t
s
,c
a
r
e
f
u
lc
o
n
s
i
d
e
r
a
t
i
o
n i
s
r
e
q
u
i
r
e
di
ns
e
l
e
c
t
i
n
gf
i
l
l
e
rme
t
a
l
si
no
r
d
e
rt
oo
b
t
a
i
n
s
o
u
n
dwe
l
d
s
.
2
.
We
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
s
i
mi
l
a
r
j
o
i
n
t
s
o
f
s
t
a
i
n
l
e
s
ss
t
e
e
l
s
T
a
b
l
e2s
h
o
wss
u
i
t
a
b
l
ewe
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
a
u
s
t
e
n
i
t
i
ca
n
dd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
s
.
3
1
6
La
n
d3
1
7
L
s
t
a
i
n
l
e
s
ss
t
e
e
l
sc
o
mmo
n
l
yu
s
ema
t
c
h
i
n
gf
i
l
l
e
rme
t
a
l
s
,
Pr
o
p
e
r
t
i
e
s
T
y
p
eo
f
s
t
a
i
n
l
e
s
ss
t
e
e
l
3
1
6
L 3
1
6
L
N 3
1
7
L S3
1
8
0
3
C ≦0
.
0
3
0 ≦0
.
0
3
0 ≦0
.
0
3
0 ≦0
.
0
3
0
Si ≦1
.
0
0 ≦1
.
0
0 ≦1
.
0
0 ≦1
.
0
0
Mn ≦2
.
0
0 ≦2
.
0
0 ≦2
.
0
0 ≦2
.
0
0
Cr 1
6
.
0
0
-
1
8
.
0
0 1
6
.
0
0
-
1
8
.
0
0 1
8
.
0
0
-
2
0
.
0
0 2
1
.
0
-
2
3
.
0
Ni 1
0
.
0
0
-
1
4
.
0
0 1
0
.
0
0
-
1
4
.
0
0 1
1
.
0
0
-
1
5
.
0
0 4
.
5
0
-
6
.
5
0
Mo 2
.
0
0
-
3
.
0
0 2
.
0
0
-
3
.
0
0 3
.
0
0
-
4
.
0
0 2
.
5
0
-
3
.
5
0
N − 0
.
1
0
-
0
.
1
6 − 0
.
0
8
-
0
.
2
0
0
.
2
%PS(
MPa
) ≧1
7
0 ≧2
0
5 ≧2
0
5 ≧4
5
0
T
S(
MPa
) ≧4
8
5 ≧5
1
5 ≧5
1
5 ≧6
2
0
El
(
%) ≧4
0
.
0 ≧4
0
.
0 ≧4
0
.
0 ≧2
5
.
0
F
i
g
u
r
e1
:
Cr
o
s
ss
e
c
t
i
o
n
a
l
v
i
e
wo
f
c
a
r
g
ot
a
n
k
T
a
b
l
e1
:
Ch
e
mi
c
a
l
a
n
dme
c
h
a
n
i
c
a
l
r
e
q
u
i
r
e
me
n
t
sf
o
r
a
u
s
t
e
n
i
t
i
c
a
n
dd
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
wr
o
u
g
h
t
p
r
o
d
u
c
t
s(
1
)
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
s
(
ma
s
s%)
F
i
g
u
r
e2
:
V
a
r
i
e
t
i
e
so
f
we
l
dj
o
i
n
t
si
nc
a
r
g
ot
a
n
k
s
(
1
)
I
na
c
c
o
r
d
a
n
c
ewi
t
hAST
MA2
0
4
1
3
60 deg.
⑤
④
Stainless steel
cladding metal
Carbon steel base metal Carbon steel weld metal
2.5
16
①
②
③
① ②
④
③
⑤ ⑦
⑧
⑥
Carbon
steel
Carbon
steel
: Carbon steel and weld metal
: Stainless steel and weld metal
317L steel
317L steel
Filler metal selection:
1. Buffer layer
④ and ⑤ : DW-309MoL
2.Final layer
⑥,⑦ and ⑧: DW-317L
b
u
t3
1
6
L
Ns
t
a
i
n
l
e
s
ss
t
e
e
lr
e
q
u
i
r
e
sf
i
l
l
e
rme
t
a
l
swi
t
h
h
i
g
h
e
r
a
mo
u
n
t
s
o
f
C
r
a
n
dNi
(
3
1
7
L
-
t
y
p
ef
i
l
l
e
r
me
t
a
l
s
)
t
op
r
o
v
i
d
et
h
ewe
l
dme
t
a
lwi
t
hp
i
t
t
i
n
gc
o
r
r
o
s
i
o
n
r
e
s
i
s
t
a
n
c
ee
q
u
i
v
a
l
e
n
t
o
r
s
u
p
e
r
i
o
r
t
ot
h
eb
a
s
eme
t
a
l
.
F
o
r
UNSS
3
1
8
0
3d
u
p
l
e
xs
t
a
i
n
l
e
s
ss
t
e
e
l
s
,
t
h
es
p
e
c
i
f
i
cf
i
l
l
e
r
me
t
a
l
s
s
h
o
wni
nT
a
b
l
e2a
r
er
e
c
o
mme
n
d
e
d
.
3
.
E
x
c
e
l
l
e
n
t
p
e
r
f
o
r
ma
n
c
eo
f
F
CA
Wl
e
a
d
st
o
wi
d
ea
p
p
l
i
c
a
t
i
o
n
s
I
nwe
l
d
i
n
gs
t
a
i
n
l
e
s
ss
t
e
e
la
n
ds
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
a
s
s
e
mb
l
i
e
s
,S
MA
W,F
C
A
W,GT
A
W a
n
dS
A
W a
r
e
c
o
mmo
n
l
yu
s
e
d
.
S
MA
W i
ss
ov
e
r
s
a
t
i
l
et
h
a
t
i
t
i
su
s
e
d
f
o
r
s
u
c
ha
s
s
e
mb
l
i
e
s
a
s
p
l
a
t
e
-
t
o
-
p
l
a
t
ej
o
i
n
t
s
a
n
dp
i
p
e
-
t
o
-
p
i
p
ej
o
i
n
t
si
na
l
lp
o
s
i
t
i
o
n
s
.F
C
A
W wi
t
hC
O2o
rAr
-
C
O2 mi
x
t
u
r
e s
h
i
e
l
d
i
n
g o
f
f
e
r
s h
i
g
h
e
re
f
f
i
c
i
e
n
c
y
,
s
mo
o
t
h
e
rb
e
a
da
p
p
e
a
r
a
n
c
e
,b
e
t
t
e
rs
l
a
gr
e
mo
v
a
l
,a
n
d
l
o
we
r
s
p
a
t
t
e
r
,
t
h
e
r
e
b
yc
u
t
t
i
n
gwe
l
d
i
n
gc
o
s
t
s
.
F
o
r
c
a
r
g
o
t
a
n
k
s
t
h
a
t
c
o
n
s
i
s
t
o
f
o
u
t
-
o
f
-
p
o
s
i
t
i
o
nj
o
i
n
t
sa
ss
h
o
wni
n
F
i
g
u
r
e1
,a
l
l
-
p
o
s
i
t
i
o
nt
y
p
eF
C
Wsa
r
ep
a
r
t
i
c
u
l
a
r
l
y
v
e
r
s
a
t
i
l
e
.I
na
d
d
i
t
i
o
n
,wh
e
nc
o
mp
a
r
e
dwi
t
hGMA
W
u
s
i
n
gs
o
l
i
dwi
r
e
s
,
F
C
A
W l
e
a
v
e
st
h
ewe
l
dme
t
a
lwi
t
h
l
e
s
s c
a
r
b
o
n a
n
d
, t
h
u
s
, s
u
p
e
r
i
o
r r
e
s
i
s
t
a
n
c
e t
o
i
n
t
e
r
g
r
a
n
u
l
a
rc
o
r
r
o
s
i
o
n
.
B
e
c
a
u
s
eo
ft
h
e
s
ea
d
v
a
n
t
a
g
e
s
,
F
C
A
Wi
s
wi
d
e
l
yu
s
e
di
nf
i
l
l
e
t
a
n
db
u
t
t
j
o
i
n
t
s
.
4
.
Bu
t
t
j
o
i
n
t
sa
n
df
i
l
l
e
t
j
o
i
n
t
so
f
s
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
s
Au
s
t
e
n
i
t
i
cs
t
a
i
n
l
e
s
s
s
t
e
e
l
i
so
f
t
e
nu
s
e
df
o
r
t
h
ec
l
a
d
d
i
n
g
me
t
a
lb
o
n
d
e
dwi
t
ht
h
ec
a
r
b
o
ns
t
e
e
lb
a
s
eme
t
a
lt
o
p
r
o
d
u
c
es
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
.
F
o
r
we
l
d
i
n
gs
t
a
i
n
l
e
s
s
-
c
l
a
d
s
t
e
e
l
j
o
i
n
t
s
,
af
i
l
l
e
r
me
t
a
l
wi
t
hh
i
g
h
e
r
a
mo
u
n
t
s
o
f
Ni
-
C
r
i
sn
e
e
d
e
di
na
d
d
i
t
i
o
nt
ot
h
o
s
er
e
q
u
i
r
e
me
n
t
sd
i
s
c
u
s
s
e
d
a
b
o
v
et
op
r
e
v
e
n
t
h
o
t
c
r
a
c
k
si
nt
h
eb
u
f
f
e
rl
a
y
e
ro
ft
h
e
we
l
dme
t
a
l
.
T
a
b
l
e3s
h
o
wsc
o
mmo
nc
o
mb
i
n
a
t
i
o
n
so
f
f
i
l
l
e
rme
t
a
l
sf
o
rF
C
A
W o
fs
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
lb
u
t
t
j
o
i
n
t
s
.
DW-
3
0
9
Mo
Li
sa
l
s
ou
s
e
df
o
rs
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
f
i
l
l
e
t
j
o
i
n
t
s
a
s
we
l
l
a
s
s
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
t
oc
a
r
b
o
ns
t
e
e
l
b
u
t
t
j
o
i
n
t
sa
ss
h
o
wni
nF
i
g
u
r
e3
.I
ts
h
o
wsat
y
p
i
c
a
l
s
e
l
e
c
t
i
o
no
ff
i
l
l
e
rme
t
a
l
sf
o
rs
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
lf
i
l
l
e
t
j
o
i
n
t
s
.
S
A
W i
sn
o
t
s
u
i
t
a
b
l
ef
o
rwe
l
d
i
n
gi
nt
h
eg
r
o
o
v
eo
ft
h
e
s
t
a
i
n
l
e
s
s
-
c
l
a
ds
i
d
eb
e
c
a
u
s
ei
t
sp
e
n
e
t
r
a
t
i
o
ni
sd
e
e
p
e
r
,
wh
i
c
hi
n
c
r
e
a
s
e
sd
i
l
u
t
i
o
no
ft
h
eb
a
s
eme
t
a
la
n
dma
y
c
a
u
s
eh
o
t
c
r
a
c
k
i
n
g
.
GT
A
Wi
s
b
e
t
t
e
r
a
t
mi
n
i
mi
z
i
n
gb
a
s
e
me
t
a
ld
i
l
u
t
i
o
nd
u
et
os
h
a
l
l
o
we
rp
e
n
e
t
r
a
t
i
o
n
,b
u
ti
t
s
we
l
d
i
n
ge
f
f
i
c
i
e
n
c
yi
sl
o
we
r
.S
MA
W a
n
dF
C
A
W a
r
e
wi
d
e
l
yu
s
e
df
o
rwe
l
d
i
n
gs
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
lj
o
i
n
t
s
,
h
o
we
v
e
r
,
F
C
A
Wi
s
mo
r
ewi
d
e
s
p
r
e
a
db
e
c
a
u
s
ei
t
i
s3t
o
4t
i
me
sh
i
g
h
e
ri
nd
e
p
o
s
i
t
i
o
nr
a
t
ea
n
da
b
o
u
t2t
i
me
s
h
i
g
h
e
r
i
nd
e
p
o
s
i
t
i
o
ne
f
f
i
c
i
e
n
c
yt
h
a
nS
MA
W.
T
y
p
i
c
a
lp
a
s
ss
e
q
u
e
n
c
e
sa
n
dF
C
Wsf
o
rs
t
a
i
n
l
e
s
s
-
c
l
a
d
s
t
e
e
lb
u
t
tj
o
i
n
ta
r
es
h
o
wni
nF
i
g
u
r
e3a
n
dT
a
b
l
e3
,
r
e
s
p
e
c
t
i
v
e
l
y
.T
y
p
i
c
a
lp
a
s
ss
e
q
u
e
n
c
e
sa
n
dF
C
Wsf
o
r
s
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
h
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
j
o
i
n
t
a
r
es
h
o
wni
n
F
i
g
u
r
e4
.
①,
② a
n
d③ we
l
d
i
n
ga
r
ef
o
rc
a
r
b
o
ns
t
e
e
l
T
y
p
eo
f
s
t
a
i
n
l
e
s
s
s
t
e
e
l
We
l
d
i
n
gp
r
o
c
e
s
s
SMA
W F
CA
W(
1
) GT
A
W SA
W
3
1
6
L NC-
3
6
L DW-
3
1
6
L
P T
G-
S3
1
6
L
/
T
G-
X3
1
6
L PF
-
S1
M/
US-
3
1
6
L
3
1
6
L
N NC-
3
1
7
L DW-
3
1
7
L T
G-
S3
1
7
L PF
-
S1
/
US-
3
1
7
L
3
1
7
L NC-
3
1
7
L DW-
3
1
7
L T
G-
S3
1
7
L PF
-
S1
/
US-
3
1
7
L
S3
1
8
0
3 NC-
2
2
0
9DW-
3
2
9
AP T
G-
S2
2
0
9 PF
-
S1
D/
US-
2
2
0
9
T
y
p
eo
f
s
t
a
i
n
l
e
s
s
-
c
l
a
ds
t
e
e
l
F
CA
W
Bu
f
f
e
r
l
a
y
e
r
(
④ p
a
s
s
) F
i
n
a
l
l
a
y
e
r
(
⑤ p
a
s
s
)
3
1
6
L DW-
3
0
9
Mo
L DW-
3
1
6
L
P
3
1
6
L
N DW-
3
0
9
Mo
L DW-
3
1
7
L
3
1
7
L DW-
3
0
9
Mo
L DW-
3
1
7
L
T
a
b
l
e2
:
We
l
d
i
n
gc
o
n
s
u
ma
b
l
e
sf
o
r
a
u
s
t
e
n
i
t
i
ca
n
dd
u
p
l
e
x
s
t
a
i
n
l
e
s
ss
t
e
e
l
s
T
a
b
l
e3
:
F
CWsf
o
r
s
t
a
i
n
l
e
s
s
-
c
l
a
d
s
t
e
e
l
b
u
t
t
j
o
i
n
t
(
1
)
Sh
i
e
l
d
i
n
gg
a
s
:
1
0
0
%CO2o
r
Ar
-
CO2mi
x
t
u
r
e
(
2
)
T
G-
X3
1
6
Lf
o
r
r
o
o
t
p
a
s
swe
l
d
i
n
gwi
t
hn
op
u
r
g
i
n
gg
a
s
F
i
g
u
r
e3
:
T
y
p
i
c
a
l
p
a
s
ss
e
q
u
e
n
c
eo
f
ac
l
a
d
d
i
n
gb
u
t
t
j
o
i
n
t
F
i
g
u
r
e4
:
T
y
p
i
c
a
l
p
a
s
ss
e
q
u
e
n
c
ea
n
dF
CWso
f
h
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
go
f
3
1
7
Lc
l
a
d
d
i
n
gme
t
a
l
1
4
j
o
i
n
t
s
,
a
n
d④ a
n
d⑤ o
fab
u
t
tj
o
i
n
ta
n
d④-
⑧ o
fa
h
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
j
o
i
n
t
a
r
ef
o
r
d
i
s
s
i
mi
l
a
r
j
o
i
n
t
s
.
T
h
ec
h
e
mi
c
a
la
n
d me
c
h
a
n
i
c
a
lp
r
o
p
e
r
t
i
e
so
ft
h
e
r
e
c
o
mme
n
d
e
dF
C
Ws
,
wh
i
c
ha
r
et
a
i
l
o
r
e
dt
oc
o
n
t
a
i
na
s
ma
l
l
a
mo
u
n
t
o
ff
e
r
r
i
t
ei
nt
h
ewe
l
dme
t
a
l
t
oi
mp
r
o
v
e
t
h
e
i
r
h
o
t
c
r
a
c
kr
e
s
i
s
t
a
n
c
e
,
a
r
es
h
o
wni
nF
i
g
u
r
e4
.
5
.
Shi
ppi
nga
ppr
ov
a
l
s
S
h
i
p
p
i
n
ga
p
p
r
o
v
a
l
s
o
f
Ko
b
e
l
c
o
’
s
we
l
d
i
n
gc
o
n
s
u
ma
b
l
e
s
f
o
rd
u
p
l
e
x
,3
1
6
L
N a
n
d3
1
7Ls
t
a
i
n
l
e
s
ss
t
e
e
l
sa
n
d
d
i
s
s
i
mi
l
a
r
me
t
a
l
s
a
r
es
h
o
wni
nT
a
b
l
e5
.
Pu
r
p
o
s
e Du
p
l
e
x 3
1
6
L
N3
1
7
L Di
s
s
i
mi
l
a
r
Pr
o
d
u
c
t
Sh
i
p
p
i
n
g n
a
me
Cl
a
s
s
i
f
i
c
a
t
i
o
n
DW-
3
2
9
AP
1
0
0
%CO2
1
.
2
mm
DW-
3
1
7
L
1
0
0
%CO2
1
.
2
mm
DW-
3
0
9
LP
1
0
0
%CO2
1
.
2
mm
DW-
3
0
9
L
1
0
0
%CO2
1
.
2
mm
DW-
3
0
9
MoL
1
0
0
%CO2
1
.
2
mm
NK
Gr
a
d
e KW2
2
0
9 MG K
W3
0
9
L
G(
C) KW3
0
9
L
G(
C) KW3
0
9
Mo
L
G(
C)
WP F
VH F F
VOH F F
VH
L
R
Gr
a
d
e S3
1
8
0
3 MG
(
E3
1
7
L
T
0
-
1
)
Du
p
/
CMn
,
SS/
CMn SS/
CMn SS/
CMn
WP F
VH F F
VOH F F
VH
DNV
Gr
a
d
e Du
p
l
e
x 3
1
7
L 3
0
9
L 3
0
9
L 3
0
9
Mo
L
WP F
VH F F
VOH F F
V
BV
Gr
a
d
e 2
2
0
5 UP 3
0
9
L UP UP
WP F
VH F F
VOH F F
VH
CCS
Gr
a
d
e 2
2
0
5 - - - -
WP F
VH - - - -
Pr
o
d
u
c
t
n
a
me DW-
3
1
6
LP DW-
3
1
7
L DW-
3
0
9
MoL DW-
3
2
9
AP
A
WSc
l
a
s
s
. E3
1
6
L
T E3
1
7
L
T E3
0
9
L
Mo
T E2
2
0
9
T
C 0
.
0
2
8 0
.
0
2
5 0
.
0
2
5 0
.
0
2
7
Si 0
.
6
0 0
.
5
9 0
.
6
5 0
.
5
8
Mn 1
.
5
0 1
.
1
0 0
.
7
8 0
.
7
8
Ni 1
2
.
6
5 1
3
.
0
1 1
2
.
6
2 9
.
4
2
Cr 1
8
.
3
5 1
9
.
8
1 2
2
.
6
7 2
3
.
3
4
Mo 2
.
6
8 3
.
3
5 2
.
6
9 3
.
4
2
N − − − 0
.
1
4
Cu − − 0
.
0
5 0
.
0
2
0
.
2
%PS(
MPa
) 3
7
0 3
8
0 5
3
5 6
2
0
T
S(
MPa
) 5
4
0 5
9
0 6
9
8 8
3
0
El
(
%) 4
3 3
7 3
0 2
9
T
a
b
l
e4
:
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s
o
f
a
l
l
we
l
dme
t
a
l
so
f
F
CWs
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
a
l
l
we
l
dme
t
a
l
(
ma
s
s%)
T
a
b
l
e5
:
Sh
i
p
p
i
n
ga
p
p
r
o
v
a
l
so
f
F
CWsf
o
r
d
u
p
l
e
x
,
3
1
6
L
Na
n
d3
1
7
Ls
t
a
i
n
l
e
s
ss
t
e
e
l
a
n
df
o
r
d
i
s
s
i
mi
l
a
r
me
t
a
l
s
1
5
1st layer 2nd layer 3rd layer
H-series stainless steel flux cored wires
for high-temperature applications
22 600
Temperature (°C)
Conventional 308
308FCW
Elongation
(%)
0
10
20
30
40
50
800
700 22 600
Temperature (°C)
Conventional 347
347FCW
Elongation
(%)
0
10
20
30
40
50
800
700
1
.
P
r
e
f
a
c
e
C
o
n
v
e
n
t
i
o
n
a
l
s
t
a
i
n
l
e
s
ss
t
e
e
l
F
CWsg
e
n
e
r
a
l
l
yc
o
n
t
a
i
na
mi
n
u
t
ea
mo
u
n
t
o
f
b
i
s
mu
t
ho
x
i
d
e(
B
i
2
O3
)
i
nt
h
ef
l
u
xt
o
i
mp
r
o
v
es
l
a
gr
e
mo
v
a
l
.T
h
er
e
s
u
l
t
i
n
gwe
l
dme
t
a
l
,
t
h
e
r
e
f
o
r
e
,
c
o
n
t
a
i
n
sav
e
r
ys
ma
l
l
a
mo
u
n
to
fB
i
.
Wh
e
n
t
h
i
s
we
l
dme
t
a
l
i
s
e
x
p
o
s
e
dt
ot
e
mp
e
r
a
t
u
r
e
s
o
v
e
r
6
0
0
°
C
,
t
h
ed
u
c
t
i
l
i
t
y(
e
l
o
n
g
a
t
i
o
n
)
o
f
t
h
ewe
l
dme
t
a
l
i
sr
e
d
u
c
e
d
b
e
c
a
u
s
eo
fs
e
g
r
e
g
a
t
i
o
no
fB
i
a
t
t
h
eg
r
a
i
nb
o
u
n
d
a
r
i
e
s
,
a
n
dc
r
a
c
k
s
ma
yo
c
c
u
r
.
2
.
Bi
s
mu
t
h(
Bi
)
f
r
e
es
t
a
i
n
l
e
s
ss
t
e
e
l
F
CWs
I
nc
o
n
t
r
a
s
tt
ot
h
i
s
,t
h
eH-
s
e
r
i
e
sDW s
t
a
i
n
l
e
s
ss
t
e
e
l
F
C
Wss
h
o
wni
nT
a
b
l
e1c
o
n
t
a
i
nn
ob
i
s
mu
t
ho
x
i
d
ei
n
t
h
ef
l
u
x a
n
d
,t
h
u
s
,n
o B
ii
n t
h
ewe
l
d me
t
a
l
.
C
o
n
s
e
q
u
e
n
t
l
y
,e
l
o
n
g
a
t
i
o
no
ft
h
ewe
l
dme
t
a
la
th
i
g
h
t
e
mp
e
r
a
t
u
r
e
s
i
s
h
i
g
h
e
r
t
h
a
nt
h
a
t
o
f
c
o
n
v
e
n
t
i
o
n
a
l
F
C
Ws
a
ss
h
o
wni
nF
i
g
u
r
e
s1a
n
d2
.
T
h
i
si
swh
yt
h
eB
i
-
f
r
e
e
F
C
Wsa
r
es
u
i
t
a
b
l
ef
o
rh
i
g
ht
e
mp
e
r
a
t
u
r
ea
p
p
l
i
c
a
t
i
o
n
s
,
i
n
c
l
u
d
i
n
gh
i
g
ht
e
mp
e
r
a
t
u
r
ee
q
u
i
p
me
n
ta
n
dp
o
s
t
we
l
d
s
t
a
b
i
l
i
z
a
t
i
o
n h
e
a
tt
r
e
a
t
me
n
t
.T
h
e H-
s
e
r
i
e
sF
C
Ws
c
o
n
t
a
i
na
d
v
a
n
c
e
df
l
u
xc
o
mp
o
s
i
t
i
o
n
s(
wi
t
h
o
u
tB
i
2
O3
)
t
h
a
tma
k
es
l
a
gr
e
mo
v
a
lc
o
mp
a
r
a
b
l
et
oc
o
n
v
e
n
t
i
o
n
a
l
F
C
Ws
.
Wh
e
r
ewe
l
d
sa
r
es
u
b
j
e
c
tt
o s
o
l
i
d s
o
l
u
t
i
o
n h
e
a
t
t
r
e
a
t
me
n
ta
swe
l
la
sh
o
tr
o
l
l
i
n
g
,t
h
eH-
s
e
r
i
e
sDW
s
t
a
i
n
l
e
s
ss
t
e
e
lF
C
Wss
h
o
u
l
da
l
s
ob
eu
s
e
dt
op
r
e
v
e
n
t
r
e
d
u
c
e
dd
u
c
t
i
l
i
t
y
.
3
.
Bi
c
o
n
t
e
n
t
i
nt
h
ewe
l
dme
t
a
l
f
o
r
h
i
g
ht
e
mp
e
r
a
t
u
r
es
e
r
v
i
c
eo
r
P
WHT
i
ss
p
e
c
i
f
i
e
db
yA
WSA5
.
2
2
-
2
0
1
2
I
nt
h
ea
r
t
i
c
l
eA8
.
1
.
4o
f
A
WSA5
.
2
2
-
2
0
1
2
,
i
t
i
ss
t
a
t
e
d
t
h
a
t
s
t
a
i
n
l
e
s
ss
t
e
e
l
e
l
e
c
t
r
o
d
e
sc
o
n
t
a
i
n
i
n
gb
i
s
mu
t
h(
B
i
)
a
d
d
i
t
i
o
n
s
s
h
o
u
l
dn
o
t
b
eu
s
e
df
o
r
s
u
c
hh
i
g
ht
e
mp
e
r
a
t
u
r
e
s
e
r
v
i
c
eo
r
p
o
s
t
we
l
dh
e
a
t
t
r
e
a
t
me
n
t
a
b
o
v
ea
b
o
u
t
5
0
0
°
C
.
We
l
d
i
n
gc
o
n
s
u
ma
b
l
ema
n
u
f
a
c
t
u
r
e
r
sa
r
er
e
q
u
i
r
e
dt
o
r
e
p
o
r
t
B
i
a
n
a
l
y
s
i
sr
e
s
u
l
t
so
fa
l
l
d
e
p
o
s
i
t
e
dme
t
a
l
si
fB
i
i
s
i
n
t
e
n
t
i
o
n
a
l
l
ya
d
d
e
di
ns
t
a
i
n
l
e
s
s
s
t
e
e
l
F
CWs
o
r
i
f
i
t
i
s
k
n
o
wnt
ob
ep
r
e
s
e
n
t
a
t
l
e
v
e
l
sg
r
e
a
t
e
rt
h
a
n0
.
0
0
2
%i
n
a
l
l
d
e
p
o
s
i
t
e
dme
t
a
l
.
I
t
i
s
,
t
h
e
r
e
f
o
r
e
,
f
o
r
e
c
a
s
t
t
h
a
t
d
e
ma
n
df
o
r
B
i
f
r
e
eF
C
Ws
wi
l
l
i
n
c
r
e
a
s
ei
na
c
c
o
r
d
a
n
c
ewi
t
hg
r
o
wi
n
gd
e
ma
n
df
o
r
p
r
o
c
e
s
s
i
n
ga
t
e
l
e
v
a
t
e
dt
e
mp
e
r
a
t
u
r
e
s
a
n
de
n
e
r
g
y
-
r
e
l
a
t
e
d
e
q
u
i
p
me
n
t
f
o
r
h
i
g
ht
e
mp
e
r
a
t
u
r
eo
p
e
r
a
t
i
o
n
s
.
F
i
g
u
r
e3s
h
o
wst
h
eb
e
a
da
p
p
e
a
r
a
n
c
eo
fDW-
3
1
6
H
we
l
dme
t
a
l
i
ne
a
c
hl
a
y
e
r
o
f
t
h
eb
u
t
t
j
o
i
n
t
.
Pr
o
d
u
c
t
n
a
meDW-
3
0
8
H DW-
308LH DW-
3
1
6
H DW-
316LH DW-
3
4
7
H DW-
309LH
A
WSc
l
a
s
s
. E3
0
8
H
T
1
-
1
/
-
4
E3
0
8
L
T
1
-
1
/
-
4
E3
1
6
T
1
-
1
/
-
4
E3
1
6
L
T
1
-
1
/
-
4
E3
4
7
T
1
-
1
/
-
4
E3
0
9
L
T
1
-
1
/
-
4
C 0
.
0
5
2 0
.
0
2
6 0
.
0
5
0 0
.
0
2
3 0
.
0
2
7 0
.
0
2
8
Si 0
.
4
2 0
.
4
1 0
.
3
8 0
.
4
5 0
.
3
8 0
.
4
7
Mn 1
.
5
0 1
.
3
5 1
.
1
0 1
.
0
8 1
.
1
8 1
.
2
4
Ni 9
.
6
2 1
0
.
2
0 1
1
.
6
0 1
1
.
9
4 1
0
.
2
0 1
2
.
5
8
Cr 1
8
.
6
8 1
8
.
7
0 1
8
.
7
5 1
8
.
4
7 1
8
.
8
7 2
4
.
1
7
Mo − − 2
.
4
0 2
.
4
5 − −
Nb − − − − 0
.
5
7 −
Bi 
0
.
0
0
1 
0
.
0
0
1 
0
.
0
0
1 
0
.
0
0
1 
0
.
0
0
1 
0
.
0
0
1
F
NW 4 5 7 8 6 2
0
T
S(
MPa
) 5
7
5 5
4
0 5
7
0 5
4
0 6
0
2 5
7
8
El
(
%) 4
8 5
2 4
2 4
5 4
3 3
9
F
i
g
u
r
e1
:
Co
mp
a
r
i
s
o
no
f
h
i
g
h
t
e
mp
e
r
a
t
u
r
ee
l
o
n
g
a
t
i
o
n
b
e
t
we
e
nDW-
3
0
8
Ha
n
d
c
o
n
v
e
n
t
i
o
n
a
l
3
0
8F
CW
F
i
g
u
r
e2
:
Co
mp
a
r
i
s
o
no
f
h
i
g
h
t
e
mp
e
r
a
t
u
r
ee
l
o
n
g
a
t
i
o
n
b
e
t
we
e
nDW-
3
4
7
Ha
n
d
c
o
n
v
e
n
t
i
o
n
a
l
3
4
7F
CW
T
a
b
l
e1
:
T
y
p
i
c
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
so
f
H-
s
e
r
i
e
sDWs
t
a
i
n
l
e
s
ss
t
e
e
l
F
CW
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
a
l
l
we
l
dme
t
a
l
(
ma
s
s%)
We
l
d
i
n
gc
o
n
d
i
t
i
o
n
s
:
We
l
d
i
n
gc
o
n
s
u
ma
b
l
ea
n
dd
i
a
me
t
e
r
:
DW-
3
1
6
H1
.
2
mmd
i
a
.
We
l
d
i
n
gp
a
r
a
me
t
e
r
s
:
2
0
0
A-
3
0
V
Sh
i
e
l
d
i
n
gg
a
s
:
1
0
0
%CO2
Ba
s
eme
t
a
l
t
h
i
c
k
n
e
s
s
:
T
y
p
e3
1
6
Lp
l
a
t
e1
5mmt
h
i
c
k
J
o
i
n
t
t
y
p
e
:
Bu
t
t
j
o
i
n
t
We
l
d
i
n
gp
o
s
i
t
i
o
n
:
1
G
F
i
g
u
r
e3
:
Be
a
da
p
p
e
a
r
a
n
c
eo
f
DW-
3
1
6
L
Hwe
l
dme
t
a
l
1
6
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.00 2.00
(Na+K)/F in fume
Cr(VI)
concentration
in
fume
(%)
4.00 6.00
308L type FCAW
308L
0
0.5
1
1.5
2
2.5
-89% -80%
-88% -86% -86%
-70%
316L 309L 308LP 316LP 309LP
XR siries
Conventional
Cr(VI)
emission
rate
(mg/min)
XR series:
Low Cr(VI) stainless steel flux cored wires
Others
16%
SiO2
17%
Fe2O3
30%
MnO
13%
Na2O+K2O
10%
Cr2O3
14%
F
i
g
u
r
e1
:
T
h
et
y
p
i
c
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
no
f
we
l
d
i
n
g
f
u
me
sg
e
n
e
r
a
t
e
db
yac
o
n
v
e
n
t
i
o
n
a
l
3
0
8
L
-
t
y
p
eF
CW
1
.
P
r
e
f
a
c
e
AsF
C
A
W g
e
n
e
r
a
t
e
smo
r
ewe
l
d
i
n
gf
u
me
st
h
a
no
t
h
e
r
s
t
a
i
n
l
e
s
s s
t
e
e
lwe
l
d
i
n
g me
t
h
o
d
s
,i
tp
r
e
s
e
n
t
s a
b
u
r
d
e
n
s
o
mes
a
f
e
t
yc
h
a
l
l
e
n
g
e
.We
l
d
i
n
gf
u
mei
sa
n
o
x
i
d
et
h
a
t
f
o
r
mswh
e
nme
t
a
l
v
a
p
o
r
,
g
e
n
e
r
a
t
e
db
yt
h
e
a
r
c
,c
o
o
l
sa
n
ds
o
l
i
d
i
f
i
e
si
nt
h
ea
i
r
.I
na
d
d
i
t
i
o
n
,t
h
e
we
l
d
i
n
gf
u
me
se
mi
t
t
e
db
ys
t
a
i
n
l
e
s
ss
t
e
e
lF
C
A
W
c
o
n
t
a
i
n5
-
2
0
%c
h
r
o
mi
u
m(
C
r
)o
x
i
d
ei
nt
h
ef
o
r
mo
f
C
r
2
O3a
ss
h
o
wni
nF
i
g
u
r
e1
,
ap
a
r
t
o
f
wh
i
c
he
x
i
s
t
sa
s
h
i
g
h
l
yt
o
x
i
cC
r
6
+
,
n
o
t
e
da
s
C
r
(
VI
)
.
F
i
g
u
r
e1s
h
o
ws
t
h
e
t
y
p
i
c
a
lc
o
mp
o
s
i
t
i
o
n o
ff
u
me
sg
e
n
e
r
a
t
e
d b
y t
h
e
c
o
n
v
e
n
t
i
o
n
a
l3
0
8L
-
t
y
p
eF
C
W.T
h
e
s
ef
u
me
swe
r
e
c
o
l
l
e
c
t
e
df
o
l
l
o
wi
n
gI
S
O1
5
0
1
1
-
1
:
2
0
0
9a
n
dt
h
eC
r
(
VI
)
i
nt
h
ef
u
me
swa
sa
n
a
l
y
z
e
da
c
c
o
r
d
i
n
gt
oI
S
O1
6
7
4
0
:
2
0
0
5
.
2
.
OS
HAa
me
n
d
me
n
t
T
h
et
o
x
i
c
i
t
yo
fC
r
(
VI
)h
a
sr
e
c
e
n
t
l
yb
e
e
nr
e
-
e
v
a
l
u
a
t
e
d
i
na
c
c
o
r
d
a
n
c
ewi
t
hmo
v
e
st
o
wa
r
dr
e
g
u
l
a
t
i
n
gi
tmo
r
e
s
t
r
i
c
t
l
yi
nt
h
ewo
r
k
p
l
a
c
e
.F
o
re
x
a
mp
l
ei
n2
0
1
0t
h
e
Ame
r
i
c
a
n Oc
c
u
p
a
t
i
o
n
a
l S
a
f
e
t
y a
n
d He
a
l
t
h
Ad
mi
n
i
s
t
r
a
t
i
o
n(
OS
HA)
a
me
n
d
e
dt
h
ee
x
i
s
t
i
n
gs
t
a
n
d
a
r
d
o
f
t
h
ep
e
r
mi
s
s
i
b
l
ee
x
p
o
s
u
r
el
i
mi
t
(
P
E
L
)
,
f
r
o
m5
2t
o5
μg
/
m3
,
c
u
t
t
i
n
gt
h
ea
mo
u
n
t
o
f
a
i
r
b
o
r
n
eC
r
(
VI
)
a
l
l
o
we
d
i
nwo
r
k
p
l
a
c
eb
y9
0%.
I
t
g
o
e
swi
t
h
o
u
t
s
a
y
i
n
gt
h
a
t
t
h
e
mo
s
t
e
f
f
e
c
t
i
v
eme
t
h
o
do
fr
e
d
u
c
i
n
gC
r
(
VI
)a
s
s
o
c
i
a
t
e
d
wi
t
hs
t
a
i
n
l
e
s
s
s
t
e
e
l
we
l
d
i
n
gi
st
oi
n
s
t
a
l
l
mo
r
ep
o
we
r
f
u
l
v
e
n
t
i
l
a
t
i
o
ns
y
s
t
e
mst
or
e
mo
v
ef
u
me
s
.Ont
h
eo
t
h
e
r
h
a
n
d
,
i
f
we
l
d
i
n
gf
u
me
sc
o
n
t
a
i
n
e
dl
e
s
sC
r
(
VI
)
t
ob
e
g
i
n
wi
t
h
,
t
h
ee
f
f
o
r
t
a
n
de
x
p
e
n
s
ef
o
r
b
e
t
t
e
r
v
e
n
t
i
l
a
t
i
o
nc
o
u
l
d
b
er
e
d
u
c
e
d
.
3
.
De
v
e
l
o
p
me
n
t
o
f
X
Rs
e
r
i
e
sF
CWs
R
e
d
u
c
i
n
gC
r
(
VI
)i
nwe
l
d
i
n
gf
u
me
st
h
e
ms
e
l
v
e
si
sa
n
e
f
f
e
c
t
i
v
ea
l
t
e
r
n
a
t
i
v
e
.
Ko
b
eS
t
e
e
l
h
a
sd
e
v
e
l
o
p
e
dan
e
w
F
C
W s
e
r
i
e
s
,t
h
e“
XR s
e
r
i
e
s
,
”f
o
rf
l
a
tp
o
s
i
t
i
o
n/
h
o
r
i
z
o
n
t
a
lf
i
l
l
e
twe
l
d
i
n
ga
swe
l
la
sf
o
ra
l
lp
o
s
i
t
i
o
n
we
l
d
i
n
gt
h
a
t
d
r
a
s
t
i
c
a
l
l
yr
e
d
u
c
e
st
h
eC
r
(
VI
)c
o
n
t
e
n
t
i
n
t
h
ewe
l
d
i
n
gf
u
me
.T
h
eh
i
g
h
l
yv
e
r
s
a
t
i
l
eXR s
e
r
i
e
s
F
C
Wst
a
r
g
e
tt
h
r
e
et
y
p
e
so
fs
t
a
i
n
l
e
s
ss
t
e
e
l
s
,n
a
me
l
y
3
0
8
L
,3
1
6
La
n
d3
0
9
L
.T
a
b
l
e1s
h
o
wsal
i
s
to
fXR
s
e
r
i
e
s
F
CWs
.
Ass
h
o
wni
nF
i
g
u
r
e2
,
d
e
c
r
e
a
s
i
n
gt
h
ea
mo
u
n
to
fNa
a
n
dK,a
d
d
e
dt
of
l
u
xa
sa
r
cs
t
a
b
i
l
i
z
e
r
s
,c
a
nr
e
d
u
c
e
C
r
(
VI
)
i
nt
h
ewe
l
d
i
n
gf
u
me
.
I
no
r
d
e
r
t
oma
i
n
t
a
i
ns
t
a
b
l
e
u
s
a
b
i
l
i
t
y
,h
o
we
v
e
r
,t
h
er
e
l
a
t
i
v
ea
mo
u
n
t
so
fo
t
h
e
r
a
d
d
i
t
i
v
e
s
,
s
u
c
ha
sf
l
u
o
r
i
d
e
sa
swe
l
l
a
sNaa
n
dK,
ma
y
h
a
v
et
ob
ea
d
j
u
s
t
e
d
.
4
.
Cr
(
V
I
)
e
mi
s
s
i
o
nr
a
t
e
so
f
X
Rs
e
r
i
e
s
T
h
eC
r
(
VI
)e
mi
s
s
i
o
nr
a
t
e
so
fXRs
e
r
i
e
sF
C
Wsa
r
e
g
r
e
a
t
l
yr
e
d
u
c
e
dt
o1
/
5o
r1
/
1
0t
h
ea
mo
u
n
t
e
mi
t
t
e
db
y
c
o
n
v
e
n
t
i
o
n
a
l
s
t
a
i
n
l
e
s
s
s
t
e
e
l
F
CWs
a
s
s
e
e
ni
nF
i
g
u
r
e3
.
We
l
d
i
n
g
p
o
s
i
t
i
o
n
Pr
o
d
u
c
t
n
a
me A
WSA5
.
2
2 A
v
a
i
l
a
b
l
es
i
z
e
(
mm)
F
l
a
t
p
o
s
i
t
i
o
n
a
n
dh
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
g
DW-
3
0
8
L
-
XR E3
0
8
L
T
0
-
1
/
-
4 1
.
2
DW-
3
1
6
L
-
XR E3
1
6
L
T
0
-
1
/
-
4 1
.
2
DW-
3
0
9
L
-
XR E3
0
9
L
T
0
-
1
/
-
4 1
.
2
Al
l
p
o
s
i
t
i
o
n
we
l
d
i
n
g
DW-
3
0
8
L
P-
XR E3
0
8
L
T
1
-
1
/
-
4 1
.
2
DW-
3
1
6
L
P-
XR E3
1
6
L
T
1
-
1
/
-
4 1
.
2
DW-
3
0
9
L
P-
XR E3
0
9
L
T
1
-
1
/
-
4 1
.
2
T
a
b
l
e1
:
X
Rs
e
r
i
e
sF
CWs
F
i
g
u
r
e2
:
Re
l
a
t
i
o
n
s
h
i
pb
e
t
we
e
nf
l
u
xc
o
mp
o
n
e
n
t
sa
n
d
Cr
(
VI
)
i
nwe
l
d
i
n
gf
u
me
F
i
g
u
r
e3
:
Co
mp
a
r
i
s
o
no
f
Cr
(
VI
)
e
mi
s
s
i
o
nr
a
t
e
sb
e
t
we
e
n
c
o
n
v
e
n
t
i
o
n
a
l
F
CWsa
n
dX
Rs
e
r
i
e
sF
CWs
:
We
l
d
i
n
gc
o
n
d
i
t
i
o
n
:
1
0
0
%CO2

