SlideShare a Scribd company logo
1 of 13
“Visible and infrared emission properties of
melt-grown Dy doped CsPbCl3 crystals
S. Uba, A. Kabir, U. Hömmerich
Hampton University, Hampton, VA 23668
S. B. Trivedi
Brimrose Technology Corporation
APS March Meeting 2020
Outline
◌ Motivation
◌ Materials
◌ Absorption Studies and Judd-Ofelt Analysis
◌ Visible emission studies & “Yellow-Laser Potential”
◌ IR emission studies
◌ Summary
Motivation: Dy3+ in Halide Perovskites
Focus of this work: -> Dy3+
->“yellow light” at ~575 nm:
-> “yellow” solid-state laser gain media:
• industrial or military application
• medicine for ophthalmic diagnosis/treatment
• for research and technology as optical pump
for ytterbium clock
-> “yellow” phosphor:
• for white light LED’s
• Visible light bulbs
Research Goal: Increase functionality of halide perovskites &
related structures for photonic applications through metal doping.
APbX3 and related structure APb2X5
(-> A=Cs, K, Rb; X=Cl, Br)
Metal Dopant: TM: Transition Metals
RE: Rare Earth
Material Processing & Crystal Growth
- CsPbCl3 synthesis: stoichiometric amounts of high purity (5N) CsCl and PbCl2.
- 2 wt.% DyCl3 was added for doping (under argon glove box)
- Loaded growth ampoules were sealed under vacuum (10-6 torr)
- Material was synthesized at ~50º C above its melting point of CPC ~600ºC.
- Two-zone furnace was employed for Bridgman crystal growth
- For comparison: Dy: KPb2Cl5 was prepared with a similar procedure
• Synthesized material: CsPbCl3
• Synthesized material: Dy: CsPbCl3
Bridgman growth:
• 2 zone furnace
• Growth rate: ~1-2mm/hr
• Gradient at solid/liquid interface: ~9C/cm
Crystal Growth Results & Transmission
• Dy: CsPbCl3
500 1000 1500 2000 2500 3000 3500
0
10
20
30
40
50
60
Transmission(%)
Wavelength (nm)
Dy: CsPbCl3
1000 2000 3000 4000 5000 6000
0
10
20
30
40
50
60
70
Transmission
Wavelength (nm)
CsPbCl3
OH
• Undoped CsPbCl3 • For comparison: Dy: KPb2Cl5
Issues: material cracking and dopant segregation
Absorption Spectroscopy: JO analysis-Dy: CPC
Transition
6
H15/2 
Average
Wavelength
(µm)
  () d
(µm/cm)
Sed
(experimental)
(x 10-20
cm2
)
(Sed
(calculated)
(x 10-20
cm2
)
6
H11/2 1.7 0.0071 4.02 5.21
6
H9/2+6
F11/2 1.3 0.0497 3.72 3.73
6
H7/2+6
F9/2 1.1 0.0030 2.91 3.12
6
F7/2 0.91 0.0032 3.56 2.81
6
F5/2 0.81 0.0019 1.42 2.36
500 1000 1500 2000 2500 3000
0.5
1.0
1.5
2.0
2.5
3.0
6
F7/2
6
F5/2
6
H7/2
+6
F9/2
6
H9/2
+6
F11/2
6
H11/2
6
H13/2
AbsorptionCoefficient(cm-1
)
Wavelength (nm)
Dy: CsPbCl3
6
H15/2
->
Dy: CsPbCl3
2=4.05x10-20 cm2
4=0.06x10-20 cm2
6=0.39x10-20 cm2
• Experimental line strengths:
• Judd-Ofelt calculated line strengths:
• Note: 6H13/2 was not included due to overlap with OH absorption
0
5
10
15
20
6
H15/2
4
F9/2
G11/2
4
I15/2
6
F3/2
6
F5/2
6
F7/2
6
H7/2+6
F9/2
6
H9/2+6
F11/2
6
H11/2
6
H13/2
~810nm
~911nm
~1115nm
~1300nm
~1705nm
x103
(cm-1
)