2
0
0
A-
3
1
V
1
7
T
h
ec
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
s
o
fa
l
lwe
l
dme
t
a
l
sd
e
p
o
s
i
t
e
db
yXRs
e
r
i
e
sF
C
Ws
,
s
h
o
wni
nT
a
b
l
e2
,
a
r
ea
l
mo
s
t
i
d
e
n
t
i
c
a
l
t
ot
h
o
s
eo
ft
h
e
c
o
n
v
e
n
t
i
o
n
a
l
F
C
Ws
f
o
r
s
t
a
i
n
l
e
s
s
s
t
e
e
l
s
.
5
.
But
t
j
oi
nt
t
e
s
t
r
e
s
ul
t
s
B
u
t
t
j
o
i
n
t
swe
r
ewe
l
d
e
di
nt
h
ef
l
a
t
(
1
G)a
n
dv
e
r
t
i
c
a
l
u
p
wa
r
d(
3
G)p
o
s
i
t
i
o
n
swi
t
hL
-
XRs
e
r
i
e
sa
n
dL
P
-
XR
s
e
r
i
e
sF
C
Wsu
n
d
e
rt
h
ec
o
n
d
i
t
i
o
n
sl
i
s
t
e
di
nT
a
b
l
e
s3
a
n
d 4
,r
e
s
p
e
c
t
i
v
e
l
y
.F
i
g
u
r
e 4 s
h
o
ws t
h
e b
e
a
d
a
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
s
t
r
u
c
t
u
r
ewi
t
h
DW-
3
0
8
L
-
XRa
n
dF
i
g
u
r
e5
,wi
t
hDW-
3
0
8
L
P
-
XR
,
r
e
s
p
e
c
t
i
v
e
l
y
.
6
.
Spe
c
i
a
l
c
a
r
ef
ors
a
f
e
t
y
Al
t
h
o
u
g
hu
s
eo
f
t
h
eXRs
e
r
i
e
s
F
CWs
wi
l
l
s
u
b
s
t
a
n
t
i
a
l
l
y
r
e
d
u
c
ee
x
p
o
s
u
r
et
oC
r
(
VI
)
i
nt
h
ewo
r
k
p
l
a
c
e
,
i
t
i
sa
l
s
o
r
e
c
o
mme
n
d
e
dt
oc
o
n
t
r
o
l
e
x
p
o
s
u
r
eb
yu
s
i
n
gr
e
s
p
i
r
a
t
o
r
y
p
r
o
t
e
c
t
i
o
n
,
v
e
n
t
i
l
a
t
i
o
ne
q
u
i
p
me
n
t
a
n
dp
r
o
t
e
c
t
i
v
ewo
r
k
c
l
o
t
h
i
n
gt
oa
c
h
i
e
v
eas
a
f
e
r
wo
r
k
p
l
a
c
ee
n
v
i
r
o
n
me
n
t
.
Pr
o
d
u
c
t
n
a
me DW-
3
0
8
L-
XR
DW-
3
0
8
LP-
XR
DW-
3
1
6
L-
XR
DW-
3
1
6
LP-
XR
DW-
3
0
9
L-
XR
DW-
3
0
9
LP-
XR
C 0
.
0
2
6 0
.
0
2
3 0
.
0
2
0 0
.
0
2
3 0
.
0
3
1 0
.
0
3
0
Si 0
.
6
6 0
.
7
4 0
.
6
7 0
.
7
0 0
.
7
2 0
.
5
7
Mn 1
.
1
3 1
.
5
8 1
.
1
6 1
.
0
3 0
.
9
5 0
.
7
5
P 0
.
0
1
6 0
.
0
1
8 0
.
0
1
6 0
.
0
1
8 0
.
0
1
8 0
.
0
1
5
S 0
.
0
0
8 0
.
0
0
2 0
.
0
0
8 0
.
0
0
3 0
.
0
0
7 0
.
0
0
2
Cu 0
.
0
1
5 0
.
0
5 0
.
0
2
5 0
.
0
6 0
.
0
2
8 0
.
0
2
Ni 9
.
6 1
0
.
2 1
2
.
0 1
2
.
5 1
2
.
3 1
2
.
3
Cr 1
8
.
8 1
8
.
9 1
8
.
5 1
8
.
5 2
3
.
3 2
3
.
4
Mo 0
.
0
1 0
.
0
1 2
.
4 2
.
8 0
.
0
3 0
.
0
2
Nb 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
2
N 0
.
0
1
6 0
.
0
1
5 0
.
0
2
1 0
.
0
1
5 0
.
0
1
5 0
.
0
1
9
F
N 1
1 9 1
2 1
3 1
8 1
8
F
S 9 7 8 8 1
3 1
3
F
NW 8 7 8 8 1
7 1
8
0
.
2
%PS(
MPa
) 3
6
7 3
6
7 4
0
4 4
0
7 4
1
0 4
1
2
T
S(
MPa
) 5
5
0 5
4
0 5
4
2 5
4
5 5
4
3 5
4
5
El
(
%) 4
4 4
3 3
6 4
3 3
8 3
6
C 0
.
0
2
7 0
.
0
2
6 0
.
0
2
5 0
.
0
2
9 0
.
0
3
0 0
.
0
3
2
Si 0
.
7
4 0
.
8
2 0
.
7
4 0
.
7
5 0
.
7
6 0
.
6
7
Mn 1
.
2
9 1
.
7
9 1
.
2
8 1
.
1
9 1
.
1
0 0
.
9
5
P 0
.
0
1
6 0
.
0
1
7 0
.
0
1
6 0
.
0
1
7 0
.
0
1
8 0
.
0
1
4
S 0
.
0
0
8 0
.
0
0
2 0
.
0
0
8 0
.
0
0
3 0
.
0
0
7 0
.
0
0
2
Cu 0
.
0
1
6 0
.
0
4 0
.
0
2
5 0
.
0
5 0
.
0
2
8 0
.
0
1
Ni 9
.
5 1
0
.
4 1
2
.
0 1
2
.
5 1
2
.
4 1
2
.
3
Cr 1
9
.
4 1
9
.
5 1
8
.
9 1
9
.
0 2
4
.
1 2
4
.
2
Mo 0
.
0
1 0
.
0
2 2
.
4 2
.
8 0
.
0
3 0
.
0
2
Nb 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
1 0
.
0
2
N 0
.
0
1
6 0
.
0
1
4 0
.
0
2
2 0
.
0
1
4 0
.
0
1
5 0
.
0
1
7
F
N 1
4 1
2 1
4 1
4 1
8 1
8
F
S 1
1 8 9 8 1
5 1
5
F
NW 1
1 8 9 9 2
1 2
2
0
.
2
%PS(
MPa
) 3
9
6 3
8
6 4
0
0 4
2
9 4
5
4 4
3
0
T
S(
MPa
) 5
8
3 5
5
1 5
4
8 5
6
6 6
0
8 5
6
2
El
(
%) 4
2 4
2 4
2 4
1 3
2 3
7
Gr
o
o
v
es
h
a
p
e
a
n
d
p
a
s
ss
e
q
u
e
n
c
e
L
o
c
a
t
i
o
n
We
l
d
i
n
g
c
u
r
r
e
n
t
(
A)
Ar
c
v
o
l
t
a
g
e
(
V)
I
n
t
e
r
p
a
s
s
t
e
mp
e
r
a
t
u
r
e
(
°
C)
Pl
a
t
et
h
i
c
k
n
e
s
s
:
1
5
mm
Gr
o
o
v
es
h
a
p
e
:
Si
n
g
l
eV
Gr
o
o
v
ea
n
g
l
e
:
7
0
°
Ba
c
ks
i
d
e
:
3p
a
s
s
e
s
Fi
n
a
l
s
i
d
e
:
2p
a
s
s
Ba
c
k 2
0
0 2
9 
3
0
0
F
i
n
a
l 2
0
0 2
9 
3
0
0
Gr
o
o
v
es
h
a
p
e
a
n
d
p
a
s
ss
e
q
u
e
n
c
e
L
o
c
a
t
i
o
n
We
l
d
i
n
g
c
u
r
r
e
n
t
(
A)
Ar
c
v
o
l
t
a
g
e
(
V)
I
n
t
e
r
p
a
s
s
t
e
mp
e
r
a
t
u
r
e
(
°
C)
Pl
a
t
et
h
i
c
k
n
e
s
s
:
1
5
mm
Gr
o
o
v
es
h
a
p
e
:
Si
n
g
l
eV
Gr
o
o
v
ea
n
g
l
e
:
6
0
°
Ba
c
ks
i
d
e
:
3p
a
s
s
e
s
Fi
n
a
l
s
i
d
e
:
1p
a
s
s
Ba
c
k 1
6
0 2
8 
3
0
0
F
i
n
a
l 1
6
0 2
8 
3
0
0
T
a
b
l
e2
:
T
y
p
i
c
a
l
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
so
f
X
Rs
e
r
i
e
sF
CW
T
a
b
l
e3
:
Bu
t
t
j
o
i
n
t
we
l
d
i
n
gc
o
n
d
i
t
i
o
n
so
f
L
-
X
Rs
e
r
i
e
si
n1
G
p
o
s
i
t
i
o
n
1
0
0
%CO
2
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
a
l
l
we
l
dme
t
a
l
(
ma
s
s%)
F
i
g
u
r
e4
:
Be
a
da
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
s
t
r
u
c
t
u
r
eo
f
DW-
3
0
8
L
-
X
Rb
u
t
t
j
o
i
n
t
we
l
dme
t
a
l
(
1
Gp
o
s
i
t
i
o
n
)
T
a
b
l
e4
:
Bu
t
t
j
o
i
n
t
we
l
d
i
n
gc
o
n
d
i
t
i
o
n
so
f
L
P-
X
Rs
e
r
i
e
si
n3
G
p
o
s
i
t
i
o
n
Ba
l
Ar
-
2
0
~
2
5
%CO
2
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
so
f
a
l
l
we
l
dme
t
a
l
(
ma
s
s%)
F
i
g
u
r
e5
:
Be
a
da
p
p
e
a
r
a
n
c
ea
n
dma
c
r
o
s
t
r
u
c
t
u
r
eo
f
DW-
3
0
8
L
P-
X
Rb
u
t
t
j
o
i
n
t
we
l
dme
t
a
l
(
3
Gu
p
wa
r
dp
o
s
i
t
i
o
n
)
1
8
40
36
32
28
24
20
16
0 100 200 300
Arc
voltage
(V)
Welding current (A)
Conventional FCW
of 0.9mmΦ
Conventional FCW of 1.2mmΦ
DW-T FCW of 1.2mmΦ
SUS304 : 9mmt
SUS304 : 6mmt
SUS304 : 3mmt
6.0
5.0
4.0
3.0
2.0
1.0
0.0
20 30 40 50 60 70 80 90
Leg
length
(mm)
Welding speed (cm/min)
100A
130A
160A
T-series stainless steel flux cored wires for
sheet metal
Wh
e
ni
t
c
o
me
st
owe
l
d
i
n
gs
h
e
e
t
me
t
a
l
swi
t
ht
h
i
c
k
n
e
s
s
o
fa
r
o
u
n
d2mm,we
l
d
e
r
sh
a
v
eb
e
e
na
c
c
u
s
t
o
me
dt
o
u
s
i
n
gs
ma
l
ld
i
a
me
t
e
r–a
n
dmo
r
ee
x
p
e
n
s
i
v
e–s
o
l
i
d
wi
r
eo
r
F
C
W(
e
.
g
.
0
.
9mmd
i
a
.
)
a
t
we
l
d
i
n
gc
u
r
r
e
n
t
so
f
1
5
0Ao
rl
o
we
r
.
Mo
r
ec
o
n
v
e
n
i
e
n
ta
n
dl
e
s
se
x
p
e
n
s
i
v
e
l
a
r
g
e
rd
i
a
me
t
e
rwi
r
e
s(
e
.
g
.1
.
2mm d
i
a
.
)we
r
en
o
t
s
u
i
t
a
b
l
ef
o
rwe
l
d
i
n
gs
h
e
e
tme
a
l
sd
u
et
oi
n
f
e
r
i
o
ra
r
c
s
t
a
b
i
l
i
t
ya
t
s
u
c
hal
o
wwe
l
d
i
n
gc
u
r
r
e
n
t
.
T
oa
c
c
o
mp
l
i
s
ht
h
et
e
c
h
n
i
c
a
l
l
yd
e
ma
n
d
i
n
gc
h
a
l
l
e
n
g
eo
f
u
s
i
n
g1
.
2mmd
i
a
.
F
C
Wwi
t
hg
o
o
da
r
cs
t
a
b
i
l
i
t
ya
t
l
o
w
we
l
d
i
n
gc
u
r
r
e
n
t
,t
h
eDW-
Ts
e
r
i
e
so
fs
t
a
i
n
l
e
s
ss
t
e
e
l
F
C
Ws
(
DW-
T
3
0
8
L
,
DW-
T
3
1
6
La
n
dDW-
T
3
0
9
L
)
h
a
s
b
e
e
nd
e
v
e
l
o
p
e
db
yKo
b
eS
t
e
e
l
a
s
s
h
o
wni
nT
a
b
l
e1
.
T
h
e DW-
T s
e
r
i
e
s F
C
Ws o
f
f
e
r
s o
u
t
s
t
a
n
d
i
n
g
p
e
r
f
o
r
ma
n
c
ewi
t
hs
h
i
e
l
d
i
n
gg
a
s
e
so
f1
0
0
%C
O2a
n
d
B
a
l
-
Ar
-
2
0
~2
5
%C
O2.Wh
e
nt
h
ewe
l
d
i
n
gc
u
r
r
e
n
ti
s
l
o
we
r
t
h
a
n1
3
0A,
1
0
0
%C
O2i
s
s
t
r
o
n
g
l
yr
e
c
o
mme
n
d
e
d
t
oa
c
h
i
e
v
et
h
eb
e
s
t
p
e
r
f
o
r
ma
n
c
e
.
C
o
n
v
e
n
t
i
o
n
a
l
p
o
we
r
s
o
u
r
c
e
s
wi
t
hDC
-
c
o
n
s
t
a
n
t
v
o
l
t
a
g
e
c
a
nb
eu
s
e
di
nDC
E
P
.Al
t
h
o
u
g
hb
o
t
ht
h
y
r
i
s
t
o
ra
n
d
i
n
v
e
r
t
e
rp
o
we
rs
u
p
p
l
i
e
sc
a
na
l
s
ob
eu
t
i
l
i
z
e
d
,i
ti
s
r
e
c
o
mme
n
d
e
dt
oa
p
p
l
yt
h
ep
o
we
r
s
o
u
r
c
ewi
t
h
o
u
t
p
u
l
s
e
c
o
n
t
r
o
le
v
e
ni
fp
u
l
s
ec
o
n
t
r
o
li
sa
v
a
i
l
a
b
l
e
.S
o
me
f
e
a
t
u
r
e
s
t
h
a
t
c
o
n
t
r
i
b
u
t
et
ot
h
ee
x
c
e
l
l
e
n
t
p
e
r
f
o
r
ma
n
c
eo
f
t
h
eDW-
Ts
e
r
i
e
s
F
C
Ws
a
r
ed
e
s
c
r
i
b
e
db
e
l
o
w
.
(
1
)
E
x
c
e
l
l
e
n
t
a
r
cs
t
a
b
i
l
i
t
ywi
t
hs
mo
o
t
hmo
l
t
e
nd
r
o
p
l
e
t
t
r
a
n
s
f
e
rg
e
n
e
r
a
t
e
sl
i
t
t
l
es
p
a
t
t
e
ra
n
df
u
me
si
nawi
d
e
r
a
n
g
eo
fwe
l
d
i
n
gp
a
r
a
me
t
e
r
sf
r
o
m 8
0
-
2
4
0A.T
h
i
s
c
o
v
e
r
st
h
emo
s
tc
o
mmo
nwe
l
d
i
n
gp
a
r
a
me
t
e
r
sf
o
r
c
o
n
v
e
n
t
i
o
n
a
l
0
.
9a
n
d1
.
2mmd
i
a
.
F
CWs(
s
e
eF
i
g
u
r
e
1
)
.
(
2
)
S
ma
l
l
e
rf
i
l
l
e
t
l
e
g
sc
a
nb
eo
b
t
a
i
n
e
db
yu
s
i
n
gh
i
g
h
e
r
we
l
d
i
n
gs
p
e
e
d
s
(
F
i
g
u
r
e2
)
d
u
et
oe
x
c
e
l
l
e
n
t
a
r
cs
t
a
b
i
l
i
t
y
a
tl
o
wwe
l
d
i
n
gc
u
r
r
e
n
t
sa
n
da
r
cv
o
l
t
a
g
e
sa
n
dh
i
g
h
e
r
d
e
p
o
s
i
t
i
o
nr
a
t
e
so
v
e
rc
o
n
v
e
n
t
i
o
n
a
l1
.
2mm F
C
Ws
.
F
i
g
u
r
e3s
h
o
wst
y
p
i
c
a
l
a
p
p
l
i
c
a
t
i
o
n
so
f
DW-
T
3
0
8
Lf
o
r
3
0
4
L1
.
5
-
2
.
0mmt
h
i
c
ks
h
e
e
t
me
t
a
l
s
.
Pr
o
d
u
c
t
n
a
me A
WSA
5
.
2
2 A
v
a
i
l
a
b
l
es
i
z
e(
mm)
DW-
T3
0
8
L E3
0
8
L
T
0
-
1
/
-
4 1
.
2
DW-
T3
1
6
L E3
1
6
L
T
0
-
1
/
-
4 1
.
2
DW-
T3
0
9
L E3
0
9
L
T
0
-
1
/
-
4 1
.
2
Ho
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
g
:
1
2
0
A-
2
2
V
-
4
0
c
m/
mi
n
(
1
0
0
%CO2
)
SUS3
0
4
Lb
a
s
eme
t
a
l
(
2
mmt
)
DW-
T
3
0
8
L(
1
.
2
mmΦ)
Ho
r
i
z
o
n
t
a
l
f
i
l
l
e
t
we
l
d
i
n
g
:
1
0
0
A-
1
9
V
-
4
0
c
m/
mi
n
(
1
0
0
%CO2
)
SUS3
0
4
Lb
a
s
eme
t
a
l
(
1
.
5
mmt
)
DW-
T
3
0
8
L(
1
.
2
mmΦ)
Co
me
r
j
o
i
n
t
we
l
d
i
n
g
:
1
2
0
A-
2
2
V
-
4
0
c
m/
mi
n
(
1
0
0
%CO2
)
SUS3
0
4
Lb
a
s
eme
t
a
l
(
2
mmt
)
DW-
T
3
0
8
L(
1
.
2
mmΦ)
L
a
pf
i
l
l
e
t
we
l
d
i
n
g
:
1
2
0
A-
2
2
V
-
3
0
c
m/
mi
n
(
1
0
0
%CO2
)
SUS3
0
4
Lb
a
s
eme
t
a
l
(
2
mmt
)
DW-
T
3
0
8
L(
1
.
2
mmΦ)
F
i
g
u
r
e1
:
Op
t
i
mu
mwe
l
d
i
n
gp
a
r
a
me
t
e
r
r
a
n
g
e
sa
n
df
i
l
l
e
t
we
l
d
p
r
o
f
i
l
e
s
T
a
b
l
e1
:
DW-
Ts
e
r
i
e
sF
CWs
F
i
g
u
r
e2
:
L
e
gl
e
n
g
t
hv
swe
l
d
i
n
gs
p
e
e
di
n2
Fwe
l
d
i
n
g
F
i
g
u
r
e3
:
Ap
p
l
i
c
a
t
i
o
no
f
s
h
e
e
t
me
t
a
l
we
l
d
i
n
g
(
1
.
5a
n
d2mmt
h
i
c
k
n
e
s
s
)
1
9
Nozzle
Wire end
DW-T308L
Conventional
FCW
100
80
60
40
20
0
Success
Ratio
(%)
100 150 200
Welding Current (A)
120
100
80
60
40
20
0
0 50 100 150 200 250 300
Welding Current (A)
Deposition
Rate
(g/min)
DW-T series FCW
1.2mm dia.
Conventional FCW
0.9mm dia.
Conventional FCW
1.2mm dia.
(
3
)Fa
i
l
u
r
e
-
f
r
e
ea
r
cr
e
s
t
a
r
t
i
n
ge
n
a
b
l
e
smo
r
ee
f
f
i
c
i
e
n
t
i
n
t
e
r
mi
t
t
e
n
twe
l
d
i
n
gc
l
i
p
p
i
n
go
f
ft
h
ewi
r
ee
n
d(
s
e
e
F
i
g
u
r
e4
)
.
T
h
i
s
i
s
b
e
c
a
u
s
et
h
es
o
l
i
d
i
f
i
e
dmo
l
t
e
nd
r
o
p
l
e
t
a
t
t
h
et
i
po
f
t
h
ewi
r
ea
f
t
e
r
a
r
cs
t
o
p
p
i
n
gc
a
nb
es
ma
l
l
e
r
a
n
dc
o
v
e
r
e
db
yc
o
n
d
u
c
t
i
v
es
l
a
ga
s
s
h
o
wni
nF
i
g
u
r
e5
.
(
4)Hi
g
h
e
rd
e
p
o
s
i
t
i
o
nr
a
t
ec
o
n
t
r
i
b
u
t
e
st
oh
i
g
h
e
r
we
l
d
i
n
gs
p
e
e
do
r
,c
o
n
v
e
r
s
e
l
y
,l
o
we
rh
e
a
ti
n
p
u
tf
o
r
g
e
t
t
i
n
gt
h
es
a
mea
mo
u
n
to
fd
e
p
o
s
i
t
e
dme
t
a
lwh
e
n
c
o
mp
a
r
e
dwi
t
hc
o
n
v
e
n
t
i
o
n
a
l
F
C
Ws
a
s
s
h
o
wni
nF
i
g
u
r
e
7
.
Ap
p
l
i
c
a
b
l
ewe
l
d
i
n
gp
r
o
c
e
d
u
r
e
sa
r
eo
n
e
-
s
i
d
ewe
l
d
i
n
g
wi
t
hb
a
c
k
i
n
gma
t
e
r
i
a
l
sa
n
db
o
t
hs
i
d
ewe
l
d
i
n
gi
nf
l
a
t
a
n
dh
o
r
i
z
o
n
t
a
l
f
i
l
l
e
t
p
o
s
i
t
i
o
n
sd
u
et
ot
h
ee
x
c
e
l
l
e
n
t
X-
r
a
ya
n
dme
c
h
a
n
i
c
a
lp
r
o
p
e
r
t
i
e
so
ft
h
eDW-
Ts
e
r
i
e
s
F
C
Ws
.
S
e
eT
a
b
l
e
s
2a
n
d3f
o
r
a
ne
x
a
mp
l
eo
f
c
h
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n
sa
n
dme
c
h
a
n
i
c
a
lp
r
o
p
e
r
t
i
e
so
fDW-
T
s
e
r
i
e
s
F
CWs
wi
t
h1
0
0
%C
O2s
h
i
e
l
d
i
n
g
.
P
h
o
t
o1s
h
o
wso
n
-
s
i
t
ewe
l
d
i
n
gwi
t
hDW-
Ts
e
r
i
e
s
F
C
Ws
f
o
r
ab
e
e
r
t
a
n
kj
a
c
k
e
t
u
s
e
df
o
r
wa
t
e
r
c
o
o
l
i
n
g
.
Pr
o
d
u
c
t
n
a
me
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
n(
ma
s
s%) F
e
r
r
i
t
e
c
o
n
t
e
n
t
C Si Mn P S Ni Cr Mo F
S F
NW
DW-
T3
0
8
L0
.
0
30
.
6
21
.
2
50
.
0
30
.
0
2 9
.
7 1
9
.
3 - 9 1
0
DW-
T3
0
9
L0
.
0
30
.
6
81
.
2
10
.
0
30
.
0
21
2
.
52
4
.
1 - 1
3 2
0
DW-
T3
1
6
L0
.
0
30
.
6
11
.
2
40
.
0
30
.
0
21
2
.
21
8
.
6 2
.
3 7 7
Pr
o
d
u
c
t
n
a
me
0
.
2
%PS
(
MPa
)
T
S
(
MPa
)
El
(
%)
v
E0
°
C
(
J
)
DW-
T3
0
8
L 3
7
2 5
5
1 4
3 4
5
DW-
T3
0
9
L 4
4
8 5
7
2 3
7 3
5
DW-
T3
1
6
L 3
8
6 5
5
2 4
2 4
0
F
i
g
u
r
e7
:
Co
mp
a
r
i
s
o
no
f
d
e
p
o
s
i
t
i
o
nr
a
t
e
sb
e
t
we
e
nDW-
T
s
e
r
i
e
sF
CW(
1
.
2
mm)
a
n
dc
o
n
v
e
n
t
i
o
n
a
l
F
CWs
(
1
.
2a
n
d0
.
9mm)
F
i
g
u
r
e4
:
Wi
r
ee
n
do
f
DW-
Ts
e
r
i
e
sF
CW
T
a
b
l
e2
:
Ch
e
mi
c
a
l
c
o
mp
o
s
i
t
i
o
no
f
a
l
l
we
l
dme
t
a
l
T
a
b
l
e3
:
Me
c
h
a
n
i
c
a
l
p
r
o
p
e
r
t
i
e
so
f
a
l
l
we
l
dme
t
a
l
F
i
g
u
r
e5
:
Ar
cr
e
s
t
a
r
t
i
n
gi
nDW-
T
3
0
8
Lv
sc
o
n
v
e
n
t
i
o
n
a
l
F
CWs
Ph
o
t
o1
:
On
-
s
i
t
ewe
l
d
i
n
gwi
t
hDW-
Ts
e
r
i
e
sF
CW
2
0
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf
Welding consumables for STAINELESS STEEL.pdf