~2870nm
• U -> reduced matrix elements from literature
• : -> Judd-Ofelt Intensity fitting parameters:
with n=1.75
Visible Emission & Excitation Spectra: Dy: CPC
Pumping schemes:
-> above-gap:
weak yellow emission
-> intra-4f from
strong emission
~ 454 nm (4I15/2)
~ 475nm (4F9/2)
Visible emission from
4F9/2 excited state:
~ 479 nm (6H15/2)
~ 575 nm (6H13/2)
~ 664 nm (6H11/2)
~ 753 nm (6H9/2)
Yellow-Branching ratio:
0.52
0
5
10
15
20
25
30
Energy(103
cm-1
)
6
H15/2
6
H13/2
6
H11/2
6
H9/2
+6
F11/2
6
H7/2
+6
F9/2
6
H5/2
6
F7/2
6
F5/2
6
F3/2
4
F9/2
4
I15/2
4
G11/2
4
F7/2
~454nm
~475nm
~575nm
300 350 400 450 500
0.0
0.5
1.0
4
F9/2
6
H15/2
->
Intensity(a.u)
Wavelength (nm)
4
I15/2
CPC:
Eg~3.0eV
Excitation: Dy: CPC
mon: 575nm
Eg~3eV
400 500 600 700 800
0.0
0.5
1.0
Intensity(a.u)
Wavelength (nm)
6
H15/2
6
H13/2
6
H11/2
6
H9/2
Emission Dy:CPC
Pump:455nm
4F9/2
0
5
10
15
20
25
Energy(103
cm-1
)
6
H15/2
6
H13/2
6
H11/2
6
H9/2+6
F11/2
6
H7/2+6
F9/2
6
H5/2
6
F7/2
6
F5/2
6
F3/2
4
F9/2
4
I15/2
4
G11/2
~455nm
~485nm
~575nm
~664nm
~753nm
Visible Emission & Excitation Spectra: Dy: KPC
Visible emission from
excited state 4F9/2
~ 479 nm (6H15/2)
~ 575 nm (6H13/2)
~ 664 nm (6H11/2)
~ 753 nm (6H9/2)
Yellow branching
ratio: ~0.66
Pumping schemes:
-> above gap
weak yellow emission
-> intra 4f
strong emission
~ 390 nm (4F7/2)
~ 428 nm (4G11/2)
~ 454 nm (4I15/2)
~ 475 nm (4F9/2)
300 350 400 450 500
0.0
0.5
1.0
Excitation: Dy: KPC
mon: 575nm
6
H15/2
->
Intensity(a.u)
Wavelength (nm)
4
I15/2
4
G11/2
4
F7/2
4
F9/2
KPC
Eg~3.8eV
0
5
10
15
20
25
30
~428nm
Energy(103
cm-1
)
6
H15/2
6
H13/2
6
H11/2
6
H9/2
+6
F11/2
6
H7/2
+6
F9/2
6
H5/2
6
F7/2
6
F5/2
6
F3/2
4
F9/2
4
I15/2
4
G11/2
4
F7/2
~390nm
~454nm
~475nm
~575nm
Eg~3.8eV
400 500 600 700 800
0.0
0.5
1.0
Emission Dy:KPC
Pump:455nm
Intensity(a.u)
Wavelength (nm)
6
H15/2
6
H13/2
6
H11/2
6
H9/2
4F9/2->
0
5
10
15
20
25
Energy(103
cm-1
)
6
H15/2
6
H13/2
6
H11/2
6
H9/2+6
F11/2
6
H7/2+6
F9/2
6
H5/2
6
F7/2
6
F5/2
6
F3/2
4
F9/2
4
I15/2
4
G11/2
~455nm
~485nm
~575nm
~664nm
~753nm
JO-analysis: Decay Rates & Branching Ratios
Radiative Parameters Dy:CPC 4F9/2
6H13/2 Dy:KPC 4F9/2
6H13/2
λp (nm) (Center Peak) 577 574
Δλeff (nm) (FWHM) 9.47 9.09
AR (s-1) 434.5 1402
βR (Cal) 0.73 0.64
βR (Exp) 0.52 0.66
σe (x 10-22 cm2) 21.9 56.1
τR (x 10-3 s) 1.70 0.46
σe x τR (x 10-25 cm2) 37.3 25.9
The Judd-Ofelt intensity fitting parameters (λ) for KPb2Cl5 and reduced matrix elements (U )
for Dy3+ is obtained from literatures
2=4.05x10-20 cm2 , 4=0.06x10-20 cm2 , 6=0.39x10-20 cm2
 To calculate the radiative parameters for KPb2Cl5: Dy3+ , crystal refractive index n=2
• Transition Probability (AR)
• Total Transmission Rate (AT)
• Decay Rate (𝝉 𝑹)
• Branching Ratio (𝜷 𝑹)
Lifetime & Emission Cross-Section Spectra
Dy: CPC;  ~1ms
(low concentration <0.5wt%)
Dy: KPC; ~0.36ms
σ-product: 3.7x10-24cm2
2
0
2
8
p
radn c
 