More Related Content

More from University of Sarajevo, Manufacturing Technology:

More from University of Sarajevo, Manufacturing Technology: (14)

Welding handbook.pdf
Welding handbook.pdfWelding handbook.pdf
Welding handbook.pdf
 
Types of Flange.pdf
Types of Flange.pdfTypes of Flange.pdf
Types of Flange.pdf
 
API 653 TANK INSPECTION.pdf
API 653 TANK INSPECTION.pdfAPI 653 TANK INSPECTION.pdf
API 653 TANK INSPECTION.pdf
 
Physical Metallurgy Crystal Defects -Dislocations in metals First edition.pdf
Physical Metallurgy Crystal Defects -Dislocations in metals First edition.pdfPhysical Metallurgy Crystal Defects -Dislocations in metals First edition.pdf
Physical Metallurgy Crystal Defects -Dislocations in metals First edition.pdf
 
ASME Codes.pdf
ASME Codes.pdfASME Codes.pdf
ASME Codes.pdf
 
Flux Cored Arc Welding.pdf
Flux Cored Arc Welding.pdfFlux Cored Arc Welding.pdf
Flux Cored Arc Welding.pdf
 
Pipe line defects.pdf
Pipe line defects.pdfPipe line defects.pdf
Pipe line defects.pdf
 
Pipelines Welding Handbook ESAB.pdf
Pipelines Welding Handbook ESAB.pdfPipelines Welding Handbook ESAB.pdf
Pipelines Welding Handbook ESAB.pdf
 
Main_book_CSWIP_3_1_Welding_Inspector_WI.pdf
Main_book_CSWIP_3_1_Welding_Inspector_WI.pdfMain_book_CSWIP_3_1_Welding_Inspector_WI.pdf
Main_book_CSWIP_3_1_Welding_Inspector_WI.pdf
 
QC Welding Inspector Interview Question & Answers.pdf
QC Welding Inspector Interview Question & Answers.pdfQC Welding Inspector Interview Question & Answers.pdf
QC Welding Inspector Interview Question & Answers.pdf
 
Welding Defects.pdf
Welding Defects.pdfWelding Defects.pdf
Welding Defects.pdf
 
Tank erection.pdf
Tank erection.pdfTank erection.pdf
Tank erection.pdf
 
Dimenzije uzoraka za ispitivanje
Dimenzije uzoraka za ispitivanjeDimenzije uzoraka za ispitivanje
Dimenzije uzoraka za ispitivanje
 
Spot welding parameters
Spot welding parametersSpot welding parameters
Spot welding parameters
 

Welding consumables for STAINELESS STEEL.pdf

  • 1.
  • 2. St e e l a l l o yt y p e Ke yn o t e sf o r a p p l i c a t i o n F CA W SMA W Pr o d u c t n a me A WSc l a s s . Pr o d u c t n a me A WSc l a s s . 3 0 4 Ge n e r a l [ P] DW- 3 0 8 E3 0 8 T 0 - 1 / - 4 [ P] NC- 3 8 E3 0 8 - 1 6 [ P] DW- 3 0 8 P E3 0 8 T 1 - 1 / - 4 3 0 4 H Hi g ht e mp e r a t u r eo p e r a t i o n [ P] DW- 3 0 8 H E3 0 8 HT 1 - 1 / - 4( Bi - f r e e ) [ P] NC- 3 8 H E3 0 8 H- 1 6 L o wc a r b o n( 0 . 0 4 %ma x . ) Ge n e r a l [ P] DW- 3 0 8 L E3 0 8 L T 0 - 1 / - 4 [ P] NC- 3 8 L E3 0 8 L - 1 6 [ P] DW- 3 0 8 LP E3 0 8 L T 1 - 1 / - 4 [ P] DW- 3 0 8 LH E3 0 8 L T 1 - 1 / - 4( Bi - f r e e ) 3 0 4 , 3 0 4 LGa u g ep l a t e [ P] DW- T3 0 8 L E3 0 8 L T 0 - 1 / - 4 − − − − − − 3 0 4 , 3 0 4 L L o wCr ( VI ) i nf u me [ P] DW- 3 0 8 L- XR E3 0 8 L T 0 - 1 / - 4 − − − − − − [ P] DW- 3 0 8 LP- XR E3 0 8 L T 1 - 1 / - 4 Cr y o g e n i ct e mp e r a t u r e( 2 7 Jmi n . / − 1 9 6 ° C) [ P] DW- 3 0 8 L TP E3 0 8 L T 1 - 1 / - 4 [ P] NC- 3 8 L T E3 0 8 L - 1 6 [ P] DW- 3 0 8 L T E3 0 8 L T 0 - 1 / - 4 T I Gr o df o r r o o t p a s swe l d i n g wi t h o u t b a c kp u r g i n gg a s − − − − − − − − − − − − Ge n e r a l [ P] DW- 3 1 6 L E3 1 6 L T 0 - 1 / - 4 [ P] NC- 3 6 E3 1 6 - 1 6 [ P] DW- 3 1 6 LP E3 1 6 L T 1 - 1 / - 4 [ P] NC- 3 6 L E3 1 6 L - 1 6 [ P] DW- 3 1 6 H E3 1 6 L T 1 - 1 / - 4( Bi - f r e e ) Ga u g ep l a t e [ P] DW- T3 1 6 L E3 1 6 L T 0 - 1 / - 4 − − − − − − L o wCr ( VI ) i nf u me [ P] DW- 3 1 6 L- XR E3 1 6 L T 0 - 1 / - 4 − − − − − − [ P] DW- 3 1 6 LP- XR E3 1 6 L T 1 - 1 / - 4 3 1 6 , 3 1 6 L Hi g ht e mp e r a t u r eo p e r a t i o n [ P] DW- 3 1 6 H E3 1 6 T 1 - 1 / - 4( Bi - f r e e ) − − − − − − Cr y o g e n i ct e mp e r a t u r e ( 2 7 Jmi n . / − 1 9 6 ° C) ( 3 1 6 L ) [ P] DW- 3 1 6 L T E3 1 6 L T 1 - 1 / - 4 [ P] NC- 3 6 L T E3 1 6 L - 1 6 3 1 6 LMo d . Ur e a( l o wf e r r i t ec o n t e n t ) − − − − − − [ P] NC- 3 1 6 MF − − − T I Gr o df o r r o o t p a s swe l d i n g wi t h o u t b a c kp u r g i n gg a s − − − − − − − − − − − − Ge n e r a l [ P] DW- 3 0 9 L E3 0 9 L T 0 - 1 / - 4 [ P] NC- 3 9 E3 0 9 - 1 6 [ P] DW- 3 0 9 LP E3 0 9 L T 1 - 1 / - 4 [ P] NC- 3 9 L E3 0 9 L - 1 6 [ P] DW- 3 0 9 LH E3 0 9 L T 1 - 1 / - 4( Bi - f r e e ) Di s s i mi l a r me t a l a n do v e r l a y we l d i n g Ga u g ep l a t e [ P] DW- T3 0 9 L E3 0 9 L T 0 - 1 / - 4 − − − L o wCr ( VI ) i nf u me [ P] DW- 3 0 9 L- XR E3 0 9 L T 0 - 1 / - 4 − − − [ P] DW- 3 0 9 LP- XR E3 0 9 L T 1 - 1 / - 4 T I Gr o df o r r o o t p a s swe l d i n gwi t h o u t b a c kp u r g i n gg a s − − − − − − − − − − − − Ge n e r a l [ P] DW- 3 0 9 MoL E3 0 9 L Mo T 0 - 1 / - 4 [ P] NC- 3 9 MoL E3 0 9 L Mo - 1 6 [ P] DW- 3 0 9 MoLP E3 0 9 L Mo T 1 - 1 / - 4 Hi g hf e r r i t ec o n t e n t [ P] DW- 3 1 2 E3 1 2 T 0 - 1 / - 4 [ P] NC- 3 2 E3 1 2 - 1 6 3 1 0 , 3 1 0 S Ge n e r a l [ P] DW- 3 1 0 E3 1 0 T 0 - 1 / - 4 [ P] NC- 3 0 E3 1 0 - 1 6 Ge n e r a l [ P] DW- 3 4 7 E3 4 7 T 0 - 1 / - 4 [ P] NC- 3 7 E3 4 7 - 1 6 3 2 1 , 3 4 7 Hi g ht e mp e r a t u r eo p e r a t i o n [ P] DW- 3 4 7 H E3 4 7 T 1 - 1 / - 4( Bi - f r e e ) − − − − − − L o wc a r b o n [ P] DW- 3 4 7 LH E3 4 7 T 1 - 1 / - 4( Bi - f r e e ) [ P] NC- 3 7 L E3 4 7 L - 1 6 T I Gr o df o r r o o t p a s swe l d i n gwi t h o u t b a c kp u r g i n gg a s − − − − − − − − − − − − Ge n e r a l [ P] DW- 3 1 7 L E3 1 7 L T 0 - 1 / - 4 [ P] NC- 3 1 7 L E3 1 7 L - 1 6 3 1 7 L [ P] DW- 3 1 7 LP E3 1 7 L T 1 - 1 / - 4 [ P] DW- 3 1 7 LH E3 1 7 L T 1 - 1 / - 4( Bi - f r e e ) L e a nd u p l e x( AST MS3 2 1 0 1 , S3 2 3 0 4 ) [ P] DW- 2 3 0 7 E2 3 0 7 T 1 - 1 / - 4 − − − − − − Du p l e xs t a i n l e s s s t e e l St a n d a r dd u p l e x( AST MS3 1 8 0 3 , S3 2 2 0 5 ) [ P] DW- 2 2 0 9 E2 2 0 9 T 1 - 1 / - 4 [ P] NC- 2 2 0 9 E2 2 0 9 - 1 6 [ P] DW- 3 2 9 AP E2 2 0 9 T 1 - 1 / - 4 T I Gr o df o r r o o t p a s swe l d i n gwi t h o u t b a c kp u r g i n gg a s [ P] TG- X2 2 0 9 − − − − − − − − − Su p e r d u p l e x( AST MS3 2 7 5 0 , S3 2 7 6 0 ) [ P] DW- 2 5 9 4 E2 5 9 4 T 1 - 1 / - 4 [ P] NC- 2 5 9 4 E2 5 9 4 - 1 6 4 1 0 Ge n e r a l − − − − − − [ P] CR- 4 0 E4 1 0 - 1 6 1 3 Cr - 4 Ni Ma r t e n s i t i cs t a i n l e s ss t e e l f o r h y d r ot u r b i n e [ P] DW- 4 1 0 Ni Mo E4 1 0 Ni Mo T 1 - 1 / - 4 [ P] CR- 4 1 0 NM E4 1 0 Ni Mo - 1 6 [ P] MX- A4 1 0 Ni Mo EC4 1 0 Ni Mo F e r r i t i c1 3 Cr - Nb [ P] DW- 4 1 0 Cb E4 0 9 Nb T 0 - 1 [ P] CR- 4 0 Cb E4 0 9 Nb - 1 6 4 0 5 , 4 0 9 Bu f f e r l a y e r f o r 1 3 Cr o v e r l a ywe l d i n g [ P] DW- 4 3 0 CbS E4 3 0 Nb T 0 - 1 [ P] CR- 4 3 Cb E4 3 0 Nb - 1 6 [ P] CR- 4 3 CbS − − − 4 3 0 1 7 Cr - Nbf o r c a r e x h a u s t s y s t e m [ P] MX- A4 3 0 M − − − − − − − − − Al l o y6 2 5a n d8 2 5 Ov e r l a ywe l d i n g d i s s i mi l a r j o i n t [ P] DW- N6 2 5 ENi Cr Mo 3 T 1 - 1 / - 4 [ P] NI - C6 2 5 − − − Ni a l l o y Cl a d d i n ga n dg i r t hwe l d i n go f c l a dp i p e( 5 G, 6 G) [ P] DW- N6 2 5 P ENi Cr Mo 3 T 1 - 1 / - 4 [ P] NI - C6 2 5 − − − Al l o y6 0 0a n d8 0 0 Di s s i mi l a r j o i n t [ P] DW- N8 2 ENi Cr 3 T 0 - 4 [ P] NI - C7 0 A ENi Cr F e - 1 Al l o yC2 7 6 [ P] DW- NC2 7 6 ENi Cr Mo 4 T 1 - 4 − − − − − − L NGs t o r a g et a n k [ P] DW- N7 0 S − − − [ P] NI - C7 0 S ENi Cr F e - 9 9 %Ni [ P] DW- N7 0 9 SP ENi Mo 1 3 T 1 - 4 / T 0 - 1 [ P] NI - C1 S ENi Mo - 8 [ P] DW- N6 2 5 ENi Cr Mo 3 T 1 - 1 / - 4 ( 1 ) [ P] d e s i g n a t e sPREMI ARCT M 1
  • 3. GT A W St e e l a l l o yt y p e Ke yn o t e s f o r a p p l i c a t i o n GMA W SA W Pr o d u c t n a me A WSc l a s s . Pr o d u c t n a me A WSc l a s s Pr o d u c t n a me A WSc l a s s ( wi r e ) [ P] TG- S3 0 8 ER3 0 8 3 0 4 Ge n e r a l [ P] MG- S3 0 8 ER3 0 8 [ P] PF- S1/ [ P] US- 3 0 8 ER3 0 8 − − − − − − 3 0 4 L Ge n e r a l [ P] MG- S3 0 8 LS ER3 0 8 L Si [ P] PF- S1/ [ P] US- 3 0 8 L ER3 0 8 L [ P] TG- S3 0 8 L ER3 0 8 L Ge n e r a l [ P] MG- S3 1 6 LS ER3 1 6 L S [ P] PF- S1 M/ [ P] US- 3 1 6 ( Si n g l ep a s s ) ER3 1 6 − − − − − − [ P] PF- S1/ [ P] US- 3 1 6 ( Mu l t i p a s s ) ER3 1 6 − − − − − − 3 1 6 , 3 1 6 L [ P] PF- S1 M/ [ P] US- 3 1 6 L ( Si n g l ep a s s ) ER3 1 6 L [ P] TG- S3 0 8 L ER3 0 8 L [ P] PF- S1/ [ P] US- 3 1 6 L ( Mu l t i p a s s ) ER3 1 6 L [ P] TG- X3 0 8 L R3 0 8 L T 1 - 5 [ P] TG- S3 1 6 ER3 1 6 Di s s i mi l a r me t a l a n do v e r l a y we l d i n g [ P] TG- S3 1 6 L ER3 1 6 L Ge n e r a l [ P] MG- S3 0 9 ER3 0 9 − − − − − − − − − − − − − − − − − − 3 2 1 , 3 4 7 Ge n e r a l [ P] MG- S3 4 7 S ER3 4 7 Si [ P] PF- S1/ [ P] US- 3 4 7 ER3 4 7 − − − − − − 3 1 7 L Ge n e r a l − − − − − − [ P] PF- S1/ [ P] US- 3 1 7 L ER3 1 7 L [ P] TG- S3 1 6 L ER3 1 6 L Du p l e xs t a i n l e s s s t e e l St a n d a r dd u p l e x ( AST MS3 1 8 0 3 , S3 2 2 0 5 ) − − − − − − [ P] PF- S1 D/ [ P] US- 2 2 0 9 ER2 2 0 9 [ P] NO4 0 5 1 − − − [ P] TG- S3 1 0 MF − − − [ P] TG- X3 1 6 L R3 1 6 L T 1 - 5 4 1 0 Ge n e r a l [ P] MG- S4 1 0 ER4 1 0 − − − − − − [ P] TG- S3 0 9 ER3 0 9 L NGs t o r a g et a n k − − − − − − [ P] PF- N4/ [ P] US- 7 0 9 S ( Ho r i z o n t a l p o s i t i o n ) ERNi Mo - 8 [ P] TG- S3 0 9 L ER3 0 9 L 9 %Ni [ P] PF- N3/ [ P] US- 7 0 9 S ( F l a t p o s i t i o n ) ERNi Mo - 8 − − − − − − − − − − − − [ P] TG- X3 0 9 L R3 0 9 L T 1 - 5 − − − − − − − − − − − − [ P] TG- S3 1 0 ER3 1 0 [ P] TG- S3 4 7 ER3 4 7 − − − − − − [ P] TG- S3 4 7 L ER3 4 7 L [ P] TG- X3 4 7 R3 4 7 T 1 - 5 [ P] TG- S3 1 7 L ER3 1 7 L − − − − − − [ P] TG- S2 2 0 9 ER2 2 0 9 [ P] TG- X2 2 0 9 − − − [ P] TG- S2 5 9 4 ER2 5 9 4 [ P] TG- S4 1 0 ER4 1 0 − − − − − − [ P] TG- S4 1 0 Cb − − − − − − − − − − − − − − − [ P] TG- S6 2 5 ERNi Cr Mo - 3 − − − − − − [ P] TG- S7 0 NCb ERNi Cr - 3 − − − − − − [ P] TG- S7 0 9 S ERNi Mo - 8 1 . T h ef e r r i t en u mb e r so r p e r c e n t a g ei n d i c a t e db yF N, F NWo r F Si nt h i sb r o c h u r ea r e : F N: f e r r i t en u mb e r b yDe L o n gDi a g r a m F NW: f e r r i t en u mb e r b yWRC( We l d i n gRe s e a r c hCo u n c i l ) Di a g r a m- 1 9 9 2 F S: f e r r i t ep e r c e n t a g eb ySc h a e f f l e r Di a g r a m 2 . I n c o n e l i st h et r a d e ma r ko f Sp e c i a l Me t a l sCo r p o r a t i o n , Ha s t e l l o y , t h et r a d e ma r ko f Ha y n e sI n t e r n a t i o n a l , I n c . a n dSUPER3 0 4 H, t h et r a d e ma r ko f Ni p p o nSt e e l Su mi t o moMe t a l Co r p o r a t i o n , r e s p e c t i v e l y . 3 . Ab b r e v i a t i o n sa n dma r k s ( 1 ) A WS: Ame r i c a nWe l d i n gSo c i e t y ( 2 ) We l d i n gp o s i t i o n s F : f l a t HF : h o r i z o n t a l f i l l e t VU: v e r t i c a l u p wa r do r v e r t i c a l u p h i l l ( 3 ) We l d i n gp r o c e d u r e s F CA W: F l u xCo r e dAr cWe l d i n g SMA W: Sh i e l d e dMe t a l Ar cWe l d i n g GT A W: Ga sT u n g s t e nAr cWe l d i n g GMA W: Ga sMe t a l Ar cWe l d i n g SA W: Su b me r g e dAr cWe l d i n g ESW: El e c t r o s l a gWe l d i n g ( 4 ) F CW: F l u xCo r e dWi r e 2
  • 4. (A) Austenite (A) Austenite (M) Martensite (M) Martensite (M)+(F) (M)+(F) (A)+(M)+(F) (A)+(M)+(F) (A)+(F) (A)+(F) Ferrite content Ferrite content 0% 0% 5% 5% 10% 10% 20% 20% 40% 40% 80% 80% 100% 100% (F) Ferrite (F) Ferrite Cr eq.=%Cr+%Mo+1.5×%Si+0.5×%Nb Ni eq.=%Ni+30×%C+0.5×%Mn (A)+(M) (A)+(M) 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 :E308L, :E316L, :E309L 0 0 5 10 15 20 25 30 5 10 15 20 25 30 Ferrite content by Schaefller’s Diagram (%) Ferrite content by Ferritescope (%) :E308L, :E316L, :E309L Measured position by Ferritescope Open mark : WM surface Solid mark : Cross section of WM WM : weld metal Austenitic stainless steel welding consumables for general use (Types 308L, 316L and 309L) Ba s eme t a l T y p e F CA W ( A WSA5 . 2 2 ) SMA W ( A WSA 5 . 4 ) GT A W ( A WSA5 . 9 ) 3 0 4 , 3 0 4 L 3 0 8 L ( 2 0 Cr - 1 0 Ni ) DW- 3 0 8 L DW- 3 0 8 LP ( E3 0 8 L T ) NC- 3 8 L ( E3 0 8 L - 1 6 ) TG- S3 0 8 L ( ER3 0 8 L ) 3 1 6 , 3 1 6 L 3 1 6 L ( 1 8 Cr - 1 2 Ni - 2 . 5 Mo ) DW- 3 1 6 L DW- 3 1 6 LP ( E3 1 6 L T ) NC- 3 6 L ( E3 1 6 L - 1 6 ) TG- S3 1 6 L ( ER3 1 6 L ) Ca r b o ns t e e l / 3 0 4 L ( Ca r b o ns t e e l / 3 0 4 ) 3 0 9 L ( 2 4 Cr - 1 2 Ni ) DW- 3 0 9 L DW- 3 0 9 LP ( E3 0 9 L T ) NC- 3 9 L ( E3 0 9 L - 1 6 ) TG- S3 0 9 L ( ER3 0 9 L ) T a b l e1 : Au s t e n i t i cs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s 1 . Ge ne r a l T h ea u s t e n i t i cs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e sa r e t y p i c a l l yo ft h e3 0 8L ,3 1 6L a n d 3 0 9L t y p e s . T y p e3 0 8 Li su s e df o rwe l d i n g3 0 4o r3 0 4 Ls t a i n l e s s s t e e l s . T y p e3 1 6 Li sf o rwe l d i n g3 1 6 Ls t a i n l e s ss t e e l , wh i l et y p e3 0 9 Li sf o rwe l d i n gd i s s i mi l a rme t a l s , u n d e r - l a y i n go nf e r r i t i cs t e e l so r b u f f e r - l a y i n go nc l a d s t e e l s ( T a b l e1 ) . Au s t e n i t i c s t a i n l e s s s t e e l s h a v e a s i n g l e p h a s e a u s t e n i t i cs t r u c t u r ed u et oh e a tt r e a t me n td u r i n gt h e s t e e l ma k i n gp r o c e s s ,wh i l ea u s t e n i t i cs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e sc o n t a i n5t o1 5 % f e r r i t et o p r e v e n t h o t c r a c k i n g d u r i n g we l d i n g . T y p i c a l mi c r o s t r u c t u r e s o f b o t h3 0 4 Ls t a i n l e s s s t e e l b a s eme t a l a n dNC- 3 8 Lwe l dme t a l a r es h o wni nF i g u r e s 1a n d2 , r e s p e c t i v e l y . T h ef e r r i t ec o n t e n ti nwe l dme t a lc a nb ec a l c u l a t e d f r o mt h ec h e mi c a l c o mp o s i t i o no f we l dme t a l b yu s i n g S c h a e f f l e r , DeL o n go r WR C- 1 9 9 2d i a g r a ms . Al l t h r e e d i a g r a msp l o tt h eNi c k e le q u i v a l e n t ,ma d eu po f a u s t e n i t ef o r mi n ge l e me n t ss u c ha sC , Mn , Ni a n dN, a g a i n s t t h eC h r o mi u me q u i v a l e n t , wh i c hr e p r e s e n t s t h e f e r r i t ef o r mi n ge l e me n t s s u c ha s C r , Mo , S i a n dMn , i n t h ewe l dme t a l . T h e S c h a e f f l e r d i a g r a m ( F i g u r e3 ) c l a s s i f i e s mi c r o s t r u c t u r e swi t hNi a n dC re q u i v a l e n t si nawi d e r a n g e . T h e r e f o r e , i t c a ne s t i ma t ef e r r i t ec o n t e n t a swe l l a s we l d a b i l i t ya n dc r a c kr e s i s t a n c ep r i o r t op e r f o r mi n g d i s s i mi l a r we l d i n gb e t we e ns t a i n l e s sa n dc a r b o ns t e e l . Ho we v e r , i nt h ec a s eo f we l dme t a l s wi t hah i g hf e r r i t e mi c r o s t r u c t u r e , s u c ha s E 3 0 9 L , t h eS c h a e f f l e r d i a g r a m wi l l t e n dt os h o wal a r g e r d e v i a t i o nt h a naF e r i t s c o p e , a s s h o wni nF i g u r e4 . T h eDe L o n g d i a g r a m ( F i g u r e5 )e n a b l e samo r e p r e c i s ec a l c u l a t i o no f f e r r i t ec o n t e n t b yu s i n gaF e r r i t e Nu mb e r( F N)i nt h er a n g eo f0t o1 8 ,t h o u g ht h e a p p l i c a b l ec h e mi c a lc o mp o s i t i o nr a n g ei sn a r r o we r t h a nt h a t o f t h eS c h a e f f l e r d i a g r a m. F i g u r e3 : Sc h a e f f l e r d i a g r a m F i g u r e1 : Mi c r o s t r u c t u r eo f 3 0 4 Lt y p eb a s eme t a l ( f u l l ya u s t e n i t i cs t r u c t u r e ) F i g u r e2 : Mi c r o s t r u c t u r eo f 3 0 8 Lwe l dme t a l ( a u s t e n i t e+ f e r r i t e ) F i g u r e4 : Co mp a r i s o no f f e r r i t ec o n t e n t b e t we e n Sc h a e f f l e r d i a g r a ma n dF e r i t s c o p e 3
  • 5. Cr eq.=%Cr+%Mo+1.5×%Si+0.5×%Nb 16 10 11 12 13 14 15 16 17 18 19 20 21 17 18 19 20 21 22 23 24 25 26 27 Ni eq.=%Ni+30×%C+30×%N+0.5×%Mn 0% 0% 2% 2% 4% 4% 5% 5% 6% 6% 12.3% 12.3% 13.8% 13.8% 15.3% 15.3% 7.6% 7.6% 9.2% 9.2% 10.7% 10.7% :E308L, :E316L, :E309L Austenite Austenite Austenite + Martensite Austenite + Martensite Ferrite content Ferrite content 0 0 2 2 4 4 5 5 6 6 8 8 10 10 12 12 14 14 16 16 18 18 FN FN Austenite+Ferrite Austenite+Ferrite Cr eq.=%Cr+%Mo+0.7×%Nb 10 12 14 16 18 Ni eq.=%Ni+35×%C+20×%N+0.25×%Cu A A AF AF 0 0 2 2 6 6 4 4 8 8 10 10 14 14 12 12 16 16 20 20 24 24 28 28 35 35 45 45 55 55 65 65 75 75 85 85 95 95 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 26 26 22 22 F F 18 20 22 24 26 28 30 :E308L, :E316L, :E309L 18 18 FA FA Carbon or low-alloy steel Carbon or low-alloy weld 304 or 304L clad E308 or E308L weld metal 304 or 304L clad DW-309L weld metal T h eWR C - 1 9 9 2d i a g r a m ( F i g u r e6 )a l l o wso n et o e s t i ma t et h ef e r r i t ec o n t e n ti nt h ewe l dme t a l so f E 3 0 9 La s we l l a sd u p l e xs t a i n l e s ss t e e l , wh i c hi sq u i t e h i g hi nf e r r i t ec o n t e n t . T a b l e2s h o wsHu e yc o r r o s i o nt e s t r e s u l t s( 6 5 %n i t r i c a c i dt e s t )o fa l lwe l dme t a l swi t h3 0 8a n d3 1 6t y p e s t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s . I nt h eHu e yt e s t , s p e c i me n s a r eb o i l e di na6 5 %n i t r i ca c i ds o l u t i o n , a n d t h ei n t e r g r a n u l a rc o r r o s i o n s u s c e p t i b i l i t y r e s u l t i n g f r o mp r e c i p i t a t i o no fc h r o mi u m( C r )c a r b i d e sa n dσ p h a s ei s e v a l u a t e d . T y p e3 0 8o r3 1 6s t a i n l e s ss t e e lwe l dme t a l s ,wh i c h c o n t a i nh i g h e rC rc o n t e n t ,h a v eb e t t e rc o r r o s i o n r e s i s t a n c ea g a i n s t s u c ho x i d i z i n ga c i d sa sn i t r i ca c i d . Ont h eo t h e rh a n d ,t h e ya l s oe x p e r i e n c er e d u c e d i n t e r g r a n u l a rc o r r o s i o nr e s i s t a n c ewh e nk e p ta tt h e t e mp e r a t u r e r a n g e b e t we e n 6 0 0 a n d 8 0 0 ° C f o r e x t e n d e d p e r i o d sb e c a u s eC i n t h ewe l d me t a l c o mb i n e swi t hC r t of o r mC rc a r b i d e s . T h i si sk n o wn a ss e n s i t i z a t i o n .A WSa n do t h e rb o d i e ss p e c i f yl o w c a r b o n we l d i n g c o n s u ma b l e s i n o r d e rt o r a i s e i n t e r g r a n u l a r c o r r o s i o nr e s i s t a n c e . S e n s i t i z e dwe l dme t a l sc a nh a v ec o r r o s i o nr e s i s t a n c e r e s t o r e dt h r o u g hq u e n c h i n g ,wh i c hd i s s o l v e st h eC r c a r b i d e sb yf i r s th e a t i n gt h ewe l dme t a lt oa b o u t 1 0 5 0 ° Ca n dt h e nc o o l i n gi t r a p i d l y . On t h eo t h e rh a n d f o rs u c h r e d u c i n g a c i d sa s h y d r o c h l o r i co rs u l f u r i ca c i d s , t h ea d d i t i o no fNi , Mo a n d / o rC ui n c r e a s e sc o r r o s i o nr e s i s t a n c e , a n dt h i sh a s l e dt ot h ed e v e l o p me n t o f 3 1 6t y p es t a i n l e s s s t e e l s . 2 . 3 0 9 Lt y p ewe l d i n gc o n s u ma b l e s Mo s ts t r u c t u r e sa n d e q u i p me n ti n o i lr e f i n e r i e s , c h e mi c a lp l a n t s ,p o we rg e n e r a t i o np l a n t s ,c h e mi c a l t a n k e r s ,l i q u e f i e dg a sp l a n t sa n dc a r r i e r s ,a n df o o d p r o c e s s i n gp l a n t s c o n s i s t o f d i s s i mi l a r me t a l j o i n t sa n d c l a ds t e e lc o mp o n e n t so nd i f f e r e n ts c a l e .T h i si st o mi n i mi z e t h e ma t e r i a l c o s t s a n d ma x i mi z e p e r f o r ma n c e . T y p e3 0 9 Ls t a i n l e s ss t e e lwe l d i n gc o n s u ma b l e sa r e d e s i g n e ds ot h a t t h ewe l dme t a l s c a na c c o mmo d a t et h e a d v e r s ee f f e c t sc a u s e db yd i l u t i o no fc a r b o no rl o w- a l l o y b a s eme t a l s .T h e s ea d v e r s i t i e si n c l u d et h e f o r ma t i o no f ma r t e n s i t e( ab r i t t l es t r u c t u r e )a swe l l a s a u s t e n i t i c s t r u c t u r e ,wh i c h ,a s n o n - f e r r i t e - b e a r i n g a u s t e n i t e ,i ss e n s i t i v et oh o tc r a c k i n g .T y p e3 0 9L s t a i n l e s ss t e e lwe l d i n gc o n s u ma b l e sa r et h u ss u i t a b l e f o rd i s s i mi l a rme t a l j o i n t s , wh i c hc a nc o n t a i nv a r i o u s c o mb i n a t i o n s o f a u s t e n i t i cs t a i n l e s s s t e e l a n dc a r b o no r l o wa l l o ys t e e l s a s s h o wni nF i g u r e s 7a n d8 . PWHT Co r r o s i o nwe i g h t l o s s( g / m2 ・h ) As - we l d e d 5 6 5 0 ° C× 2 h r s AC* 1 9 1 0 5 0 ° C× 3 0 mi n WQ* 1 6 Pr o d u c t n a me Ch e mi c a l c o mp o s i t i o n( ma s s%) i p m( i n c h / mo n t h ) C Si Mn Ni Cr Mo As - we l d e d650° C×2hr s AC* 1 1050° C×30mi n WQ* 2 NC- 3 8 0 . 0 50 . 4 11 . 5 9 . 3 1 9 . 8 − 0 . 0 0 0 5 6 0 . 0 0 0 9 5 0 . 0 0 0 4 4 NC- 3 8 L0 . 0 30 . 3 71 . 5 9 . 5 1 9 . 8 − 0 . 0 0 0 5 2 0 . 0 0 0 6 9 0 . 0 0 0 4 7 NC- 3 6 0 . 0 6 0 . 4 1 . 5 1 2 . 2 1 9 . 2 2 . 2 0 . 0 0 1 7 1 − − NC- 3 6 L0 . 0 3 0 . 4 1 . 5 1 2 . 0 1 9 . 2 2 . 1 0 . 0 0 1 3 8 − − T a b l e2 : Hu e yc o r r o s i o nt e s t r e s u l t so f a l l we l dme t a l ( 6 5 %n i t r i ca c i dt e s t ) * 1 : Ai r - c o o l i n g * 2 : Wa t e r q u e n c h i n g F i g u r e5 : De L o n gd i a g r a m T a b l e3 : Ge n e r a l c o r r o s i o nt e s t r e s u l t so f NC- 3 6 La l l we l d me t a l b y5 %d i l u t e ds u l f u r i ca c i d( J I SG0 5 9 1 ) * 1 : Ai r - Co o l i n g * 2 : Wa t e r Qu e n c h i n g F i g u r e6 : WRC- 1 9 9 2d i a g r a m F i g u r e7 : Un d e r - l a y i n g o nf e r r i t i c s t e e l p a r t o f c l a ds t e e l 4