  

 %
Fuchtbauer
Ladenburg:
0 1000 2000 3000 4000 5000 6000 7000
0.001
0.01
0.1
1
slow component
Dy3+ intra-4f emission
Intensity(a.u)
Time (ms)
fast component
yellow background emission
monitor wavelength:
575nm
low conc sample
<0.5wt%
0 1000 2000
0.001
0.01
0.1
1
300K: average lifetime: 363us
Intensity(a.u)
Time (ms)
Dy: KPC
300K
σ-product: 2.6 x10-24cm2
550 560 570 580 590 600
0
1
2
EmissionCross-section(x10-21
cm2
)
Wavelength (nm)
576.6nm
550 560 570 580 590
0
2
4
6
EmissionCross-Section(x10-21
cm2
)
Wavelength (nm)
Dy:KPC
574.1nm
1
thP

:
σp=2.1x10-20cm2
σp=5.6x10-20cm2
Laser Potential & Comparison
Crystals λp
(nm)
βR σe (x 10-22
cm2)
τR (Cal) τR (Exp) σe x τR (x 10-24
cm2)
η (%)
Dy:KPC 575 0.64 56.1 0.46 ms 0.36 ms 2.6 78.2
Dy:CPC 577 0.52 21.9 1.70 ms 1.0 ms 3.7 58.8
Dy:KGF 577 0.53 13.6 1.68 ms 1.04 ms 2.2 61.9
Dy:NGM 573 0.75 0.01 255.7 µs 125 µs 2.8 48.9
Dy:YAG 582.7 0.59 0.003 2.020 ms 376 µs 6.1 18.6
In comparison to other Dysprosium doped crystal explored for 575 nm lasing
application,
• Dy:CPC and Dy: KPC show high branching ratios, quantum efficiencies,
emission cross-sections, and σ-products, which are comparable or better
that reported for other Dysprosium doped crystals.
• Dy:KPC and Dy:CPC are promising candidates for yellow laser applications.
Crystal growth process and sample quality have to be improved.
Initial IR emission data
Emitted peaks in Near
IR window
~ 1.1 µm (6H7/2 + 6F9/2)
~ 1.3 µm (6F11/2 + 6H9/2)
Emitted peaks in Near
IR window
~ 1.1 µm (6H7/2 + 6F9/2)
~ 1.3 µm (6F11/2 + 6H9/2)
~ 1.5 µm (6H11/2)
• Dy: CPC and Dy: KPC emission spectrum shows peaks in the 1.1µm, 1.3µm and 1.5µm.
• Both crystals are candidates for optical amplifiers/lasers operating at the Near-IR
communication windows (1.3 & 1.5 µm)
0
2
4
6
8
10
12
1.7mm
1.5mm
1.3mm
6
H5/2
6
F5/2
6
F7/2
6
H7/2+6
F9/2
6
H9/2+6
F11/2
6
H11/2
6
H13/2
6
H15/2
Energy(103
cm-1
)
1.1mm
0
2
4
6
8
10
12
1.7mm
1.5mm
1.3mm
6
H5/2
6
F5/2
6
F7/2
6
H7/2+6
F9/2
6
H9/2+6
F11/2
6
H11/2
6
H13/2
6
H15/2
Energy(103
cm-1
)
1.1mm
1000 1200 1400 1600
0.00
0.01
0.02
0.03
1.5 mm
1.3 mm
Intensity(a.u)
Wavelength (nm)
6
F9/2
+ 6
H7/2
-> 6
H15/2
6
F5/2
->6
H11/2
6
F11/2
+ 6
H9/2
-> 6
H15/2
Dy:KPC
1000 1200 1400 1600
0.000
0.002
0.004
0.006
1.5 mm
6
F5/2
->6
H11/2
6
F11/2
+ 6
H9/2
-> 6
H15/2
6
F9/2
+ 6
H7/2
-> 6
H15/2
Intensity(a.u)
laser
2n order
Dy:CPC
1.3 mm
Summary & Conclusion
• Dy:CPC was synthesized using high purity (5N) CsCl and PbCl2, 2 wt.%
DyCl3 was added for doping (under argon glove box) and Dy:KPC was
synthesized under the same conditions for comparison.
• Dy: CPC and Dy: KPC exhibited bright “yellow” emission under direct
intra4f pumping at ~455nm. Absorption, visible emission/excitation, near IR-
emission were conducted and a Judd-Ofelt analysis was performed to
determine radiative decay rates and branching ratios for both crystals.
• Dy: CPC and Dy: KPC exhibit large emission cross-sections, σeτR values, and
high quantum efficiencies making them viable candidates as gain medium for
the 575 nm “yellow” lasers. Both crystals also revealed near-IR emissions
which are currently being explored for laser applications.
• Preparation of Dy3+ doped CPC perovskites nanoparticles is underway for
possible light source applications in optoelectronic devices.
Acknowledgement:
• NSF PREM support through NSF grant 827820 (Hampton-Brandeis PREM) and
ARO grant W911NF1810447.