  • 6. Carbon or low-alloy base metal DW-309L buffer layer E308 or E308L weld metal 308 or 304L base metal Welding Current (A) D W w i r e 0 . 9 m m Stick electrode 4.0mm D W w i r e 1 . 2 m m D W w i r e 1 . 6 m m M IG wire 1.6m m Deposition Rate (g/min) 140 120 100 80 60 40 20 0 0 100 200 300 400 Arc voltage (V) Welding Current (A) 40 36 32 28 24 20 50 DW wire, 0.9mm (CO2) DW wire, 1.6mm (CO2) DW wire, 1.2mm (CO2) MIG wire, 1.2mm (Ar+2%O2) 100 150 200 250 300 350 400 Over-Head Holizontal Vertical Upward Vertical Downward 3 . We l di ngpr oc e s s e s I na d d i t i o nt os e c u r i n gt h er e q u i r e dq u a l i t y ,we l d i n g p r o c e d u r e smu s t b ep e r f o r me dwi t h i nas p e c i f i e dt i me a n db u d g e t . On ewa yt os e l e c t a na p p r o p r i a t ewe l d i n g p r o c e s si st oc o mp a r et h ed e p o s i t i o nr a t e so fGT A W, S MA W,F C A W,S A W a swe l la st h er e s p e c t i v e a d v a n t a g e sa n dd i s a d v a n t a g e so fe a c hp r o c e s s . F i g u r e 9s h o ws t h ed e p o s i t i o nr a t eo f e a c hwe l d i n gp r o c e s s a s af u n c t i o no fwe l d i n gc u r r e n ta n dF i g u r e1 0 ,t h e o p t i mu mr a n g eo f t h e i r we l d i n gp a r a me t e r s . Ko b eS t e e l p r o v i d e st wot y p e so fF C Wsf o rs t a i n l e s s s t e e l s : o n ef o r f l a t a n dh o r i z o n t a l f i l l e t we l d i n ga n dt h e o t h e rf o ra l l - p o s i t i o n we l d i n g i n c l u d i n g v e r t i c a l , h o r i z o n t a l a n do v e r h e a dp o s i t i o n s . F CWsf o rf l a t a n d h o r i z o n t a l f i l l e t we l d i n gc a np r o v i d et h eb e a u t i f u l b e a d a p p e a r a n c ep a r t i c u l a rt os t a i n l e s ss t e e lb e c a u s et h e y a l l o wb e a ds u r f a c e s t ob ec o v e r e dwi t hu n i f o r ms l a ga s s h o wni nF i g u r e1 1 . Al l - p o s i t i o nwe l d i n gb yDW- 3 0 8 L P i s s h o wni nF i g u r e s 1 2 . I na d d i t i o n , Ko b e l c oF C Wsp r o v i d es t a b l ea r cd u et o t h a tt h e i rs mo o t hwi r ef e e d i n gmi n i mi z e st h ea r c l e n g t hf l u c t u a t i o na swe l la sl i t t l es p a t t e ra n df u me g e n e r a t i o n . T h es p a t t e r g e n e r a t i o nc o mp a r i s o na n dt h e f u mee mi s s i o nr a t ec o mp a r i s o nb e t we e nDW- 3 0 8 La n d t h es a me3 0 8 Lt y p eF C Wsf r o m o t h e rs u p p l i e ra r e s h o wni nF i g u r e s 1 3a n d1 4 , r e s p e c t i v e l y . We l d i n g s t a i n l e s ss t e e li n v e r t i c a la n d o v e r h e a d p o s i t i o n si sc o n s i d e r e dt ob emo r ed i f f i c u l t t h a nmi l d s t e e l b e c a u s ei t s mo l t e nme t a l wa s mo r el i k e l yt od r o p . T h i s i s d u et ot h ed i f f e r e n c e s i nt h ep h y s i c a l p r o p e r t i e s o fs t a i n l e s ss t e e l : i t h a sal o we rme l t i n gp o i n t ( 1 4 0 0 - 1 4 2 7 ° C)t h a nmi l ds t e e l( 1 5 0 0 - 1 5 2 7 ° C) ,a n dl e s s t h e r ma lc o n d u c t i v i t y( 0 . 0 4c a l / c m/ s e c / ° Ci nt h e0 - 1 0 0 ° Cr a n g ea s o p p o s e dt o0 . 1 1c a l / c m/ s e c / ° Ci nt h e0 - 1 0 0 ° Cr a n g e ) . F i g u r e8 : Bu f f e r - l a y i n go f d i s s i mi l a r me t a l j o i n t F i g u r e9 : De p o s i t i o nr a t ea saf u n c t i o no f we l d i n gc u r r e n t F i g u r e1 0 : Op t i mu mr a n g e so f we l d i n gc u r r e n t a n da r c v o l t a g e F i g u r e1 1 : Be a da p p e a r a n c eo f DW- 3 0 8 Lh o r i z o n t a l f i l l e t we l d i n gb yDW- 3 0 8 L F i g u r e1 2 : Cr o s s - s e c t i o no f ma c r o s t r u c t u r eo f DW- 3 0 8 L P f i l l e t we l d( 3 0 4 Lb a s ep l a t eo f 3mmt h i c k ) 5
  • 7. Spatter generation (g/min.) Other company’s E308LT0 type DW-308L 200A Ar-25%CO2 250A 100%CO2 200A 100%CO2 150A 100%CO2 0.0 0.2 0.4 0.6 0.8 1.0 DW-308L Fumuemission rate (mg/min.) 0 100 200 300 400 500 600 Other company’s E308LT0 type 100%CO2 Ar-25%CO2 Welding speed 40cm/min 30cm/min Proper dilution for 1st layer 20cm/min 30 20 10 150 200 Welding current (A) Dilution (%) 0 1.2mmΦ Welding speed 40cm/min 30cm/min 20cm/min Welding current (A) Dilution (%) 1.6mmΦ 40 30 20 200 10 0 Proper dilution for 1st layer 250 300 4 . Ge ne r a l a ppl i c a t i onsof FCAW 4 . 1But t j oi nt we l di ng Ap p l i c a b l ep l a t et h i c k n e s s e sa r e2 mmo rmo r ewi t ha 1 . 2 mmd i a . wi r ea n d5 mmo r mo r ewi t ha1 . 6 mmd i a . wi r ei nf l a t p o s i t i o n . P - s e r i e s F CWse n a b l ewe l d i n go f t h i np l a t e s wi t h3 - 4 mmt h i c k n e s s i nv e r t i c a l p o s i t i o n . On e - s i d ewe l d i n gc a nb ea p p l i e dt oas i n g l eV - s h a p e g r o o v ewi t ha3 - 4mmr o o t o p e n i n gi nf l a t , h o r i z o n t a l a n dv e r t i c a l p o s i t i o n sb yu s i n gab a c k i n gma t e r i a lo f F B B - 3( Ts i z e ) . 4 . 2Hor i z ont a l f i l l e t we l di ng Awe l d i n gs p e e do fa p p r o x i ma t e l y3 0 - 7 0c m/ mi ni s r e c o mme n d e dt oo b t a i ns mo o t hb e a da p p e a r a n c ea n d s u f f i c i e n t p e n e t r a t i o ni nh o r i z o n t a l f i l l e t we l d i n g . Wi t h at y p e3 0 9F C W, d i s s i mi l a r - me t a l we l d i n go f s t a i n l e s s s t e e la g a i n s tc a r b o ns t e e lc a nb ep e r f o r me dwi t ht h e s a mewe l d i n gc o n d i t i o n sa su s e df o rs t a i n l e s ss t e e l we l d i n g .I no r d e rt os e c u r et h eo p t i mu m f e r r i t e c o n t e n t , h o we v e r , t h ewe l d i n gc u r r e n t s h o u l db e2 0 0 A o rl e s sa n dt h ewe l d i n gs p e e d , 4 0c m/ mi no rs l o we r wi t ha1 . 2mmd i a . F CW. 4 - 3Ov e r l a ya ndc l a d- s t e e l we l di ng T h ef i r s t l a y e ro fo v e r l a ywe l d i n go n t oac a r b o ns t e e l b a s eme t a l s h o u l db ewe l d e dwi t ha3 0 9( o r 3 0 9 Mo L ) F C W b yt h eh a l fl a p p i n gme t h o d .I fd i l u t i o nb yt h e b a s eme t a l i se x c e s s i v e , t h ef e r r i t ec o n t e n t o f t h ewe l d me t a ld e c r e a s e s a n d h o tc r a c k i n g ma y o c c u r . T h e r e f o r e , i ti si mp o r t a n tt ou s ea p p r o p r i a t ewe l d i n g c o n d i t i o n st oc o n t r o l d i l u t i o n , p a r t i c u l a r l y , o nt h ef i r s t l a y e r .I no r d e rt oo b t a i nt h ep r o p e rd i l u t i o nr a t i o , we l d i n gc u r r e n t s s h o u l db e2 0 0 Ao r l o we r a n dwe l d i n g s p e e d , 2 0 - 4 0c m/ mi nwi t ha1 . 2mmd i a . F CW. Wi t ha 1 . 6mmd i a . F CW, u s ewe l d i n gc u r r e n t s i nt h e2 0 0 - 2 5 0 Ar a n g ea n dwe l d i n gs p e e d s ,i nt h e2 0 - 3 0c m/ mi n r a n g e( s e eF i g u r e s 1 5a n d1 6 ) . F i g u r e1 3 : Sp a t t e r g e n e r a t i o nc o mp a r i s o n F i g u r e1 4 : F u mee mi s s i o nr a t ec o mp a r i s o n F i g u r e1 5 : Di l u t i o nr a t i oa saf u n c t i o no f we l d i n gc u r r e n t ( 1 . 2 mmd i a . ) F i g u r e1 6 : Di l u t i o nr a t i oa saf u n c t i o no f we l d i n gc u r r e n t ( 1 . 6 mmd i a . ) 6
  • 8. Strip overlay Auto-GTAW overlay Strip overlay SMAW or FCAW overlay Base metal Butt weld of shell Strip electrode Cavity Arc Molten slag Solid slag Weld metal Welding direction Weld pool Molten droplet Base metal Flux Molten droplet Molten droplet Base metal Weld pool Weld pool Weld metal Solid slag Molten slag Strip electrode Welding direction Flux 2mm 2mm Consumables for overlay welding of pressure vessels (Types 347 and 317L stainless steels) 1 . P r e f a c e P r e s s u r ev e s s e l ss u c ha sn u c l e a rr e a c t o r sa n do i l r e f i n i n gr e a c t o r s( f o rd e s u l f u r i z a t i o n )a r eg e n e r a l l y c o mp r i s e do fl e s se x p e n s i v e , h i g hs t r e n g t hl o wa l l o y s t e e l s .I n o r d e rt o e n s u r e a p p r o p r i a t e c o r r o s i o n r e s i s t a n c e ,h o we v e r ,t h ei n s i d e so ft h e s ep r e s s u r e v e s s e l sa r eo v e r l a y - we l d e dwi t ha u s t e n i t i cs t a i n l e s s s t e e l we l d i n gc o n s u ma b l e s . Wh e naf a c i l i t yl i k ead e s u l f u r i z a t i o nr e a c t o rt h a t h a n d l e sh y d r o g e ns u l f i d eu n d e rh i g ht e mp e r a t u r ea n d p r e s s u r ei so u t o fo p e r a t i o n , p o l y t h i o n i ca c i di so f t e n g e n e r a t e da n dma yc a u s es t r e s sc o r r o s i o nc r a c k s ( S S C) .T h e r e f o r e ,o na ni n t e r n a ls t r u c t u r eo ra n o v e r l a ywe l d ,t y p e3 4 7s t a i n l e s ss t e e li sc o mmo n l y u s e d , i n s t e a do f c o n v e n t i o n a l a u s t e n i t i cs t a i n l e s ss t e e l . T y p e3 4 7 s t e e li sa b l et o p r e v e n ti n t e r g r a n u l a r c o r r o s i o nb e c a u s ei ti n c l u d e sn i o b i u m ( Nb )i ni t s c o mp o s i t i o n . T y p e3 1 7 Ls t a i n l e s s s t e e l c a na l s ob eu s e df o r r e a c t o r s h a n d l i n go i l r i c hi ns u l f u r ( S ) . 2 . Ov e r l a ywe l d i n gp r o c e d u r e An u mb e ro fwe l d i n gme t h o d sa r ea p p l i e di nt h e i n t e r n a l we l d i n go fd e s u l f u r i z a t i o nr e a c t o r sa ss h o wn i nF i g u r e1 .S t r i po v e r l a ywe l d i n gi sa ne f f i c i e n t p r o c e s sf o rs u c hl a r g e - s i z e dr e a c t o r s , wh i l ea u t o ma t i c GT A W i su s e df o rt h ei n s i d e so fs ma l l - d i a me t e r n o z z l e s . F C A W/ S MA Wi s a p p l i e df o r o v e r l a ywe l d i n g o fb u t tj o i n tp a r t sa n da l s of o ra s s e mb l i n gi n t e r n a l e q u i p me n t . S A Wa n dE S Wa r et wome t h o d sf o r c a r r y i n go u t s t r i p o v e r l a ywe l d i n g ,t h ep r o c e s st h a ta c c o u n t sf o rt h e l a r g e s t c o n s u mp t i o no fwe l d i n gc o n s u ma b l e s . Amo n g t h ed i f f e r e n c e s b e t we e nt h et wome t h o d s ( s e eT a b l e1 ) , t h emo s t s i g n i f i c a n t i st h a t S A W g e n e r a t e sa na r ct h a t me l t st h es t r i p ,wh i l eE S W me l t st h es t r i pv i at h e e l e c t r i cr e s i s t a n c eo fmo l t e ns l a g . S A W r e q u i r e sl e s s h e a t i n p u t t h a nE S W, r e s u l t i n gi nl o ws u s c e p t i b i l i t yt o h y d r o g e n - i n d u c e dd i s b o n d i n g . Ont h eo t h e r h a n d , wi t h E S W,al o wb a s eme t a ld i l u t i o nr a t i op r o d u c e sl o w c a r b o nwe l dme t a l wi t hs u p e r bc o r r o s i o nr e s i s t a n c e . I t a l s o p r o v i d e s a s mo o t h o v e r l a p p e d c o n n e c t i o n , e s p e c i a l l ywh e nma g n e t i cc o n t r o l i s a p p l i e d . 3 . P r o p e r t i e so f Ko b e l c oo v e r l a ywe l d i n g c o n s u ma b l e s P r e s s u r e v e s s e l s u s u a l l y r e q u i r e p o s t - we l d h e a t t r e a t me n t ( P WHT)d u r i n gf a b r i c a t i o nf o rs t r e s sr e l i e f (S R) o f l o w a l l o y b a s e me t a l s a n d q u a l i t y i mp r o v e me n to ft h ema t e r i a l s .Ho we v e r ,t h ea p p l i e d P WHTt e mp e r a t u r ec a np r o d u c eh a r mf u l i n t e r me t a l l i c c o mp o u n d so r p r e c i p i t a t e si nt h ewe l dme t a l s , l e a d i n g Pr o c e s s SA W ESW Sc h e ma t i c v i e w Ar cg e n e r a t i o n Y e s No El e c t r o d e me l t e db y Ar ch e a t He a t o f mo l t e ns l a g r e s i s t a n c e Di l u t i o nr a t i o 1 5 - 2 0 % 5 - 1 0 % Ma g n e t i cc o n t r o l No t p o s s i b l e Po s s i b l e Be a d a p p e a r a n c e Cr o s s - s e c t i o n a l ma c r o s t r u c t u r e ( Ov e r l a p p e d c o n n e c t i o np a r t ) T a b l e1 : Co n c e p t so f o v e r l a ywe l d i n gp r o c e s s e s ( SA Wa n dE SW) wi t hs t r i pe l e c t r o d e s F i g u r e1 : Sc h e ma t i cv i e wo f p r e s s u r ev e s s e l a n do v e r l a y we l d i n g 7
  • 9. 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3 4 5 6 SAW process (1150A-25V) Proper dilution for 1st layer (SAW) Proper dilution for 1st layer (ESW) Welding speed (cm/min.) Dilution ratio (%) Weld thickness (mm) ESW process (1200A-26V) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 5 0 10 15 20 25 t oe mb r i t t l e me n t a n dr e d u c e dc o r r o s i o nr e s i s t a n c e . I t i s t h e r e f o r e n e c e s s a r y t o c o n t r o l b o t h we l d i n g c o n s u ma b l e sa n dwe l d i n gp r o c e d u r e si no r d e rt o o b t a i no p t i mu m c h e mi c a lc o mp o s i t i o n sa n df e r r i t e c o n t e n t o nt h eo v e r l a ywe l dme t a l . T a b l e2s h o wsa l lwe l dme t a lc h e mi c a lc o mp o s i t i o n s o ft y p e3 4 7we l d i n gc o n s u ma b l e s , T a b l e3 , a u s t e n i t i c s t a i n l e s ss t e e lwe l d i n gc o n s u ma b l e sf o rs t r i po v e r l a y we l d i n ga n dT a b l e4 , c h e mi c a lc o mp o s i t i o n so ft y p e 3 4 7we l d i n gc o n s u ma b l e s f o r s t r i po v e r l a ywe l d i n g . As a l l o f Ko b e l c owe l d i n gc o n s u ma b l e sa r eo p t i mi z e d i nt e r mso f c h e mi c a l c o mp o s i t i o n sa n df e r r i t ec o n t e n t , t h e yp e r f o r mwe l l a g a i n s t c r a c k i n ga n de mb r i t t l e me n t d u r i n gP WHT . Wh i l ei t i swe l l k n o wnt h a t Nbi nt y p e 3 4 7s t a i n l e s ss t e e lh a sa na d v e r s ee f f e c to ns l a g r e mo v a l ,Ko b e l c o ’ s t y p e 3 4 7 c o n s u ma b l e s a r e d e s i g n e df o rs u p e r bs l a gr e mo v a b i l i t ya ss h o wni n T a b l e1 . 4 . Spe c i a l c a r ef orov e r l a ywe l di ng Wh e no v e r l a ywe l d i n gi sc o n d u c t e do nc a r b o no rl o w a l l o ys t e e l s , t h eb a s eme t a l d i l u t i o nr a t i oma yf l u c t u a t e d e p e n d i n go nt h ewe l d i n gp a r a me t e r su s e da t t h ef i r s t l a y e r , c a u s i n gc h a n g e si nc h e mi c a l c o mp o s i t i o n sf r o m wh a t i s r e q u i r e di nt h ewe l dme t a l . F i g u r e2s h o wst h e i n f l u e n c eo fwe l d i n gs p e e do nwe l dt h i c k n e s sa n d d i l u t i o nr a t i oi ns t r i po v e r l a ywe l d i n g . I t c a nb es e e n t h a tt h eb a s eme t a ld i l u t i o n r a t i o v a r i e sg r e a t l y a c c o r d i n gt oc h a n g e s i nwe l d i n gs p e e d . I t i s , t h e r e f o r e , n e c e s s a r y t o c o n f i r m t h ewe l d i n g c o n d i t i o n si n a d v a n c es u c ha swe l d i n gc u r r e n t ,a n ds t r i ps t i c k - o u t l e n g t h . Pr o c e s s GT A W SMA W F CA W Pr o d u c t n a me TG- S3 4 7 TG- S347L NC- 3 7 NC- 3 7 L DW- 3 4 7 A WSc l a s s . A5 . 9 ER3 4 7 A5 . 9 ER3 4 7 L A5 . 4 E3 4 7 - 1 6 A5 . 4 E3 4 7 L - 1 6 A5 . 2 2 E3 4 7 T0 - 1 / 4 Po l a r i t y DCEN ACo r DCEP DCEP Sh i e l d i n g g a s 1 0 0 %Ar − − CO2o r Ar + CO2 C 0 . 0 5 0 . 0 3 0 . 0 6 0 . 0 4 0 . 0 2 Si 0 . 4 0 0 . 3 9 0 . 5 5 0 . 5 8 0 . 3 7 Mn 2 . 1 1 . 5 1 . 5 2 . 3 1 . 2 Ni 1 0 . 0 9 . 4 1 0 . 1 9 . 7 1 0 . 3 Cr 1 9 . 3 1 8 . 9 1 9 . 6 1 9 . 1 1 8 . 3 Mo 0 . 0 7 0 . 1 1 0 . 0 4 0 . 0 3 0 . 0 6 Nb 0 . 6 0 0 . 6 6 0 . 6 7 0 . 5 9 0 . 6 0 F N 6 1 0 8 8 5 F NW 7 1 0 6 8 5 Pr o c e s s Ap p l i c a t i o n SA W ESW St r i p* 2 F l u x St r i p* 2 F l u x T y p e 3 0 8 L Si n g l el a y e r − − US- B3 0 9 L PF- B7 FK Do u b l el a y e r * 1 US- B3 0 8 L PF- B1 US- B3 0 8 L PF- B7 FK T y p e 3 1 6 L Do u b l el a y e r * 1 − − US- B3 1 6 ELPF- B7 FK T y p e 3 1 7 L Do u b l el a y e r * 1 − − US- B3 1 7 L PF- B7 FK T y p e 3 4 7 Si n g l el a y e rUS- B3 4 7 LPPF- B1 FP US- B3 0 9 LCbPF- B7 FK US- B24. 13LNb PF- B7 HM Do u b l el a y e r * 1 US- B3 4 7 LDPF- B1 FK US- B3 4 7 LDPF- B7 FK Bu f f e r l a y e r US- B3 0 9 L PF- B1 US- B3 0 9 L PF- B7 FK Pr o c e s s SA W ESW Ap p l i c a t i o n Si n g l el a y e rDo u b l el a y e r Si n g l el a y e r Do u b l el a y e r Pr o d u c t n a me US- B347LP / PF- B1FP US- B347LD / PF- B1FK US- B309LCb / PF- B7FK US- B24. 13LNb / PF- B7HM US- B347LD / PF- B7FK Ba s eme t a l o r b u f f e r l a y e r ASTM A3 8 7Gr 2 2 US- B3 0 9 L / PF- B1 AST MA3 8 7Gr 2 2 US- B3 0 9 L / PF- B7 FK C 0 . 0 5 0 . 0 4 0 . 0 3 0 . 0 4 0 . 0 3 Si 0 . 5 8 0 . 5 0 0 . 6 0 0 . 4 9 0 . 4 2 Mn 1 . 4 1 . 3 1 . 8 1 . 4 1 . 8 Ni 1 0 . 0 1 0 . 4 1 0 . 7 9 . 6 1 0 . 1 Cr 1 9 . 4 1 9 . 4 1 9 . 2 1 8 . 7 1 8 . 5 Mo 0 . 1 9 0 . 0 4 0 . 1 2 0 . 2 8 0 . 0 3 Nb 0 . 5 3 0 . 5 3 0 . 5 0 0 . 5 6 0 . 5 3 F N 9 8 8 8 5 F NW 7 7 7 8 6 T a b l e4 : Ch e mi c a l c o mp o s i t i o n so f t y p e3 4 7s t a i n l e s ss t e e l we l d i n gc o n s u ma b l e sf o r s t r i po v e r l a ywe l d i n g Ch e mi c a l c o mp o s i t i o n so f c l a d d i n gwe l dme t a l ( ma s s%) T a b l e2 : Al l we l dme t a l c h e mi c a l c o mp o s i t i o n so f t y p e3 4 7 s t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s Ch e mi c a l c o mp o s i t i o n so f a l l we l dme t a l ( ma s s%) SMA Wa n dF CA W: Al l we l dme t a l o f ACa n d1 0 0 %CO2 , r e s p e c t i v e l y . T a b l e3 : We l d i n gc o n s u ma b l e sf o r s t r i po v e r l a ywe l d i n g * 1Do u b l el a y e r : T h ef i r s t l a y e r o f t h ed o u b l el a y e r r e q u i r e sb u f f e r l a y e r we l d i n gwi t hat y p e3 0 9 Ls t a i n l e s ss t e e l we l d i n gc o n s u ma b l e . * 2St r i ps i z e : 0 . 4 mmt h i c k×2 5 , 5 0a n d7 5mmwi d eo r 0 . 5 mmt h i c k×3 0 , 6 0a n d9 0mmwi d e F i g u r e2 : I n f l u e n c eo f we l d i n gs p e e d ( St r i pe l e c t r o d ewi d t h : 7 5 mm) 8
  • 10. Welding standard, super and lean duplex stainless steels: AWS E(R)2209, E(R)2594 and E2307 Austenitic phase Ferritic phase Ph o t o1 : Mi c r o s t r u c t u r eo f d u p l e xs t a i n l e s ss t e e l Ph o t o2 : Ch e mi c a l T a n k e r Bu l k h e a d Ph o t o3 : St o n e c u t t e r sBr i d g e ma i nt o we r , r i s i n go v e r 1 7 5m a b o v es e al e v e l ( Ho n gK o n g ) 1 . Pr e f a c e Du p l e x s t a i n l e s ss t e e l ,wh i c h h a s a d u a l - p h a s e mi c r o s t r u c t u r ec o n s i s t i n go ff e r r i t i ca n da u s t e n i t i c g r a i n s ,a s s h o wn i n P h o t o 1 ,o v e r c o me s t h e we a k n e s s e sa s s o c i a t e dwi t ht wot y p e so fs t e e lb y o f f e r i n gh i g h e rr e s i s t a n c et os t r e s sc o r r o s i o nc r a c k i n g t h a n a u s t e n i t i c s t a i n l e s s s t e e la n d b e t t e rn o t c h t o u g h n e s st h a nf e r r i t i cs t a i n l e s ss t e e l . Du p l e xs t a i n l e s s s t e e lp l a y s a n i mp o r t a n tr o l e i n s u c h d i v e r s e a p p l i c a t i o n s a s p e t r o - c h e mi c a l p l a n t s , c h e mi c a l c a r r i e r s , o f f s h o r es t r u c t u r e sa n db r i d g e sa ss h o wni n P h o t o s 2a n d3 . T h i s a r t i c l ewi l l d i s c u s s t h ef e a t u r e s o f d u p l e xs t a i n l e s ss t e e l sa swe l la st h e i rmo s ts u i t a b l e we l d i n gc o n s u ma b l e s . 2 . Fe a t ur e sof dupl e xs t a i nl e s ss t e e l s T h emi c r o s t r u c t u r eo f d u p l e xs t a i n l e s s s t e e l s h o ws t h a t t h ea u s t e n i t i cg r a i n sh a v ep r e c i p i t a t e do nac o mp l e t e l y f e r r i t i cp h a s ewi t hap h a s eb a l a n c eo fa p p r o x i ma t e l y 5 0 %f e r r i t ea n d5 0 %a u s t e n i t e . As t h i s c o n d i t i o ni st h e mo s t s t a b l eo fmi c r o s t r u c t u r e s , t h ef e a t u r e so fd u p l e x s t a i n l e s s s t e e l c a nb eh i g h l i g h t e d . I nc o mp a r i s o nwi t ha u s t e n i t i cs t a i n l e s ss t e e l ,d u p l e x s t a i n l e s s s t e e l o f f e r s t h ef o l l o wi n ga d v a n t a g e s : · s ma l l e rt h e r ma le x p a n s i o nc o e f f i c i e n ta n dl a r g e r t h e r ma l c o n d u c t i v i t y , · h i g h e r r o o mt e mp e r a t u r es t r e n g t h , · e x c e l l e n tr e s i s t a n c ea g a i n s tp i t t i n gc o r r o s i o na n d s t r e s s c o r r o s i o nc r a c k i n g b u t a l s os o med i s a d v a n t a g e s : · h i g h e r n i t r o g e n( N) c o n t e n t · l a r g e rmi c r o s t r u c t u r et r a n s f o r ma t i o nc a u s e db yh e a t t r e a t me n t a n de a s i e r p r o p e r t yd e t e r i o r a t i o ni n c l u d i n g c o r r o s i o nr e s i s t a n c e T h ee f f e c t so fmi c r o s t r u c t u r e t r a n s f o r ma t i o n a r e p a r t i c u l a r l yn o t i c e a b l ea t t h eh e a t a f f e c t e dz o n e( HAZ ) a n dwi l l b ed i s c u s s e dl a t e r . Du p l e xs t a i n l e s ss t e e li sp r o d u c e dma i n l yi nt h r e e g r a d e si nr e l a t i o nt oc h e mi c a l c o mp o s i t i o n s : s t a n d a r d , s u p e r a n dl e a n . A. S t a n d a r dd u p l e xs t a i n l e s ss t e e l : C o mp o s e do f2 2 % C r - 5 %Ni - 3 %Mo - 0 . 1 5 %Ni ,i ti s l i t e r a l l y t h e s t a n d a r d . B . S u p e r d u p l e xs t a i n l e s s s t e e l : Amo u n t so f Moa n dN a r ea d d e dt ot h es t a n d a r di no r d e r t oi n c r e a s er o o m t e mp e r a t u r e s t r e n g t h a n d p i t t i n g c o r r o s i o n r e s i s t a n c e . C . L e a nd u p l e xs t a i n l e s s s t e e l : Amo u n t so f Ni a n dMo a r er e d u c e df r o mt h es t a n d a r di no r d e r t ol o we r t h e c o s t . T a b l e1s h o wst h et y p i c a lc h e mi c a lc o mp o s i t i o n s o ft h e t h r e e g r a d e s o fd u p l e x s t a i n l e s s s t e e l s . F i g u r e1s h o wsar e l a t i v ec o mp a r i s o nb e t we e nt e n s i l e s t r e n g t ha n dt h ep i t t i n gc o r r o s i o nr e s i s t a n c ei n d e x [ P R E W= C r + 3 . 3 ( Mo + 0 . 5 W) + 1 6 N] o f v a r i o u s s t a i n l e s s s t e e l s . Al a r g e rP R E W me a n sb e t t e rp i t t i n gc o r r o s i o n r e s i s t a n c e . Gr a d e UNS C S iMn P S Cu Cr NiMo W N PREW St andar d S 3 1 8 0 30 . 0 20 . 5 1 . 50 . 0 20 . 0 0 10 . 42 2 . 16 . 0 3 . 0 − 0 . 1 23 3 . 9 S 3 2 2 0 50 . 0 20 . 4 1 . 40 . 0 30 . 0 0 10 . 32 2 . 15 . 6 3 . 1 − 0 . 1 83 5 . 2 Su p e r S 3 2 7 5 00 . 0 20 . 4 0 . 70 . 0 20 . 0 0 10 . 12 5 . 67 . 0 3 . 80 . 10 . 2 84 2 . 8 S 3 2 7 6 00 . 0 30 . 3 0 . 70 . 0 20 . 0 0 10 . 62 5 . 47 . 0 3 . 50 . 60 . 2 14 1 . 3 L e a n S 3 2 1 0 10 . 0 30 . 7 4 . 90 . 0 30 . 0 0 10 . 22 1 . 61 . 5 0 . 2 − 0 . 2 22 5 . 8 S 3 2 3 0 40 . 0 20 . 5 1 . 50 . 0 20 . 0 0 10 . 22 2 . 74 . 7 0 . 3 − 0 . 1 02 5 . 3 T a b l e1 : T y p i c a l c h e mi c a l c o mp o s i t i o n so f d u p l e x s t a i n l e s ss t e e l s( ma s s %) PREW= Cr + 3 . 3 ( Mo + 0 . 5 W) + 1 6 N 9
  • 11. FNW 0 .2 % P S/TS (MPa) 1000 900 800 700 600 500 20 30 40 50 60 70 80 TS 0.2%PS Absorbed energy:vE - 40°C (J) FNW 60 50 40 30 20 10 0 20 30 40 50 60 70 80 900 700 500 PREW = Cr+3.3(Mo+0.5W)+16N 20 30 40 304L 316L Lean S32101 Standard S31803 Super S32750 Duplex stainless steel Austenitic stainless steel Tensile strength (MPa) F i g u r e1 : Re l a t i v ec o mp a r i s o nb e t we e nt e n s i l es t r e n g t ha n d p i t t i n gc o r r o s i o nr e s i s t a n c ei n d e x( PRE W) o f v a r i o u ss t a i n l e s ss t e e l s 3 . F e a t u r e so f t h ewe l d e dz o n eo f d u p l e xs t a i n l e s ss t e e l 3 . 1HAZo f d u p l e xs t a i n l e s ss t e e l I nd u p l e xs t a i n l e s ss t e e l , t h ed u a l p h a s e so fa u s t e n i t i c a n df e r r i t i cg r a i n sa r eb a l a n c e di nt h eh e a tt r e a t me n t p r o c e s s . B yc o n t r a s t , a tt h eHAZo fd u p l e xs t a i n l e s s s t e e l ,p i t t i n gc o r r o s i o nr e s i s t a n c ea n d me c h a n i c a l p r o p e r t i e sc a nd e t e r i o r a t eo c c a s i o n a l l y ,b e c a u s et h e p h a s eb a l a n c ea n dc h e mi c a l c o mp o s i t i o n so ft h ed u a l p h a s e sc h a n g ei na c c o r d a n c ewi t ht h ec o o l i n gr a t e , wh i c hi si n f l u e n c e db ywe l d i n gh e a ti n p u to rp l a t e t h i c k n e s s . T ob emo r ep r e c i s e , a t t h eh i g ht e mp e r a t u r eHAZ( HT - HAZ ) c l o s et ot h ewe l di n t e r f a c e , t h ea u s t e n i t i cg r a i n s d i s s o l v ei n t ot h ef e r r i t i cp h a s ef i r s t a n dt h e np r e c i p i t a t e a sa u s t e n i t i cg r a i n sd u r i n gt h ec o o l i n gp r o c e s sa n d c r e a t et h ed u a lmi c r o s t r u c t u r e sa tt h ee n d .Ho we v e r , wh e nah i g hc o o l i n gr a t eo c c u r s d u et oe x c e s s i v e l yl o w h e a t i n p u t , a u s t e n i t i cg r a i nr e - p r e c i p i t a t i o ni sd e l a y e d , a n dC r c a r b i d e sa n d / o rC rn i t r i d e sp r e c i p i t a t ei n t ot h e f e r r i t i cg r a i n s .Asar e s u l t ,aC r - d e p l e t e dl a y e rwi l l f o r ma r o u n dt h eHAZ ,l e a d i n gt oad e t e r i o r a t i o ni n c o r r o s i o nr e s i s t a n c e . Ont h eo t h e rh a n d , a t t h el o wt e mp e r a t u r eHAZ( L T - HAZ) , a wa yf r o mt h ewe l di n t e r f a c e ,al o wc o o l i n g r a t ed u et oh i g hh e a ti n p u tc a nc a u s ef e r r i t i cg r a i n c o a r s e n i n ga n dp r e c i p i t a t i o no ft h eσ ( s i g ma )p h a s e , C r - c a r b i d e s ,a n d C r - n i t r i d e s ,t h e r e b y d e c r e a s i n g c o r r o s i o nr e s i s t a n c ea n dn o t c ht o u g h n e s s . T oc o n c l u d e ,t h eHT - HAZr e q u i r e sr e l a t i v e l ys l o w c o o l i n g s o a s t o e n a b l e t h e a u s t e n i t i cg r a i n st op r e c i p i t a t es u f f i c i e n t l y ,wh i l et h e L T - HAZn e e d smu c hf a s t e rc o o l i n gs oa st os u p p r e s s t h e h a r mf u l p r e c i p i t a t e s f r o m p r e c i p i t a t i n g . Ac c o r d i n g l yi t i sn e c e s s a r yt oc o n t r o l t h ec o o l i n gr a t e t os a t i s f yt h er e q u i r e me n t so fb o t ht h eHT - HAZa n d L T - HAZt h r o u g ha p p r o p r i a t ewe l dh e a ti n p u t ,p r e - h e a t i n ga n di n t e r p a s s t e mp e r a t u r e s . 3 . 2We l dme t a l o f d u p l e xs t a i n l e s ss t e e l T h ewe l dme t a l o f d u p l e xs t a i n l e s ss t e e l i sa d j u s t e dt o o b t a i n t h e r e q u i r e d p r o p e r t i e si n t h e a s - we l d e d c o n d i t i o na s s h o wni nP h o t o4 i nc o n t r a s t t ot h es t a b l e d i s t r i b u t i o no ft h ef e r r i t i ca n da u s t e n i t i cp h a s e si n d u p l e x s t a i n l e s ss t e e l ,i n we l d me t a lt h e y a r e d i s t r i b u t e dmu c hmo r eh a p h a z a r d l y . F i g u r e s2a n d3s h o wt h ec o r r e l a t i o n sb e t we e nt h e f e r r i t en u mb e r ( F N) , i . e . t h ef e r r i t ec o n t e n t , a n dt e n s i l e s t r e n g t h / p r o o fs t r e s s , a n db e t we e nt h eF Na n dn o t c h t o u g h n e s so nt h ewe l dme t a l b yt h eA WSE 2 5 9 4t y p e F C W, r e s p e c t i v e l y . I tc a nb es e e ni nb o t hf i g u r e st h a twh e nt h eF N i n c r e a s e s , r o o mt e mp e r a t u r es t r e n g t hi mp r o v e swh i l e n o t c ht o u g h n e s sd e c l i n e s . Ast h eF Na l s oi n f l u e n c e s p i t t i n g c o r r o s i o n r e s i s t a n c e , g o o d me c h a n i c a l p r o p e r t i e s a s we l l a s p i t t i n gc o r r o s i o nr e s i s t a n c ec a nb e o b t a i n e db y s e l e c t i n g t h emo s ts u i t a b l ewe l d i n g c o n s u ma b l e sa n d c o n t r o l l i n g we l d i n g p r o c e d u r e s , F i g u r e2 : Co r r e l a t i o nb e t we e nF Na n dt e n s i l es t r e n g t h / 0 . 2 % p r o o f s t r e s so f E2 5 9 4t y p eF CWwe l dme t a l F i g u r e3 : Co r r e l a t i o nb e t we e nF Na n dn o t c ht o u g h n e s so f E2 5 9 4t y p eF CWwe l dme t a l Ph o t o4 : Mi c r o s t r u c t u r eo f d u p l e xs t a i n l e s ss t e e l we l dme t a l 1 0
  • 12. Welding direction Welding direction Welding direction Welding direction We We We We We We We We We We We We We We We We We We We Weld ld ld ld ld ld d d d ld ld ld ld ld ld ld ld ld ld ldin in in n in in n n in in in in in in ing g g g g g g g g g g g g g g g g W We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld di i in in in in in in in in ng g g g g g g g g g g g g W We We We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld ld d di i in in in in in in in in in ng g g g g g g g g g g g g g W We We We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld ld d di i in in in in in in in in in ng g g g g g g g g g g g g g W We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g W We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g W We We We We We We We We We Weld ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g d d d di di di di di di di di di di di d di di di di dire re re re re re re re re re re re re re re re rect ct ct ct ct ct ct ct ct ct ct ct ct ct ct cti i io io io io io io io io io io io io io ion n n n n n n n n n n i di di di di di i di di di di di d e e re re re re re re re re re re rec ct c ct ct ct ct ct ct ct ct ti i io io io io io io io ion n n n n n n n n i di di di di i di di di di di di d d e e re re re re re re re re re re re ec c ct ct ct ct ct ct ct ct ct ct t ti i io io io io io io io io ion n n n n n n n n n i di di di di i di di di di di di d d e e re re re re re re re re re re re ec c ct ct ct ct ct ct ct ct ct ct t ti i io io io io io io io io ion n n n n n n n n n i di di di di di di di di di di d e e re re re re re re re re re rec ct ct ct ct ct ct ct t ct t ti i io io io io io io io i n n n n n n n n n i di di di di di di di di di di d e e re re re re re re re re re rec ct ct ct ct ct ct ct t ct t ti i io io io io io io io i n n n n n n n n n i di di di di di di di di di di d e e re re re re re re re re re rec ct ct ct ct ct ct ct t ct t ti i io io io io io io io i n n n n n n n n n Welding direction Welding direction Welding direction Welding direction Welding direction We We We We We We We We We We We We We We We We We We We Weld ld ld ld ld ld ld ld d d d d ld ld ld ld ld ld ld ldin in in i in in n in in in in in in ing g g g g g g g g g g g g g g g g d d di di di di di di di di di di di di di di di di di dire re re re re re re re re re re re re re re re re re rec ct ct ct ct ct ct ct ct ct ct ct ct ct ct ct ct ct ctio io io io io io o io io io o io io io io io io ion n n n n n n n n n n We We We We We e We We We We We Weld ld ld d ld ld ld ld ld ld di i i in in in in in in in in in ng g g g g g g g g g g g g di di di di i i di di di di di di d e e re re re re re re re re re re re t ct ct ct ct ct ct ct ct ct ct ti i i io io io io io io io ion n n n n n n n n n We We We We We We We We We We We We We d ld ld ld ld ld ld ld ld ld ld d di i i in in in in in in in in in ng g g g g g g g g g g g g g di di di di i di di di di di di di d d e e re re re re re re re re re re re ect ct ct ct ct ct ct ct ct ct ct t ti i io io io io io io io io ion n n n n n n n n n We We We We We We We We We We We We We d ld ld ld ld ld ld ld ld ld ld d di i i in in in in in in in in in ng g g g g g g g g g g g g g di di di di i di di di di di di di d d e e re re re re re re re re re re re ect ct ct ct ct ct ct ct ct ct ct t ti i io io io io io io io io ion n n n n n n n n n We We We We We We We We We We We W d ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g g di di di di di di di di di di d e re re re re re re re re re re rect ct ct ct ct ct ct ct ct t t ti io io io io io io io io i n n n n n n n n n We We We We We We We We We We We W d ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g g di di di di di di di di di di d e re re re re re re re re re re rect ct ct ct ct ct ct ct ct t t ti io io io io io io io io i n n n n n n n n n We We We We We We We We We We We W d ld ld ld ld ld ld ld ld ld di in in in in in in in in ing g g g g g g g g g g g di di di di di di di di di di d e re re re re re re re re re re rect ct ct ct ct ct ct ct ct t t ti io io io io io io io io i n n n n n n n n n Welding direction i n c l u d i n gb a s eme t a l d i l u t i o na n d / o rt h ec o o l i n gr a t e , t op u t t h ewe l dme t a l F Nwi t h i nar a n g ef r o m3 0t o6 5 . I na d d i t i o n , b e c a u s et h ewe l dme t a li sl e s sc o r r o s i o n r e s i s t a n tt h a nt h eb a s eme t a l ,wh i c hi sp r o d u c e d t h r o u g hap r o c e s s o f t h e r ma l r e f i n i n g , i t i sd e s i g n e dt o h o l ds l i g h t l yh i g h e ra mo u n t so fa l l o y i n ge l e me n t s ( h i g h e r P R E W) t h a nt h eb a s eme t a l . T h eNi c o n t e n t o f t h ewe l dme t a l i sa l s od e s i g n e dt ob eh i g h e rt h a nt h a t o ft h eb a s eme t a li no r d e rt oo p t i mi z et h er a t i oo f a u s t e n i t i c a n d f e r r i t i c g r a i n s u n d e r a s - we l d e d c o n d i t i o n s i nma n yc a s e s . B e c a u s et h ewe l dme t a lF N i n f l u e n c e sme c h a n i c a l p r o p e r t i e sa swe l l a sp i t t i n gc o r r o s i o nr e s i s t a n c e , i t i s i mp o r t a n t t oc h e c ka n dc o n t r o l i t . ( T ol e a r nh o wF Ni s me a s u r e d , p l e a s es e et h ea p p e n d i x . ) 4 . Ko b e l c o ’ sd u p l e xs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s Ko b e l c o ’ sd u p l e xs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s a r ea v a i l a b l ef o r a l l g r a d e s o f d u p l e xs t a i n l e s s s t e e l a n d a r el i s t e di nT a b l e2t o g e t h e rwi t ht h e i rc h e mi c a l c o mp o s i t i o n s a n dme c h a n i c a l p r o p e r t i e s . Ak e yf a c t o r i nt h ed e s i g no f we l d i n gc o n s u ma b l e sf o r d u p l e xs t a i n l e s ss t e e li sh o w t oc o n t r o lf o rt h e r e l a t i v e l y h i g h a mo u n to fn i t r o g e n ( N) ,wh i c h f r e q u e n t l y c a u s e s p o r o s i t y p r o b l e ms s u c h a s b l o wh o l e s , p i t sa n de l o n g a t e dp o r o s i t ya swe l l a sp o o r s l a gr e mo v a l .I tc a na l s oc a u s et h er a d i o g r a p h i c p r o p e r t y( X- r a yp r o p e r t y )i nf l u xc o r e da r cwe l d i n g ( F C A W) o r s h i e l d e dme t a l a r cwe l d i n g( S MA W) t of a i l i nt h eh o r i z o n t a lo ro v e r h e a dp o s i t i o n s .I no r d e rt o c o u n t e rt h ep o r o s i t yp r o b l e ms ,Ko b e l c o ’ swe l d i n g c o n s u ma b l e sa r ed e s i g n e dt oi n c r e a s eNs o l u b i l i t yb y a d j u s t i n gt h ewe l dme t a l c h e mi c a l c o mp o s i t i o n s a n dt o o p t i mi z e t h e s l a g s o l i d i f i c a t i o n t e mp e r a t u r e a n d v i s c o s i t y .I mp r o v i n gs l a gr e mo v a b i l i t yi sn e c e s s a r y s i n c eNi nt h ewe l dme t a lma k e st h a td i f f i c u l te v e n t h o u g ht h es l a gg e n e r a t e df r o m t h es l a gf o r mi n g c o mp o n e n t si nt h ec o a t i n gf l u x( o nS MA W)o ri nt h e f l u x( o nF C A Wo r S A W) c o v e r s t h ewe l dme t a l d u r i n g we l d i n g . P o o rs l a gr e mo v a l ma yc a u s es l a gt or e ma i n h e r ea n dt h e r eo nt h eb e a ds u r f a c ea n dma yp r e v e n t s mo o t hwe l d i n ga n d / o r c a u s es l a gi n c l u s i o n s . Ko b e l c o we l d i n g c o n s u ma b l e s a r e t h e r e f o r e d e s i g n e d t o Gr a d e We l d i n g p r o c e s s P r o d u c t n a me A WSc l a s s i f i c a t i o n Ch e mi c a l c o mp o s i t i o n s( ma s s %) Me c h a n i c a l p r o p e r t i e s Re ma r k s C S i Mn Ni Cr Mo N PREW* 1 F NW 0. 2%PS ( MP a ) T S ( MP a ) E l ( %) v E0 ° C ( J ) St a n d a r d d u p l e x s t a i n l e s ss t e e l GT A W T G- S 2 2 0 9 A 5 . 9 / A 5 . 9 ME R2 2 0 9 0 . 0 0 80 . 3 9 1 . 6 7 8 . 7 2 2 . 7 3 . 1 0 0 . 1 6 3 5 . 5 5 1 5 9 8 7 7 3 3 9 2 7 0 DCE N, 1 0 0 %A r S MA W NC- 2 2 0 9 A 5 . 4 / A 5 . 4 ME 2 2 0 9 - 1 6 0 . 0 2 80 . 5 4 1 . 1 4 8 . 8 2 3 . 1 3 . 3 4 0 . 1 5 3 6 . 5 5 1 6 6 7 8 4 5 3 0 9 7 DCE P F CA W DW- 3 2 9 APA5 . 2 2 / A5 . 2 2 ME2 2 0 9 T1 - 1 / - 40 . 0 2 30 . 5 7 0 . 6 6 9 . 4 2 3 . 0 3 . 4 0 0 . 1 4 3 6 . 4 4 9 6 0 5 8 2 3 3 0 5 5 DCE P , 1 0 0 %CO2 F CA W DW- 2 2 0 9 A5 . 2 2 / A5 . 2 2 ME2 2 0 9 T1 - 1 / - 40 . 0 2 80 . 6 1 0 . 7 4 9 . 1 2 2 . 7 3 . 3 0 0 . 1 3 3 5 . 6 4 6 6 3 9 8 2 0 2 8 7 3 DCEP , 8 0 %Ar + 2 0 %CO2 S A W US - 2 2 0 9/ P F - S 1 D A5 . 9 / A5 . 9 MER2 2 0 9( Wi r e )0 . 0 2 10 . 3 1 1 . 5 6 8 . 9 2 3 . 0 3 . 2 8 0 . 1 5 3 5 . 9 5 7 6 1 8 7 9 8 2 9 6 9 DCE P Su p e r d u p l e x s t a i n l e s ss t e e l GT A W T G- S 2 5 9 4 A 5 . 9 / A 5 . 9 ME R2 5 9 4 0 . 0 1 90 . 4 4 0 . 5 7 9 . 3 2 5 . 0 3 . 8 2 0 . 2 8 4 2 . 0 4 2 7 2 1 8 7 0 3 1 2 8 6 DCEN, 9 8 %Ar + 2 %N2 S MA W NC- 2 5 9 4 A 5 . 4 / A 5 . 4 ME 2 5 9 4 - 1 6 0 . 0 3 50 . 5 5 0 . 6 6 9 . 8 2 6 . 6 3 . 8 6 0 . 2 5 4 3 . 3 5 0 7 5 0 9 3 5 2 8 5 5 DCE P F CA W DW- 2 5 9 4 A5 . 2 2 / A5 . 2 2 ME2 5 9 4 T1 - 1 / - 40 . 0 2 60 . 5 0 1 . 1 8 9 . 6 2 5 . 7 3 . 7 9 0 . 2 4 4 2 . 0 4 9 7 1 2 9 0 5 2 7 5 5 DCEP , 8 0 %Ar + 2 0 %CO2 L e a nd u p l e x s t a i n l e s ss t e e lF CA W DW- 2 3 0 7 A5 . 2 2 / A5 . 2 2 ME2 3 0 7 T1 - 1 / - 40 . 0 2 60 . 4 5 1 . 2 6 7 . 9 2 4 . 6 0 . 0 3 0 . 1 5 2 7 . 1 4 1 5 7 1 7 5 0 2 9 5 8 DCE P , 8 0 %A r + 2 0 %CO2 T a b l e2 : Ko b e l c o ’ swe l d i n gc o n s u ma b l e sf o r d u p l e xs t a i n l e s ss t e e l , t h e i r c h e mi c a l c o mp o s i t i o n sa n dme c h a n i c a l p r o p e r t i e so f a l l we l dme t a l * 1 : PREW= Cr + 3 . 3( Mo + 0 . 5 W) + 1 6 N Ph o t o5 : Be a da p p e a r a n c ea n dma c r o - s t r u c t u r eo f DW- 2 5 9 4b u t t j o i n t No t e : 1 . We l d i n gp o s i t i o n : V e r t i c a l u p wa r d( 3 G) 2 : We l d i n gp a r a me t e r s : 1 6 0 A - 2 6 V - 1 5 c m/ mi n 3 : S h i e l d i n gg a sp o l a r i t y : 8 0 %A r - 2 0 %CO2 DCE P 4 : P a s ss e q u e n c e : 2p a s s e s / 1 s t l a y e r 1p a s s / 2 n dl a y e r 5 : Wi r es i z e : 1 . 2mmd i a . Ph o t o6 : Be a da p p e a r a n c ea n dma c r o - s t r u c t u r eo f US- 2 2 0 9/ PF - S1 Db u t t j o i n t No t e : 1 . We l d i n gp o s i t i o n : F l a t ( 1 G) 2 : We l d i n gp a r a me t e r s : 4 5 0 A - 3 2 V - 3 5 c m/ mi n 3 : P o l a r i t y : DCE P 4 : P a s ss e q u e n c e : 1p a s se a c ha n d2l a y e r s 5 : Wi r es i z e : 3 . 2mmd i a . 1 1