More Related Content

What's hot

Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Tufan Ghosh
 
Simone_Presentation_digest
Simone_Presentation_digestSimone_Presentation_digest
Simone_Presentation_digestSimone Coniglio
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Hamid Arandiyan
 
hh2014_presentation2noBackup
hh2014_presentation2noBackuphh2014_presentation2noBackup
hh2014_presentation2noBackupJere Harrison
 
The Controlled Disassembly of Mesostructured Perovskites
The Controlled Disassembly of Mesostructured Perovskites The Controlled Disassembly of Mesostructured Perovskites
The Controlled Disassembly of Mesostructured Perovskites Hamid Arandiyan
 
Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018WonjoongCheon
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Tanvir Hussain
 
Meso-Molding Three-Dimensional Macroporous Perovskites
Meso-Molding Three-Dimensional Macroporous PerovskitesMeso-Molding Three-Dimensional Macroporous Perovskites
Meso-Molding Three-Dimensional Macroporous PerovskitesHamid Arandiyan
 
3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused CompositesFabien Léonard
 
3D Characterisation of Void Distribution in Resin Film Infused Composites
3D Characterisation of Void Distribution in Resin Film Infused Composites3D Characterisation of Void Distribution in Resin Film Infused Composites
3D Characterisation of Void Distribution in Resin Film Infused CompositesFabien Léonard
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Zero rotation aproach for droop improvement in
Zero rotation aproach for droop improvement inZero rotation aproach for droop improvement in
Zero rotation aproach for droop improvement ineSAT Publishing House
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...sarmad
 
New Directions in Structural Biology at Diamond
New Directions in Structural Biology at DiamondNew Directions in Structural Biology at Diamond
New Directions in Structural Biology at Diamondwarwick_amr
 
Poster_SAS2012_final
Poster_SAS2012_finalPoster_SAS2012_final
Poster_SAS2012_finalIvan Yordanov
 
極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用CHENHuiMei
 
Multiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsMultiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsAngel Ruiz Camuñas
 

What's hot (20)

Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
Simone_Presentation_digest
Simone_Presentation_digestSimone_Presentation_digest
Simone_Presentation_digest
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
 
hh2014_presentation2noBackup
hh2014_presentation2noBackuphh2014_presentation2noBackup
hh2014_presentation2noBackup
 
The Controlled Disassembly of Mesostructured Perovskites
The Controlled Disassembly of Mesostructured Perovskites The Controlled Disassembly of Mesostructured Perovskites
The Controlled Disassembly of Mesostructured Perovskites
 
Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018Time-resolved mirrorless scintillation detector @ AAPM2018
Time-resolved mirrorless scintillation detector @ AAPM2018
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...
 
Meso-Molding Three-Dimensional Macroporous Perovskites
Meso-Molding Three-Dimensional Macroporous PerovskitesMeso-Molding Three-Dimensional Macroporous Perovskites
Meso-Molding Three-Dimensional Macroporous Perovskites
 
3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites3D Characterisation of Pore Distribution in Resin Film Infused Composites
3D Characterisation of Pore Distribution in Resin Film Infused Composites
 
3D Characterisation of Void Distribution in Resin Film Infused Composites
3D Characterisation of Void Distribution in Resin Film Infused Composites3D Characterisation of Void Distribution in Resin Film Infused Composites
3D Characterisation of Void Distribution in Resin Film Infused Composites
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Gixrd
GixrdGixrd
Gixrd
 
Zero rotation aproach for droop improvement in
Zero rotation aproach for droop improvement inZero rotation aproach for droop improvement in
Zero rotation aproach for droop improvement in
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
 
New Directions in Structural Biology at Diamond
New Directions in Structural Biology at DiamondNew Directions in Structural Biology at Diamond
New Directions in Structural Biology at Diamond
 
Poster_SAS2012_final
Poster_SAS2012_finalPoster_SAS2012_final
Poster_SAS2012_final
 
極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用極紫外線散射儀於先進製程檢測應用
極紫外線散射儀於先進製程檢測應用
 
Multiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsMultiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasars
 

Similar to Visible and near-infrared emission properties of melt-grown Dy doped CsPbCl3 perovskite crystals*

C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...Pawan Kumar
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...M. Faisal Halim
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdfHassanSoboh
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Jeslin Mattam
 
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxfr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxgrssieee
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Philippe Smet
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopyBMRS Meeting
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Grant Allen
 
Growth, structural and optical studies of pure and kbr doped adp crystals
Growth, structural and optical studies of pure and kbr doped adp crystalsGrowth, structural and optical studies of pure and kbr doped adp crystals
Growth, structural and optical studies of pure and kbr doped adp crystalseSAT Journals
 
Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018WonjoongCheon
 
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)Omer Farooqi
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe Dierk Raabe
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeChelsey Crosse
 

Similar to Visible and near-infrared emission properties of melt-grown Dy doped CsPbCl3 perovskite crystals* (20)

XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
XRD_AG NPG.ppt
XRD_AG NPG.pptXRD_AG NPG.ppt
XRD_AG NPG.ppt
 
Spectroscopy XRD
Spectroscopy XRDSpectroscopy XRD
Spectroscopy XRD
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Pa nalytical pdf
Pa nalytical pdfPa nalytical pdf
Pa nalytical pdf
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxfr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12
 
Laser drivenplasma
Laser drivenplasmaLaser drivenplasma
Laser drivenplasma
 
Growth, structural and optical studies of pure and kbr doped adp crystals
Growth, structural and optical studies of pure and kbr doped adp crystalsGrowth, structural and optical studies of pure and kbr doped adp crystals
Growth, structural and optical studies of pure and kbr doped adp crystals
 
Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018
 
M.Sc. 13 c nmr
M.Sc. 13 c nmrM.Sc. 13 c nmr
M.Sc. 13 c nmr
 
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)
M.Sc. Chemical Engineering Thesis Defense (Omer Farooqi)
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
 

Recently uploaded

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 

Recently uploaded (20)