  • 13. o p t i mi z et h es l a gf o r mi n gc o mp o n e n t si nt h ec o a t i n g o fc o v e r e de l e c t r o d e sa n di nt h ef l u xo fF C Wsa n d S A Wf l u x e s f o r e a s ys l a gr e mo v a l . P h o t o5s h o wst h eb e a da p p e a r a n c ea n dma c r o - s t r u c t u r e so fab u t tj o i n twe l d e db yDW- 2 5 9 4a n d P h o t o6 ,t h es a meb yS A W wi t hUS - 2 2 0 9wi r e/ P F - S 1 Df l u x . Ko b e l c od u p l e xs t a i n l e s ss t e e lwe l d i n gc o n s u ma b l e s p r o v i d ee x c e l l e n t me c h a n i c a l p r o p e r t i e s( s e eT a b l e2 ) , h i g hp i t t i n gc o r r o s i o na n dp o r o s i t yr e s i s t a n c ea swe l l a s s u p e r bs l a gr e mo v a b i l i t y . 5 . S e l e c t i o no f we l d i n gc o n s u ma b l e s Wh e n we l d i n g d u p l e x s t a i n l e s s s t e e l s , i t i s r e c o mme n d e dt os e l e c tt h ewe l d i n gc o n s u ma b l e so f t h es a meg r a d eo rh i g h e r , d e p e n d i n go nt h es i t u a t i o n . F o re x a mp l e , wh e nwe l d i n gs t a n d a r dd u p l e xs t a i n l e s s s t e e l , awe l d i n gc o n s u ma b l ee q u i v a l e n t t oA WSE 2 2 0 9 o r E 2 5 9 4( ah i g h e r g r a d e ) c a nb ec h o s e n . T h es e l e c t i o n g u i d ei s s h o wni nT a b l e3 . I nc a s e so f d i s s i mi l a r we l d i n gb e t we e nc a r b o ns t e e l o r a u s t e n i t i cs t a i n l e s s s t e e l a n dd u p l e xs t a i n l e s s s t e e l , 3 0 9 Lo r3 0 9Mo Lwe l d i n gc o n s u ma b l e so rt h o s ef o r d u p l e xs t a i n l e s ss t e e l sa r ea p p l i c a b l e .T h es e l e c t i o n g u i d ei s s h o wni nT a b l e4 . 6 . No t e so nu s a g e T h ewe l d i n gp r o c e d u r e sf o r d u p l e xs t a i n l e s ss t e e l sa r e s i mi l a r t ot h o s eo f a u s t e n i t i cs t a i n l e s ss t e e l si ng e n e r a l b u t s p e c i a l c a r es h o u l db ep a i di no r d e rt oma x i mi z e t h e i r s t r e n g t h s . 6 . 1He a t i n p u t l i mi t a t i o n T h eh e a ti n p u tl i mi t a t i o ni sc o mmo ni na l lwe l d i n g p r o c e s s e s .Ho we v e r ,d u p l e xs t a i n l e s ss t e e lc o n t a i n s h i g h e r a mo u n t s o f C r a n dMot h a nu s u a l . I f we l dme t a l c o o l sd o wne x t r e me l ys l o wl yd u et oe x c e s s i v eh e a t i n p u ta n dr e ma i n si nat e mp e r a t u r er a n g eo f7 0 0 - 8 0 0 ° Cf o ral o n gt i me , i t f o r mst h eσ ( s i g ma )p h a s e , wh i c hd e t e r i o r a t e s n o t c ht o u g h n e s s . Ont h eo t h e r h a n d , wh e nt h ec o o l i n gr a t eo f t h ewe l dme t a l i s t o oh i g hd u e t oe x t r e me l yl o wh e a t i n p u t , C rn i t r i d ep r e c i p i t a t e sa t t h eHAZc l o s et ot h ewe l di n t e r f a c ea n d , a sar e s u l t , f o r msaC r - d e p l e t e dl a y e r .T h i swi l lc a u s ec o r r o s i o n r e s i s t a n c et od e t e r i o r a t e . B e c a u s et h ec o o l i n gr a t ea l s o i n f l u e n c e st h ea mo u n to fwe l dme t a lF N,i ti s n e c e s s a r yt oa v o i dh e a ti n p u tt h a ti st o oh i g ho rt o o l o w .T h e Ame r i c a n P e t r o l e u m I n s t i t u t e (AP I) r e c o mme n d sh e a ti n p u to f5t o2 5k J / c m a si t s g u i d e l i n e . 6 . 2S h i e l d i n gg a sc o mp o s i t i o no nGT A W T I Gwe l d i n gu s u a l l ya d o p t s1 0 0 %Ara st h es h i e l d i n g g a sf o rc i r c u mf e r e n t i a l r o o t p a s swe l d i n go fs t a i n l e s s s t e e l p i p e s . Ho we v e r , i f 1 0 0 %Ar s h i e l d i n gg a si su s e d f o rT I Gwe l d i n gwi t has o l i df i l l e rr o df o rd u p l e x s t a i n l e s s s t e e l , t h ea mo u n t o f Ni nt h ewe l dme t a l ma y b el e s s t h a nt h a t i nt h eT I Gf i l l e r r o d . T h i s r e s u l t s wh e n t h eNi nt h eT I Gf i l l e r r o dd o e s n o t c o mp l e t e l yt r a n s f e r t ot h ewe l dme t a l i n s t e a d , s o meo f t h eNi s d i s c h a r g e d a s N2g a s f r o mt h emo l t e np o o l i n s i d e . T h i s wi l l c a u s ee x c e s s i v ef e r r i t ei nt h ewe l dme t a l a n d / o r aP R E Wd r o p , r e s u l t i n gi nt h ep o s s i b l ed e t e r i o r a t i o n o f n o t c ht o u g h n e s sa n dp i t t i n gc o r r o s i o nr e s i s t a n c e . I n o r d e rt oa v o i ds u c hp r o b l e ms ,i ti sr e c o mme n d e dt o a d da b o u t 2 %N2g a s i n t ot h es h i e l d i n gg a s , d e p e n d i n g o nt h eNc o n t e n t i nt h ewe l dme t a l a n d / o r b a s eme t a l . 6 . 3P r e v e n t i o no f h o t c r a c ko nS A W I ts h o u l da l s ob en o t e dt h a td u p l e xs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e sa r emo r es u s c e p t i b l et oh o t c r a c k st h a ns t a n d a r da u s t e n i t i cs t a i n l e s ss t e e l we l d i n g c o n s u ma b l e se x c e p t f o rf u l l ya u s t e n i t i cs t a i n l e s ss t e e l we l d i n gc o n s u ma b l e s . I nt h i s s e n s e , t h e r ei s ah i g hr i s k o f h o t c r a c k s wi t hS A W, wh i c ha p p l i e s h i g hh e a t i n p u t i ng e n e r a l .Ast h es u s c e p t i b i l i t yt oh o tc r a c k si s i n f l u e n c e db yb e a ds h a p e sa swe l l , i t i sr e c o mme n d e d t oa v o i dn a r r o wg a pwe l d i n g , l a r g ewe l d i n gc u r r e n t s a n dh i g hwe l d i n gs p e e d s .S u c hwe l d i n gc o n d i t i o n s mu s tb ec o n f i r me dt h o r o u g h l yb e f o r ea c t u a lwe l d i n g t a k e s p l a c e . We l d i n g c o n s u ma b l eg r a d e 2 3 0 7t y p e 2 2 0 9t y p e 2 5 9 4t y p e Du p l e x s t a i n l e s s s t e e l g r a d e Pr o d u c t n a me Ba s e me t a l GT A W − T G- S2 2 0 9 T G- S2 5 9 4 SMA W NC- 2 2 0 9 NC- 2 5 9 4 F CA W DW- 2 3 0 7 DW- 3 2 9 AP DW- 2 2 0 9 DW- 2 5 9 4 SA W US- 2 2 0 9 / PF - S1 D L e a n UNSS3 2 1 0 1 UNSS3 2 3 0 4 ◎ ○ ○ St a n d a r d UNSS3 1 8 0 3 UNSS3 2 2 0 5 × ◎ ○ Su p e r UNSS3 2 7 5 0 UNSS3 2 7 6 0 × × ◎ Du p l e xs t a i n l e s s s t e e l g r a d e Ca r b o ns t e e l / L o w a l l o ys t e e l A u s t e n i t i cs t a i n l e s ss t e e l 3 0 4 Lt y p e 3 1 6 Lt y p e L e a n T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 3 0 7 T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 3 0 7 T y p e so f 3 0 9 Mo L , 2 3 0 7 S t a n d a r d T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 2 0 9 T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 2 0 9 T y p e so f 3 0 9 Mo L , 2 2 0 9 S u p e r T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 5 9 4 T y p e so f 3 0 9 L , 3 0 9 Mo L , 2 5 9 4 T y p e so f 3 0 9 Mo L , 2 5 9 4 T a b l e3 : Se l e c t i o no f d u p l e xs t a i n l e s ss t e e l we l d i n g c o n s u ma b l e s ◎: Ap p l i c a b l ewe l d i n gc o n s u ma b l e so f s i mi l a r c o mp o s i t i o nme t a l s ○: Ap p l i c a b l ewe l d i n gc o n s u ma b l e s ×: No t a p p l i c a b l e T a b l e4 : Se l e c t i o no f d i s s i mi l a r we l d i n gc o n s u ma b l e s 1 2
  • 14. Flat butt joint Overhead butt joint Overhead fillet joint Horizontal fillet joint Horizontal butt joint Vertical butt joints Bottom plate Bottom plate Top plate Top plate Longi-bulkhead Longi-bulkhead Longi-bulkhead Longi-bulkhead Trans-bulkhead (a) Longitudinal bulkhead (Stainless-clad butt joint) (c) Bottom plate to trans-bulkhead (Stainless-clad to stainless fillet joint) (d) Bottom plate to longi-bulkhead (Stainless-clad to stainless-clad fillet joint) (e) Bottom plate to bottom plate (Stainless-clad to carbon steel butt joint) Stainless steel and weld metal Carbon steel and weld metal (b) Transverse bulkhead (Stainless butt joint) Welding of chemical tankers C h e mi c a l t a n k e r s c a r r yma n yc o r r o s i v el i q u i d ss u c ha s p e t r o l e u ma n dc h e mi c a l p r o d u c t s , a c i d s , a l k a l i s , e v e n mo l a s s e s ,a n i ma lo i l s ,a n dv e g e t a b l eo i l s .T h e r e f o r e , wh i l ec h e mi c a l t a n k e rh u l l sma yb ema d eo fl o w- c o s t c a r b o ns t e e l ,t h e i rc a r g ot a n k sa n dp i p i n gs y s t e ms r e q u i r ec o r r o s i o n - r e s i s t a n ts t a i n l e s sa n ds t a i n l e s s - c l a d s t e e l s . B e c a u s eo f t h eu s eo f s p e c i a l s t e e l ma t e r i a l s , t h e we l d i n gp r o c e d u r e su s e dd u r i n gt h ema n u f a c t u r i n go f c h e mi c a l t a n k e r s a l s on e e ds p e c i a l c o n s i d e r a t i o n . 1 . S e v e r a l s t a i n l e s ss t e e l t y p e sa r eu s e d T h es t a i n l e s ss t e e lg r a d e su s e di nc a r g ot a n k sa n d p i p i n gs y s t e ms a r ema i n l ya u s t e n i t i c3 1 6 L , 3 1 6 L Na n d 3 1 7L wh i c h p r o v i d e e x c e l l e n tp i t t i n g c o r r o s i o n r e s i s t a n c ei nc h l o r i d e - r i c he n v i r o n me n t s .Ni t r o g e n - b e a r i n g3 1 6L N o f f e r sh i g h e rt e n s i l es t r e n g t ha n d s t r o n g e r r e s i s t a n c et op i t t i n gc o r r o s i o n . I nr e c e n t y e a r s , t h eu s eo f d u p l e xs t a i n l e s s s t e e l : UNSS 3 1 8 0 3h a s a l s o i n c r e a s e dd u et oi t ss u p e r i o rr e s i s t a n c et os t r e s s c o r r o s i o nc r a c k i n ga n di t sh i g h e rt e n s i l es t r e n g t h . T a b l e1s h o wst h et y p i c a lc h e mi c a la n dme c h a n i c a l r e q u i r e me n t s f o r t h e s eg r a d e s o f s t a i n l e s s s t e e l . T h e s e s t a i n l e s s s t e e l ma t e r i a l s a r e u s e d f o r mo n o me t a l l i cc o mp o n e n t sa n d s t a i n l e s s - c l a d s t e e l c o mp o n e n t sf o rt h ec a r g ot a n k sa n dp i p i n gs y s t e ms . Du r i n gwe l d i n g ,s e v e r a lc o mb i n a t i o n so fma t e r i a l s h a v et ob ej o i n e di na l l p o s i t i o n sa ss h o wnF i g u r e s1 a n d 2 .Wh e n we l d i n g t h e s e mo n o me t a l l i c a n d d i s s i mi l a rme t a lj o i n t s ,c a r e f u lc o n s i d e r a t i o n i s r e q u i r e di ns e l e c t i n gf i l l e rme t a l si no r d e rt oo b t a i n s o u n dwe l d s . 2 . We l d i n gc o n s u ma b l e sf o r s i mi l a r j o i n t s o f s t a i n l e s ss t e e l s T a b l e2s h o wss u i t a b l ewe l d i n gc o n s u ma b l e sf o r a u s t e n i t i ca n dd u p l e xs t a i n l e s ss t e e l s . 3 1 6 La n d3 1 7 L s t a i n l e s ss t e e l sc o mmo n l yu s ema t c h i n gf i l l e rme t a l s , Pr o p e r t i e s T y p eo f s t a i n l e s ss t e e l 3 1 6 L 3 1 6 L N 3 1 7 L S3 1 8 0 3 C ≦0 . 0 3 0 ≦0 . 0 3 0 ≦0 . 0 3 0 ≦0 . 0 3 0 Si ≦1 . 0 0 ≦1 . 0 0 ≦1 . 0 0 ≦1 . 0 0 Mn ≦2 . 0 0 ≦2 . 0 0 ≦2 . 0 0 ≦2 . 0 0 Cr 1 6 . 0 0 - 1 8 . 0 0 1 6 . 0 0 - 1 8 . 0 0 1 8 . 0 0 - 2 0 . 0 0 2 1 . 0 - 2 3 . 0 Ni 1 0 . 0 0 - 1 4 . 0 0 1 0 . 0 0 - 1 4 . 0 0 1 1 . 0 0 - 1 5 . 0 0 4 . 5 0 - 6 . 5 0 Mo 2 . 0 0 - 3 . 0 0 2 . 0 0 - 3 . 0 0 3 . 0 0 - 4 . 0 0 2 . 5 0 - 3 . 5 0 N − 0 . 1 0 - 0 . 1 6 − 0 . 0 8 - 0 . 2 0 0 . 2 %PS( MPa ) ≧1 7 0 ≧2 0 5 ≧2 0 5 ≧4 5 0 T S( MPa ) ≧4 8 5 ≧5 1 5 ≧5 1 5 ≧6 2 0 El ( %) ≧4 0 . 0 ≧4 0 . 0 ≧4 0 . 0 ≧2 5 . 0 F i g u r e1 : Cr o s ss e c t i o n a l v i e wo f c a r g ot a n k T a b l e1 : Ch e mi c a l a n dme c h a n i c a l r e q u i r e me n t sf o r a u s t e n i t i c a n dd u p l e xs t a i n l e s ss t e e l wr o u g h t p r o d u c t s( 1 ) Ch e mi c a l c o mp o s i t i o n s ( ma s s%) F i g u r e2 : V a r i e t i e so f we l dj o i n t si nc a r g ot a n k s ( 1 ) I na c c o r d a n c ewi t hAST MA2 0 4 1 3
  • 15. 60 deg. ⑤ ④ Stainless steel cladding metal Carbon steel base metal Carbon steel weld metal 2.5 16 ① ② ③ ① ② ④ ③ ⑤ ⑦ ⑧ ⑥ Carbon steel Carbon steel : Carbon steel and weld metal : Stainless steel and weld metal 317L steel 317L steel Filler metal selection: 1. Buffer layer ④ and ⑤ : DW-309MoL 2.Final layer ⑥,⑦ and ⑧: DW-317L b u t3 1 6 L Ns t a i n l e s ss t e e lr e q u i r e sf i l l e rme t a l swi t h h i g h e r a mo u n t s o f C r a n dNi ( 3 1 7 L - t y p ef i l l e r me t a l s ) t op r o v i d et h ewe l dme t a lwi t hp i t t i n gc o r r o s i o n r e s i s t a n c ee q u i v a l e n t o r s u p e r i o r t ot h eb a s eme t a l . F o r UNSS 3 1 8 0 3d u p l e xs t a i n l e s ss t e e l s , t h es p e c i f i cf i l l e r me t a l s s h o wni nT a b l e2a r er e c o mme n d e d . 3 . E x c e l l e n t p e r f o r ma n c eo f F CA Wl e a d st o wi d ea p p l i c a t i o n s I nwe l d i n gs t a i n l e s ss t e e la n ds t a i n l e s s - c l a ds t e e l a s s e mb l i e s ,S MA W,F C A W,GT A W a n dS A W a r e c o mmo n l yu s e d . S MA W i ss ov e r s a t i l et h a t i t i su s e d f o r s u c ha s s e mb l i e s a s p l a t e - t o - p l a t ej o i n t s a n dp i p e - t o - p i p ej o i n t si na l lp o s i t i o n s .F C A W wi t hC O2o rAr - C O2 mi x t u r e s h i e l d i n g o f f e r s h i g h e re f f i c i e n c y , s mo o t h e rb e a da p p e a r a n c e ,b e t t e rs l a gr e mo v a l ,a n d l o we r s p a t t e r , t h e r e b yc u t t i n gwe l d i n gc o s t s . F o r c a r g o t a n k s t h a t c o n s i s t o f o u t - o f - p o s i t i o nj o i n t sa ss h o wni n F i g u r e1 ,a l l - p o s i t i o nt y p eF C Wsa r ep a r t i c u l a r l y v e r s a t i l e .I na d d i t i o n ,wh e nc o mp a r e dwi t hGMA W u s i n gs o l i dwi r e s , F C A W l e a v e st h ewe l dme t a lwi t h l e s s c a r b o n a n d , t h u s , s u p e r i o r r e s i s t a n c e t o i n t e r g r a n u l a rc o r r o s i o n . B e c a u s eo ft h e s ea d v a n t a g e s , F C A Wi s wi d e l yu s e di nf i l l e t a n db u t t j o i n t s . 4 . Bu t t j o i n t sa n df i l l e t j o i n t so f s t a i n l e s s - c l a ds t e e l s Au s t e n i t i cs t a i n l e s s s t e e l i so f t e nu s e df o r t h ec l a d d i n g me t a lb o n d e dwi t ht h ec a r b o ns t e e lb a s eme t a lt o p r o d u c es t a i n l e s s - c l a ds t e e l . F o r we l d i n gs t a i n l e s s - c l a d s t e e l j o i n t s , af i l l e r me t a l wi t hh i g h e r a mo u n t s o f Ni - C r i sn e e d e di na d d i t i o nt ot h o s er e q u i r e me n t sd i s c u s s e d a b o v et op r e v e n t h o t c r a c k si nt h eb u f f e rl a y e ro ft h e we l dme t a l . T a b l e3s h o wsc o mmo nc o mb i n a t i o n so f f i l l e rme t a l sf o rF C A W o fs t a i n l e s s - c l a ds t e e lb u t t j o i n t s . DW- 3 0 9 Mo Li sa l s ou s e df o rs t a i n l e s s - c l a ds t e e l f i l l e t j o i n t s a s we l l a s s t a i n l e s s - c l a ds t e e l t oc a r b o ns t e e l b u t t j o i n t sa ss h o wni nF i g u r e3 .I ts h o wsat y p i c a l s e l e c t i o no ff i l l e rme t a l sf o rs t a i n l e s s - c l a ds t e e lf i l l e t j o i n t s . S A W i sn o t s u i t a b l ef o rwe l d i n gi nt h eg r o o v eo ft h e s t a i n l e s s - c l a ds i d eb e c a u s ei t sp e n e t r a t i o ni sd e e p e r , wh i c hi n c r e a s e sd i l u t i o no ft h eb a s eme t a la n dma y c a u s eh o t c r a c k i n g . GT A Wi s b e t t e r a t mi n i mi z i n gb a s e me t a ld i l u t i o nd u et os h a l l o we rp e n e t r a t i o n ,b u ti t s we l d i n ge f f i c i e n c yi sl o we r .S MA W a n dF C A W a r e wi d e l yu s e df o rwe l d i n gs t a i n l e s s - c l a ds t e e lj o i n t s , h o we v e r , F C A Wi s mo r ewi d e s p r e a db e c a u s ei t i s3t o 4t i me sh i g h e ri nd e p o s i t i o nr a t ea n da b o u t2t i me s h i g h e r i nd e p o s i t i o ne f f i c i e n c yt h a nS MA W. T y p i c a lp a s ss e q u e n c e sa n dF C Wsf o rs t a i n l e s s - c l a d s t e e lb u t tj o i n ta r es h o wni nF i g u r e3a n dT a b l e3 , r e s p e c t i v e l y .T y p i c a lp a s ss e q u e n c e sa n dF C Wsf o r s t a i n l e s s - c l a ds t e e l h o r i z o n t a l f i l l e t j o i n t a r es h o wni n F i g u r e4 . ①, ② a n d③ we l d i n ga r ef o rc a r b o ns t e e l T y p eo f s t a i n l e s s s t e e l We l d i n gp r o c e s s SMA W F CA W( 1 ) GT A W SA W 3 1 6 L NC- 3 6 L DW- 3 1 6 L P T G- S3 1 6 L / T G- X3 1 6 L PF - S1 M/ US- 3 1 6 L 3 1 6 L N NC- 3 1 7 L DW- 3 1 7 L T G- S3 1 7 L PF - S1 / US- 3 1 7 L 3 1 7 L NC- 3 1 7 L DW- 3 1 7 L T G- S3 1 7 L PF - S1 / US- 3 1 7 L S3 1 8 0 3 NC- 2 2 0 9DW- 3 2 9 AP T G- S2 2 0 9 PF - S1 D/ US- 2 2 0 9 T y p eo f s t a i n l e s s - c l a ds t e e l F CA W Bu f f e r l a y e r ( ④ p a s s ) F i n a l l a y e r ( ⑤ p a s s ) 3 1 6 L DW- 3 0 9 Mo L DW- 3 1 6 L P 3 1 6 L N DW- 3 0 9 Mo L DW- 3 1 7 L 3 1 7 L DW- 3 0 9 Mo L DW- 3 1 7 L T a b l e2 : We l d i n gc o n s u ma b l e sf o r a u s t e n i t i ca n dd u p l e x s t a i n l e s ss t e e l s T a b l e3 : F CWsf o r s t a i n l e s s - c l a d s t e e l b u t t j o i n t ( 1 ) Sh i e l d i n gg a s : 1 0 0 %CO2o r Ar - CO2mi x t u r e ( 2 ) T G- X3 1 6 Lf o r r o o t p a s swe l d i n gwi t hn op u r g i n gg a s F i g u r e3 : T y p i c a l p a s ss e q u e n c eo f ac l a d d i n gb u t t j o i n t F i g u r e4 : T y p i c a l p a s ss e q u e n c ea n dF CWso f h o r i z o n t a l f i l l e t we l d i n go f 3 1 7 Lc l a d d i n gme t a l 1 4
  • 16. j o i n t s , a n d④ a n d⑤ o fab u t tj o i n ta n d④- ⑧ o fa h o r i z o n t a l f i l l e t j o i n t a r ef o r d i s s i mi l a r j o i n t s . T h ec h e mi c a la n d me c h a n i c a lp r o p e r t i e so ft h e r e c o mme n d e dF C Ws , wh i c ha r et a i l o r e dt oc o n t a i na s ma l l a mo u n t o ff e r r i t ei nt h ewe l dme t a l t oi mp r o v e t h e i r h o t c r a c kr e s i s t a n c e , a r es h o wni nF i g u r e4 . 5 . Shi ppi nga ppr ov a l s S h i p p i n ga p p r o v a l s o f Ko b e l c o ’ s we l d i n gc o n s u ma b l e s f o rd u p l e x ,3 1 6 L N a n d3 1 7Ls t a i n l e s ss t e e l sa n d d i s s i mi l a r me t a l s a r es h o wni nT a b l e5 . Pu r p o s e Du p l e x 3 1 6 L N3 1 7 L Di s s i mi l a r Pr o d u c t Sh i p p i n g n a me Cl a s s i f i c a t i o n DW- 3 2 9 AP 1 0 0 %CO2 1 . 2 mm DW- 3 1 7 L 1 0 0 %CO2 1 . 2 mm DW- 3 0 9 LP 1 0 0 %CO2 1 . 2 mm DW- 3 0 9 L 1 0 0 %CO2 1 . 2 mm DW- 3 0 9 MoL 1 0 0 %CO2 1 . 2 mm NK Gr a d e KW2 2 0 9 MG K W3 0 9 L G( C) KW3 0 9 L G( C) KW3 0 9 Mo L G( C) WP F VH F F VOH F F VH L R Gr a d e S3 1 8 0 3 MG ( E3 1 7 L T 0 - 1 ) Du p / CMn , SS/ CMn SS/ CMn SS/ CMn WP F VH F F VOH F F VH DNV Gr a d e Du p l e x 3 1 7 L 3 0 9 L 3 0 9 L 3 0 9 Mo L WP F VH F F VOH F F V BV Gr a d e 2 2 0 5 UP 3 0 9 L UP UP WP F VH F F VOH F F VH CCS Gr a d e 2 2 0 5 - - - - WP F VH - - - - Pr o d u c t n a me DW- 3 1 6 LP DW- 3 1 7 L DW- 3 0 9 MoL DW- 3 2 9 AP A WSc l a s s . E3 1 6 L T E3 1 7 L T E3 0 9 L Mo T E2 2 0 9 T C 0 . 0 2 8 0 . 0 2 5 0 . 0 2 5 0 . 0 2 7 Si 0 . 6 0 0 . 5 9 0 . 6 5 0 . 5 8 Mn 1 . 5 0 1 . 1 0 0 . 7 8 0 . 7 8 Ni 1 2 . 6 5 1 3 . 0 1 1 2 . 6 2 9 . 4 2 Cr 1 8 . 3 5 1 9 . 8 1 2 2 . 6 7 2 3 . 3 4 Mo 2 . 6 8 3 . 3 5 2 . 6 9 3 . 4 2 N − − − 0 . 1 4 Cu − − 0 . 0 5 0 . 0 2 0 . 2 %PS( MPa ) 3 7 0 3 8 0 5 3 5 6 2 0 T S( MPa ) 5 4 0 5 9 0 6 9 8 8 3 0 El ( %) 4 3 3 7 3 0 2 9 T a b l e4 : Ch e mi c a l c o mp o s i t i o n sa n dme c h a n i c a l p r o p e r t i e s o f a l l we l dme t a l so f F CWs Ch e mi c a l c o mp o s i t i o n so f a l l we l dme t a l ( ma s s%) T a b l e5 : Sh i p p i n ga p p r o v a l so f F CWsf o r d u p l e x , 3 1 6 L Na n d3 1 7 Ls t a i n l e s ss t e e l a n df o r d i s s i mi l a r me t a l s 1 5
  • 17. 1st layer 2nd layer 3rd layer H-series stainless steel flux cored wires for high-temperature applications 22 600 Temperature (°C) Conventional 308 308FCW Elongation (%) 0 10 20 30 40 50 800 700 22 600 Temperature (°C) Conventional 347 347FCW Elongation (%) 0 10 20 30 40 50 800 700 1 . P r e f a c e C o n v e n t i o n a l s t a i n l e s ss t e e l F CWsg e n e r a l l yc o n t a i na mi n u t ea mo u n t o f b i s mu t ho x i d e( B i 2 O3 ) i nt h ef l u xt o i mp r o v es l a gr e mo v a l .T h er e s u l t i n gwe l dme t a l , t h e r e f o r e , c o n t a i n sav e r ys ma l l a mo u n to fB i . Wh e n t h i s we l dme t a l i s e x p o s e dt ot e mp e r a t u r e s o v e r 6 0 0 ° C , t h ed u c t i l i t y( e l o n g a t i o n ) o f t h ewe l dme t a l i sr e d u c e d b e c a u s eo fs e g r e g a t i o no fB i a t t h eg r a i nb o u n d a r i e s , a n dc r a c k s ma yo c c u r . 2 . Bi s mu t h( Bi ) f r e es t a i n l e s ss t e e l F CWs I nc o n t r a s tt ot h i s ,t h eH- s e r i e sDW s t a i n l e s ss t e e l F C Wss h o wni nT a b l e1c o n t a i nn ob i s mu t ho x i d ei n t h ef l u x a n d ,t h u s ,n o B ii n t h ewe l d me t a l . C o n s e q u e n t l y ,e l o n g a t i o no ft h ewe l dme t a la th i g h t e mp e r a t u r e s i s h i g h e r t h a nt h a t o f c o n v e n t i o n a l F C Ws a ss h o wni nF i g u r e s1a n d2 . T h i si swh yt h eB i - f r e e F C Wsa r es u i t a b l ef o rh i g ht e mp e r a t u r ea p p l i c a t i o n s , i n c l u d i n gh i g ht e mp e r a t u r ee q u i p me n ta n dp o s t we l d s t a b i l i z a t i o n h e a tt r e a t me n t .T h e H- s e r i e sF C Ws c o n t a i na d v a n c e df l u xc o mp o s i t i o n s( wi t h o u tB i 2 O3 ) t h a tma k es l a gr e mo v a lc o mp a r a b l et oc o n v e n t i o n a l F C Ws . Wh e r ewe l d sa r es u b j e c tt o s o l i d s o l u t i o n h e a t t r e a t me n ta swe l la sh o tr o l l i n g ,t h eH- s e r i e sDW s t a i n l e s ss t e e lF C Wss h o u l da l s ob eu s e dt op r e v e n t r e d u c e dd u c t i l i t y . 3 . Bi c o n t e n t i nt h ewe l dme t a l f o r h i g ht e mp e r a t u r es e r v i c eo r P WHT i ss p e c i f i e db yA WSA5 . 2 2 - 2 0 1 2 I nt h ea r t i c l eA8 . 1 . 4o f A WSA5 . 2 2 - 2 0 1 2 , i t i ss t a t e d t h a t s t a i n l e s ss t e e l e l e c t r o d e sc o n t a i n i n gb i s mu t h( B i ) a d d i t i o n s s h o u l dn o t b eu s e df o r s u c hh i g ht e mp e r a t u r e s e r v i c eo r p o s t we l dh e a t t r e a t me n t a b o v ea b o u t 5 0 0 ° C . We l d i n gc o n s u ma b l ema n u f a c t u r e r sa r er e q u i r e dt o r e p o r t B i a n a l y s i sr e s u l t so fa l l d e p o s i t e dme t a l si fB i i s i n t e n t i o n a l l ya d d e di ns t a i n l e s s s t e e l F CWs o r i f i t i s k n o wnt ob ep r e s e n t a t l e v e l sg r e a t e rt h a n0 . 0 0 2 %i n a l l d e p o s i t e dme t a l . I t i s , t h e r e f o r e , f o r e c a s t t h a t d e ma n df o r B i f r e eF C Ws wi l l i n c r e a s ei na c c o r d a n c ewi t hg r o wi n gd e ma n df o r p r o c e s s i n ga t e l e v a t e dt e mp e r a t u r e s a n de n e r g y - r e l a t e d e q u i p me n t f o r h i g ht e mp e r a t u r eo p e r a t i o n s . F i g u r e3s h o wst h eb e a da p p e a r a n c eo fDW- 3 1 6 H we l dme t a l i ne a c hl a y e r o f t h eb u t t j o i n t . Pr o d u c t n a meDW- 3 0 8 H DW- 308LH DW- 3 1 6 H DW- 316LH DW- 3 4 7 H DW- 309LH A WSc l a s s . E3 0 8 H T 1 - 1 / - 4 E3 0 8 L T 1 - 1 / - 4 E3 1 6 T 1 - 1 / - 4 E3 1 6 L T 1 - 1 / - 4 E3 4 7 T 1 - 1 / - 4 E3 0 9 L T 1 - 1 / - 4 C 0 . 0 5 2 0 . 0 2 6 0 . 0 5 0 0 . 0 2 3 0 . 0 2 7 0 . 0 2 8 Si 0 . 4 2 0 . 4 1 0 . 3 8 0 . 4 5 0 . 3 8 0 . 4 7 Mn 1 . 5 0 1 . 3 5 1 . 1 0 1 . 0 8 1 . 1 8 1 . 2 4 Ni 9 . 6 2 1 0 . 2 0 1 1 . 6 0 1 1 . 9 4 1 0 . 2 0 1 2 . 5 8 Cr 1 8 . 6 8 1 8 . 7 0 1 8 . 7 5 1 8 . 4 7 1 8 . 8 7 2 4 . 1 7 Mo − − 2 . 4 0 2 . 4 5 − − Nb − − − − 0 . 5 7 − Bi 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 F NW 4 5 7 8 6 2 0 T S( MPa ) 5 7 5 5 4 0 5 7 0 5 4 0 6 0 2 5 7 8 El ( %) 4 8 5 2 4 2 4 5 4 3 3 9 F i g u r e1 : Co mp a r i s o no f h i g h t e mp e r a t u r ee l o n g a t i o n b e t we e nDW- 3 0 8 Ha n d c o n v e n t i o n a l 3 0 8F CW F i g u r e2 : Co mp a r i s o no f h i g h t e mp e r a t u r ee l o n g a t i o n b e t we e nDW- 3 4 7 Ha n d c o n v e n t i o n a l 3 4 7F CW T a b l e1 : T y p i c a l c h e mi c a l c o mp o s i t i o n sa n dme c h a n i c a l p r o p e r t i e so f H- s e r i e sDWs t a i n l e s ss t e e l F CW Ch e mi c a l c o mp o s i t i o n so f a l l we l dme t a l ( ma s s%) We l d i n gc o n d i t i o n s : We l d i n gc o n s u ma b l ea n dd i a me t e r : DW- 3 1 6 H1 . 2 mmd i a . We l d i n gp a r a me t e r s : 2 0 0 A- 3 0 V Sh i e l d i n gg a s : 1 0 0 %CO2 Ba s eme t a l t h i c k n e s s : T y p e3 1 6 Lp l a t e1 5mmt h i c k J o i n t t y p e : Bu t t j o i n t We l d i n gp o s i t i o n : 1 G F i g u r e3 : Be a da p p e a r a n c eo f DW- 3 1 6 L Hwe l dme t a l 1 6
  • 18. 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.00 2.00 (Na+K)/F in fume Cr(VI) concentration in fume (%) 4.00 6.00 308L type FCAW 308L 0 0.5 1 1.5 2 2.5 -89% -80% -88% -86% -86% -70% 316L 309L 308LP 316LP 309LP XR siries Conventional Cr(VI) emission rate (mg/min) XR series: Low Cr(VI) stainless steel flux cored wires Others 16% SiO2 17% Fe2O3 30% MnO 13% Na2O+K2O 10% Cr2O3 14% F i g u r e1 : T h et y p i c a l c h e mi c a l c o mp o s i t i o no f we l d i n g f u me sg e n e r a t e db yac o n v e n t i o n a l 3 0 8 L - t y p eF CW 1 . P r e f a c e AsF C A W g e n e r a t e smo r ewe l d i n gf u me st h a no t h e r s t a i n l e s s s t e e lwe l d i n g me t h o d s ,i tp r e s e n t s a b u r d e n s o mes a f e t yc h a l l e n g e .We l d i n gf u mei sa n o x i d et h a t f o r mswh e nme t a l v a p o r , g e n e r a t e db yt h e a r c ,c o o l sa n ds o l i d i f i e si nt h ea i r .I na d d i t i o n ,t h e we l d i n gf u me se mi t t e db ys t a i n l e s ss t e e lF C A W c o n t a i n5 - 2 0 %c h r o mi u m( C r )o x i d ei nt h ef o r mo f C r 2 O3a ss h o wni nF i g u r e1 , ap a r t o f wh i c he x i s t sa s h i g h l yt o x i cC r 6 + , n o t e da s C r ( VI ) . F i g u r e1s h o ws t h e t y p i c a lc o mp o s i t i o n o ff u me sg e n e r a t e d b y t h e c o n v e n t i o n a l3 0 8L - t y p eF C W.T h e s ef u me swe r e c o l l e c t e df o l l o wi n gI S O1 5 0 1 1 - 1 : 2 0 0 9a n dt h eC r ( VI ) i nt h ef u me swa sa n a l y z e da c c o r d i n gt oI S O1 6 7 4 0 : 2 0 0 5 . 2 . OS HAa me n d me n t T h et o x i c i t yo fC r ( VI )h a sr e c e n t l yb e e nr e - e v a l u a t e d i na c c o r d a n c ewi t hmo v e st o wa r dr e g u l a t i n gi tmo r e s t r i c t l yi nt h ewo r k p l a c e .F o re x a mp l ei n2 0 1 0t h e Ame r i c a n Oc c u p a t i o n a l S a f e t y a n d He a l t h Ad mi n i s t r a t i o n( OS HA) a me n d e dt h ee x i s t i n gs t a n d a r d o f t h ep e r mi s s i b l ee x p o s u r el i mi t ( P E L ) , f r o m5 2t o5 μg / m3 , c u t t i n gt h ea mo u n t o f a i r b o r n eC r ( VI ) a l l o we d i nwo r k p l a c eb y9 0%. I t g o e swi t h o u t s a y i n gt h a t t h e mo s t e f f e c t i v eme t h o do fr e d u c i n gC r ( VI )a s s o c i a t e d wi t hs t a i n l e s s s t e e l we l d i n gi st oi n s t a l l mo r ep o we r f u l v e n t i l a t i o ns y s t e mst or e mo v ef u me s .Ont h eo t h e r h a n d , i f we l d i n gf u me sc o n t a i n e dl e s sC r ( VI ) t ob e g i n wi t h , t h ee f f o r t a n de x p e n s ef o r b e t t e r v e n t i l a t i o nc o u l d b er e d u c e d . 3 . De v e l o p me n t o f X Rs e r i e sF CWs R e d u c i n gC r ( VI )i nwe l d i n gf u me st h e ms e l v e si sa n e f f e c t i v ea l t e r n a t i v e . Ko b eS t e e l h a sd e v e l o p e dan e w F C W s e r i e s ,t h e“ XR s e r i e s , ”f o rf l a tp o s i t i o n/ h o r i z o n t a lf i l l e twe l d i n ga swe l la sf o ra l lp o s i t i o n we l d i n gt h a t d r a s t i c a l l yr e d u c e st h eC r ( VI )c o n t e n t i n t h ewe l d i n gf u me .T h eh i g h l yv e r s a t i l eXR s e r i e s F C Wst a r g e tt h r e et y p e so fs t a i n l e s ss t e e l s ,n a me l y 3 0 8 L ,3 1 6 La n d3 0 9 L .T a b l e1s h o wsal i s to fXR s e r i e s F CWs . Ass h o wni nF i g u r e2 , d e c r e a s i n gt h ea mo u n to fNa a n dK,a d d e dt of l u xa sa r cs t a b i l i z e r s ,c a nr e d u c e C r ( VI ) i nt h ewe l d i n gf u me . I no r d e r t oma i n t a i ns t a b l e u s a b i l i t y ,h o we v e r ,t h er e l a t i v ea mo u n t so fo t h e r a d d i t i v e s , s u c ha sf l u o r i d e sa swe l l a sNaa n dK, ma y h a v et ob ea d j u s t e d . 4 . Cr ( V I ) e mi s s i o nr a t e so f X Rs e r i e s T h eC r ( VI )e mi s s i o nr a t e so fXRs e r i e sF C Wsa r e g r e a t l yr e d u c e dt o1 / 5o r1 / 1 0t h ea mo u n t e mi t t e db y c o n v e n t i o n a l s t a i n l e s s s t e e l F CWs a s s e e ni nF i g u r e3 . We l d i n g p o s i t i o n Pr o d u c t n a me A WSA5 . 2 2 A v a i l a b l es i z e ( mm) F l a t p o s i t i o n a n dh o r i z o n t a l f i l l e t we l d i n g DW- 3 0 8 L - XR E3 0 8 L T 0 - 1 / - 4 1 . 2 DW- 3 1 6 L - XR E3 1 6 L T 0 - 1 / - 4 1 . 2 DW- 3 0 9 L - XR E3 0 9 L T 0 - 1 / - 4 1 . 2 Al l p o s i t i o n we l d i n g DW- 3 0 8 L P- XR E3 0 8 L T 1 - 1 / - 4 1 . 2 DW- 3 1 6 L P- XR E3 1 6 L T 1 - 1 / - 4 1 . 2 DW- 3 0 9 L P- XR E3 0 9 L T 1 - 1 / - 4 1 . 2 T a b l e1 : X Rs e r i e sF CWs F i g u r e2 : Re l a t i o n s h i pb e t we e nf l u xc o mp o n e n t sa n d Cr ( VI ) i nwe l d i n gf u me F i g u r e3 : Co mp a r i s o no f Cr ( VI ) e mi s s i o nr a t e sb e t we e n c o n v e n t i o n a l F CWsa n dX Rs e r i e sF CWs : We l d i n gc o n d i t i o n : 1 0 0 %CO2 2 0 0 A- 3 1 V 1 7
  • 19. T h ec h e mi c a l c o mp o s i t i o n sa n dme c h a n i c a l p r o p e r t i e s o fa l lwe l dme t a l sd e p o s i t e db yXRs e r i e sF C Ws , s h o wni nT a b l e2 , a r ea l mo s t i d e n t i c a l t ot h o s eo ft h e c o n v e n t i o n a l F C Ws f o r s t a i n l e s s s t e e l s . 5 . But t j oi nt t e s t r e s ul t s B u t t j o i n t swe r ewe l d e di nt h ef l a t ( 1 G)a n dv e r t i c a l u p wa r d( 3 G)p o s i t i o n swi t hL - XRs e r i e sa n dL P - XR s e r i e sF C Wsu n d e rt h ec o n d i t i o n sl i s t e di nT a b l e s3 a n d 4 ,r e s p e c t i v e l y .F i g u r e 4 s h o ws t h e b e a d a p p e a r a n c ea n dma c r o s t r u c t u r ewi t h DW- 3 0 8 L - XRa n dF i g u r e5 ,wi t hDW- 3 0 8 L P - XR , r e s p e c t i v e l y . 6 . Spe c i a l c a r ef ors a f e t y Al t h o u g hu s eo f t h eXRs e r i e s F CWs wi l l s u b s t a n t i a l l y r e d u c ee x p o s u r et oC r ( VI ) i nt h ewo r k p l a c e , i t i sa l s o r e c o mme n d e dt oc o n t r o l e x p o s u r eb yu s i n gr e s p i r a t o r y p r o t e c t i o n , v e n t i l a t i o ne q u i p me n t a n dp r o t e c t i v ewo r k c l o t h i n gt oa c h i e v eas a f e r wo r k p l a c ee n v i r o n me n t . Pr o d u c t n a me DW- 3 0 8 L- XR DW- 3 0 8 LP- XR DW- 3 1 6 L- XR DW- 3 1 6 LP- XR DW- 3 0 9 L- XR DW- 3 0 9 LP- XR C 0 . 0 2 6 0 . 0 2 3 0 . 0 2 0 0 . 0 2 3 0 . 0 3 1 0 . 0 3 0 Si 0 . 6 6 0 . 7 4 0 . 6 7 0 . 7 0 0 . 7 2 0 . 5 7 Mn 1 . 1 3 1 . 5 8 1 . 1 6 1 . 0 3 0 . 9 5 0 . 7 5 P 0 . 0 1 6 0 . 0 1 8 0 . 0 1 6 0 . 0 1 8 0 . 0 1 8 0 . 0 1 5 S 0 . 0 0 8 0 . 0 0 2 0 . 0 0 8 0 . 0 0 3 0 . 0 0 7 0 . 0 0 2 Cu 0 . 0 1 5 0 . 0 5 0 . 0 2 5 0 . 0 6 0 . 0 2 8 0 . 0 2 Ni 9 . 6 1 0 . 2 1 2 . 0 1 2 . 5 1 2 . 3 1 2 . 3 Cr 1 8 . 8 1 8 . 9 1 8 . 5 1 8 . 5 2 3 . 3 2 3 . 4 Mo 0 . 0 1 0 . 0 1 2 . 4 2 . 8 0 . 0 3 0 . 0 2 Nb 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 2 N 0 . 0 1 6 0 . 0 1 5 0 . 0 2 1 0 . 0 1 5 0 . 0 1 5 0 . 0 1 9 F N 1 1 9 1 2 1 3 1 8 1 8 F S 9 7 8 8 1 3 1 3 F NW 8 7 8 8 1 7 1 8 0 . 2 %PS( MPa ) 3 6 7 3 6 7 4 0 4 4 0 7 4 1 0 4 1 2 T S( MPa ) 5 5 0 5 4 0 5 4 2 5 4 5 5 4 3 5 4 5 El ( %) 4 4 4 3 3 6 4 3 3 8 3 6 C 0 . 0 2 7 0 . 0 2 6 0 . 0 2 5 0 . 0 2 9 0 . 0 3 0 0 . 0 3 2 Si 0 . 7 4 0 . 8 2 0 . 7 4 0 . 7 5 0 . 7 6 0 . 6 7 Mn 1 . 2 9 1 . 7 9 1 . 2 8 1 . 1 9 1 . 1 0 0 . 9 5 P 0 . 0 1 6 0 . 0 1 7 0 . 0 1 6 0 . 0 1 7 0 . 0 1 8 0 . 0 1 4 S 0 . 0 0 8 0 . 0 0 2 0 . 0 0 8 0 . 0 0 3 0 . 0 0 7 0 . 0 0 2 Cu 0 . 0 1 6 0 . 0 4 0 . 0 2 5 0 . 0 5 0 . 0 2 8 0 . 0 1 Ni 9 . 5 1 0 . 4 1 2 . 0 1 2 . 5 1 2 . 4 1 2 . 3 Cr 1 9 . 4 1 9 . 5 1 8 . 9 1 9 . 0 2 4 . 1 2 4 . 2 Mo 0 . 0 1 0 . 0 2 2 . 4 2 . 8 0 . 0 3 0 . 0 2 Nb 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 2 N 0 . 0 1 6 0 . 0 1 4 0 . 0 2 2 0 . 0 1 4 0 . 0 1 5 0 . 0 1 7 F N 1 4 1 2 1 4 1 4 1 8 1 8 F S 1 1 8 9 8 1 5 1 5 F NW 1 1 8 9 9 2 1 2 2 0 . 2 %PS( MPa ) 3 9 6 3 8 6 4 0 0 4 2 9 4 5 4 4 3 0 T S( MPa ) 5 8 3 5 5 1 5 4 8 5 6 6 6 0 8 5 6 2 El ( %) 4 2 4 2 4 2 4 1 3 2 3 7 Gr o o v es h a p e a n d p a s ss e q u e n c e L o c a t i o n We l d i n g c u r r e n t ( A) Ar c v o l t a g e ( V) I n t e r p a s s t e mp e r a t u r e ( ° C) Pl a t et h i c k n e s s : 1 5 mm Gr o o v es h a p e : Si n g l eV Gr o o v ea n g l e : 7 0 ° Ba c ks i d e : 3p a s s e s Fi n a l s i d e : 2p a s s Ba c k 2 0 0 2 9 3 0 0 F i n a l 2 0 0 2 9 3 0 0 Gr o o v es h a p e a n d p a s ss e q u e n c e L o c a t i o n We l d i n g c u r r e n t ( A) Ar c v o l t a g e ( V) I n t e r p a s s t e mp e r a t u r e ( ° C) Pl a t et h i c k n e s s : 1 5 mm Gr o o v es h a p e : Si n g l eV Gr o o v ea n g l e : 6 0 ° Ba c ks i d e : 3p a s s e s Fi n a l s i d e : 1p a s s Ba c k 1 6 0 2 8 3 0 0 F i n a l 1 6 0 2 8 3 0 0 T a b l e2 : T y p i c a l c h e mi c a l c o mp o s i t i o n sa n dme c h a n i c a l p r o p e r t i e so f X Rs e r i e sF CW T a b l e3 : Bu t t j o i n t we l d i n gc o n d i t i o n so f L - X Rs e r i e si n1 G p o s i t i o n 1 0 0 %CO 2 Ch e mi c a l c o mp o s i t i o n so f a l l we l dme t a l ( ma s s%) F i g u r e4 : Be a da p p e a r a n c ea n dma c r o s t r u c t u r eo f DW- 3 0 8 L - X Rb u t t j o i n t we l dme t a l ( 1 Gp o s i t i o n ) T a b l e4 : Bu t t j o i n t we l d i n gc o n d i t i o n so f L P- X Rs e r i e si n3 G p o s i t i o n Ba l Ar - 2 0 ~ 2 5 %CO 2 Ch e mi c a l c o mp o s i t i o n so f a l l we l dme t a l ( ma s s%) F i g u r e5 : Be a da p p e a r a n c ea n dma c r o s t r u c t u r eo f DW- 3 0 8 L P- X Rb u t t j o i n t we l dme t a l ( 3 Gu p wa r dp o s i t i o n ) 1 8
  • 20. 40 36 32 28 24 20 16 0 100 200 300 Arc voltage (V) Welding current (A) Conventional FCW of 0.9mmΦ Conventional FCW of 1.2mmΦ DW-T FCW of 1.2mmΦ SUS304 : 9mmt SUS304 : 6mmt SUS304 : 3mmt 6.0 5.0 4.0 3.0 2.0 1.0 0.0 20 30 40 50 60 70 80 90 Leg length (mm) Welding speed (cm/min) 100A 130A 160A T-series stainless steel flux cored wires for sheet metal Wh e ni t c o me st owe l d i n gs h e e t me t a l swi t ht h i c k n e s s o fa r o u n d2mm,we l d e r sh a v eb e e na c c u s t o me dt o u s i n gs ma l ld i a me t e r–a n dmo r ee x p e n s i v e–s o l i d wi r eo r F C W( e . g . 0 . 9mmd i a . ) a t we l d i n gc u r r e n t so f 1 5 0Ao rl o we r . Mo r ec o n v e n i e n ta n dl e s se x p e n s i v e l a r g e rd i a me t e rwi r e s( e . g .1 . 2mm d i a . )we r en o t s u i t a b l ef o rwe l d i n gs h e e tme a l sd u et oi n f e r i o ra r c s t a b i l i t ya t s u c hal o wwe l d i n gc u r r e n t . T oa c c o mp l i s ht h et e c h n i c a l l yd e ma n d i n gc h a l l e n g eo f u s i n g1 . 2mmd i a . F C Wwi t hg o o da r cs t a b i l i t ya t l o w we l d i n gc u r r e n t ,t h eDW- Ts e r i e so fs t a i n l e s ss t e e l F C Ws ( DW- T 3 0 8 L , DW- T 3 1 6 La n dDW- T 3 0 9 L ) h a s b e e nd e v e l o p e db yKo b eS t e e l a s s h o wni nT a b l e1 . T h e DW- T s e r i e s F C Ws o f f e r s o u t s t a n d i n g p e r f o r ma n c ewi t hs h i e l d i n gg a s e so f1 0 0 %C O2a n d B a l - Ar - 2 0 ~2 5 %C O2.Wh e nt h ewe l d i n gc u r r e n ti s l o we r t h a n1 3 0A, 1 0 0 %C O2i s s t r o n g l yr e c o mme n d e d t oa c h i e v et h eb e s t p e r f o r ma n c e . C o n v e n t i o n a l p o we r s o u r c e s wi t hDC - c o n s t a n t v o l t a g e c a nb eu s e di nDC E P .Al t h o u g hb o t ht h y r i s t o ra n d i n v e r t e rp o we rs u p p l i e sc a na l s ob eu t i l i z e d ,i ti s r e c o mme n d e dt oa p p l yt h ep o we r s o u r c ewi t h o u t p u l s e c o n t r o le v e ni fp u l s ec o n t r o li sa v a i l a b l e .S o me f e a t u r e s t h a t c o n t r i b u t et ot h ee x c e l l e n t p e r f o r ma n c eo f t h eDW- Ts e r i e s F C Ws a r ed e s c r i b e db e l o w . ( 1 ) E x c e l l e n t a r cs t a b i l i t ywi t hs mo o t hmo l t e nd r o p l e t t r a n s f e rg e n e r a t e sl i t t l es p a t t e ra n df u me si nawi d e r a n g eo fwe l d i n gp a r a me t e r sf r o m 8 0 - 2 4 0A.T h i s c o v e r st h emo s tc o mmo nwe l d i n gp a r a me t e r sf o r c o n v e n t i o n a l 0 . 9a n d1 . 2mmd i a . F CWs( s e eF i g u r e 1 ) . ( 2 ) S ma l l e rf i l l e t l e g sc a nb eo b t a i n e db yu s i n gh i g h e r we l d i n gs p e e d s ( F i g u r e2 ) d u et oe x c e l l e n t a r cs t a b i l i t y a tl o wwe l d i n gc u r r e n t sa n da r cv o l t a g e sa n dh i g h e r d e p o s i t i o nr a t e so v e rc o n v e n t i o n a l1 . 2mm F C Ws . F i g u r e3s h o wst y p i c a l a p p l i c a t i o n so f DW- T 3 0 8 Lf o r 3 0 4 L1 . 5 - 2 . 0mmt h i c ks h e e t me t a l s . Pr o d u c t n a me A WSA 5 . 2 2 A v a i l a b l es i z e( mm) DW- T3 0 8 L E3 0 8 L T 0 - 1 / - 4 1 . 2 DW- T3 1 6 L E3 1 6 L T 0 - 1 / - 4 1 . 2 DW- T3 0 9 L E3 0 9 L T 0 - 1 / - 4 1 . 2 Ho r i z o n t a l f i l l e t we l d i n g : 1 2 0 A- 2 2 V - 4 0 c m/ mi n ( 1 0 0 %CO2 ) SUS3 0 4 Lb a s eme t a l ( 2 mmt ) DW- T 3 0 8 L( 1 . 2 mmΦ) Ho r i z o n t a l f i l l e t we l d i n g : 1 0 0 A- 1 9 V - 4 0 c m/ mi n ( 1 0 0 %CO2 ) SUS3 0 4 Lb a s eme t a l ( 1 . 5 mmt ) DW- T 3 0 8 L( 1 . 2 mmΦ) Co me r j o i n t we l d i n g : 1 2 0 A- 2 2 V - 4 0 c m/ mi n ( 1 0 0 %CO2 ) SUS3 0 4 Lb a s eme t a l ( 2 mmt ) DW- T 3 0 8 L( 1 . 2 mmΦ) L a pf i l l e t we l d i n g : 1 2 0 A- 2 2 V - 3 0 c m/ mi n ( 1 0 0 %CO2 ) SUS3 0 4 Lb a s eme t a l ( 2 mmt ) DW- T 3 0 8 L( 1 . 2 mmΦ) F i g u r e1 : Op t i mu mwe l d i n gp a r a me t e r r a n g e sa n df i l l e t we l d p r o f i l e s T a b l e1 : DW- Ts e r i e sF CWs F i g u r e2 : L e gl e n g t hv swe l d i n gs p e e di n2 Fwe l d i n g F i g u r e3 : Ap p l i c a t i o no f s h e e t me t a l we l d i n g ( 1 . 5a n d2mmt h i c k n e s s ) 1 9
  • 21. Nozzle Wire end DW-T308L Conventional FCW 100 80 60 40 20 0 Success Ratio (%) 100 150 200 Welding Current (A) 120 100 80 60 40 20 0 0 50 100 150 200 250 300 Welding Current (A) Deposition Rate (g/min) DW-T series FCW 1.2mm dia. Conventional FCW 0.9mm dia. Conventional FCW 1.2mm dia. ( 3 )Fa i l u r e - f r e ea r cr e s t a r t i n ge n a b l e smo r ee f f i c i e n t i n t e r mi t t e n twe l d i n gc l i p p i n go f ft h ewi r ee n d( s e e F i g u r e4 ) . T h i s i s b e c a u s et h es o l i d i f i e dmo l t e nd r o p l e t a t t h et i po f t h ewi r ea f t e r a r cs t o p p i n gc a nb es ma l l e r a n dc o v e r e db yc o n d u c t i v es l a ga s s h o wni nF i g u r e5 . ( 4)Hi g h e rd e p o s i t i o nr a t ec o n t r i b u t e st oh i g h e r we l d i n gs p e e do r ,c o n v e r s e l y ,l o we rh e a ti n p u tf o r g e t t i n gt h es a mea mo u n to fd e p o s i t e dme t a lwh e n c o mp a r e dwi t hc o n v e n t i o n a l F C Ws a s s h o wni nF i g u r e 7 . Ap p l i c a b l ewe l d i n gp r o c e d u r e sa r eo n e - s i d ewe l d i n g wi t hb a c k i n gma t e r i a l sa n db o t hs i d ewe l d i n gi nf l a t a n dh o r i z o n t a l f i l l e t p o s i t i o n sd u et ot h ee x c e l l e n t X- r a ya n dme c h a n i c a lp r o p e r t i e so ft h eDW- Ts e r i e s F C Ws . S e eT a b l e s 2a n d3f o r a ne x a mp l eo f c h e mi c a l c o mp o s i t i o n sa n dme c h a n i c a lp r o p e r t i e so fDW- T s e r i e s F CWs wi t h1 0 0 %C O2s h i e l d i n g . P h o t o1s h o wso n - s i t ewe l d i n gwi t hDW- Ts e r i e s F C Ws f o r ab e e r t a n kj a c k e t u s e df o r wa t e r c o o l i n g . Pr o d u c t n a me Ch e mi c a l c o mp o s i t i o n( ma s s%) F e r r i t e c o n t e n t C Si Mn P S Ni Cr Mo F S F NW DW- T3 0 8 L0 . 0 30 . 6 21 . 2 50 . 0 30 . 0 2 9 . 7 1 9 . 3 - 9 1 0 DW- T3 0 9 L0 . 0 30 . 6 81 . 2 10 . 0 30 . 0 21 2 . 52 4 . 1 - 1 3 2 0 DW- T3 1 6 L0 . 0 30 . 6 11 . 2 40 . 0 30 . 0 21 2 . 21 8 . 6 2 . 3 7 7 Pr o d u c t n a me 0 . 2 %PS ( MPa ) T S ( MPa ) El ( %) v E0 ° C ( J ) DW- T3 0 8 L 3 7 2 5 5 1 4 3 4 5 DW- T3 0 9 L 4 4 8 5 7 2 3 7 3 5 DW- T3 1 6 L 3 8 6 5 5 2 4 2 4 0 F i g u r e7 : Co mp a r i s o no f d e p o s i t i o nr a t e sb e t we e nDW- T s e r i e sF CW( 1 . 2 mm) a n dc o n v e n t i o n a l F CWs ( 1 . 2a n d0 . 9mm) F i g u r e4 : Wi r ee n do f DW- Ts e r i e sF CW T a b l e2 : Ch e mi c a l c o mp o s i t i o no f a l l we l dme t a l T a b l e3 : Me c h a n i c a l p r o p e r t i e so f a l l we l dme t a l F i g u r e5 : Ar cr e s t a r t i n gi nDW- T 3 0 8 Lv sc o n v e n t i o n a l F CWs Ph o t o1 : On - s i t ewe l d i n gwi t hDW- Ts e r i e sF CW 2 0