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 

Visible and near-infrared emission properties of melt-grown Dy doped CsPbCl3 perovskite crystals*

  • 1. “Visible and infrared emission properties of melt-grown Dy doped CsPbCl3 crystals S. Uba, A. Kabir, U. Hömmerich Hampton University, Hampton, VA 23668 S. B. Trivedi Brimrose Technology Corporation APS March Meeting 2020
  • 2. Outline ◌ Motivation ◌ Materials ◌ Absorption Studies and Judd-Ofelt Analysis ◌ Visible emission studies & “Yellow-Laser Potential” ◌ IR emission studies ◌ Summary
  • 3. Motivation: Dy3+ in Halide Perovskites Focus of this work: -> Dy3+ ->“yellow light” at ~575 nm: -> “yellow” solid-state laser gain media: • industrial or military application • medicine for ophthalmic diagnosis/treatment • for research and technology as optical pump for ytterbium clock -> “yellow” phosphor: • for white light LED’s • Visible light bulbs Research Goal: Increase functionality of halide perovskites & related structures for photonic applications through metal doping. APbX3 and related structure APb2X5 (-> A=Cs, K, Rb; X=Cl, Br) Metal Dopant: TM: Transition Metals RE: Rare Earth
  • 4. Material Processing & Crystal Growth - CsPbCl3 synthesis: stoichiometric amounts of high purity (5N) CsCl and PbCl2. - 2 wt.% DyCl3 was added for doping (under argon glove box) - Loaded growth ampoules were sealed under vacuum (10-6 torr) - Material was synthesized at ~50º C above its melting point of CPC ~600ºC. - Two-zone furnace was employed for Bridgman crystal growth - For comparison: Dy: KPb2Cl5 was prepared with a similar procedure • Synthesized material: CsPbCl3 • Synthesized material: Dy: CsPbCl3 Bridgman growth: • 2 zone furnace • Growth rate: ~1-2mm/hr • Gradient at solid/liquid interface: ~9C/cm
  • 5. Crystal Growth Results & Transmission • Dy: CsPbCl3 500 1000 1500 2000 2500 3000 3500 0 10 20 30 40 50 60 Transmission(%) Wavelength (nm) Dy: CsPbCl3 1000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 70 Transmission Wavelength (nm) CsPbCl3 OH • Undoped CsPbCl3 • For comparison: Dy: KPb2Cl5 Issues: material cracking and dopant segregation
  • 6. Absorption Spectroscopy: JO analysis-Dy: CPC Transition 6 H15/2  Average Wavelength (µm)   () d (µm/cm) Sed (experimental) (x 10-20 cm2 ) (Sed (calculated) (x 10-20 cm2 ) 6 H11/2 1.7 0.0071 4.02 5.21 6 H9/2+6 F11/2 1.3 0.0497 3.72 3.73 6 H7/2+6 F9/2 1.1 0.0030 2.91 3.12 6 F7/2 0.91 0.0032 3.56 2.81 6 F5/2 0.81 0.0019 1.42 2.36 500 1000 1500 2000 2500 3000 0.5 1.0 1.5 2.0 2.5 3.0 6 F7/2 6 F5/2 6 H7/2 +6 F9/2 6 H9/2 +6 F11/2 6 H11/2 6 H13/2 AbsorptionCoefficient(cm-1 ) Wavelength (nm) Dy: CsPbCl3 6 H15/2 -> Dy: CsPbCl3 2=4.05x10-20 cm2 4=0.06x10-20 cm2 6=0.39x10-20 cm2 • Experimental line strengths: • Judd-Ofelt calculated line strengths: • Note: 6H13/2 was not included due to overlap with OH absorption 0 5 10 15 20 6 H15/2 4 F9/2 G11/2 4 I15/2 6 F3/2 6 F5/2 6 F7/2 6 H7/2+6 F9/2 6 H9/2+6 F11/2 6 H11/2 6 H13/2 ~810nm ~911nm ~1115nm ~1300nm ~1705nm x103 (cm-1 ) ~2870nm • U -> reduced matrix elements from literature • : -> Judd-Ofelt Intensity fitting parameters: with n=1.75
  • 7. Visible Emission & Excitation Spectra: Dy: CPC Pumping schemes: -> above-gap: weak yellow emission -> intra-4f from strong emission ~ 454 nm (4I15/2) ~ 475nm (4F9/2) Visible emission from 4F9/2 excited state: ~ 479 nm (6H15/2) ~ 575 nm (6H13/2) ~ 664 nm (6H11/2) ~ 753 nm (6H9/2) Yellow-Branching ratio: 0.52 0 5 10 15 20 25 30 Energy(103 cm-1 ) 6 H15/2 6 H13/2 6 H11/2 6 H9/2 +6 F11/2 6 H7/2 +6 F9/2 6 H5/2 6 F7/2 6 F5/2 6 F3/2 4 F9/2 4 I15/2 4 G11/2 4 F7/2 ~454nm ~475nm ~575nm 300 350 400 450 500 0.0 0.5 1.0 4 F9/2 6 H15/2 -> Intensity(a.u) Wavelength (nm) 4 I15/2 CPC: Eg~3.0eV Excitation: Dy: CPC mon: 575nm Eg~3eV 400 500 600 700 800 0.0 0.5 1.0 Intensity(a.u) Wavelength (nm) 6 H15/2 6 H13/2 6 H11/2 6 H9/2 Emission Dy:CPC Pump:455nm 4F9/2 0 5 10 15 20 25 Energy(103 cm-1 ) 6 H15/2 6 H13/2 6 H11/2 6 H9/2+6 F11/2 6 H7/2+6 F9/2 6 H5/2 6 F7/2 6 F5/2 6 F3/2 4 F9/2 4 I15/2 4 G11/2 ~455nm ~485nm ~575nm ~664nm ~753nm
  • 8. Visible Emission & Excitation Spectra: Dy: KPC Visible emission from excited state 4F9/2 ~ 479 nm (6H15/2) ~ 575 nm (6H13/2) ~ 664 nm (6H11/2) ~ 753 nm (6H9/2) Yellow branching ratio: ~0.66 Pumping schemes: -> above gap weak yellow emission -> intra 4f strong emission ~ 390 nm (4F7/2) ~ 428 nm (4G11/2) ~ 454 nm (4I15/2) ~ 475 nm (4F9/2) 300 350 400 450 500 0.0 0.5 1.0 Excitation: Dy: KPC mon: 575nm 6 H15/2 -> Intensity(a.u) Wavelength (nm) 4 I15/2 4 G11/2 4 F7/2 4 F9/2 KPC Eg~3.8eV 0 5 10 15 20 25 30 ~428nm Energy(103 cm-1 ) 6 H15/2 6 H13/2 6 H11/2 6 H9/2 +6 F11/2 6 H7/2 +6 F9/2 6 H5/2 6 F7/2 6 F5/2 6 F3/2 4 F9/2 4 I15/2 4 G11/2 4 F7/2 ~390nm ~454nm ~475nm ~575nm Eg~3.8eV 400 500 600 700 800 0.0 0.5 1.0 Emission Dy:KPC Pump:455nm Intensity(a.u) Wavelength (nm) 6 H15/2 6 H13/2 6 H11/2 6 H9/2 4F9/2-> 0 5 10 15 20 25 Energy(103 cm-1 ) 6 H15/2 6 H13/2 6 H11/2 6 H9/2+6 F11/2 6 H7/2+6 F9/2 6 H5/2 6 F7/2 6 F5/2 6 F3/2 4 F9/2 4 I15/2 4 G11/2 ~455nm ~485nm ~575nm ~664nm ~753nm
  • 9. JO-analysis: Decay Rates & Branching Ratios Radiative Parameters Dy:CPC 4F9/2 6H13/2 Dy:KPC 4F9/2 6H13/2 λp (nm) (Center Peak) 577 574 Δλeff (nm) (FWHM) 9.47 9.09 AR (s-1) 434.5 1402 βR (Cal) 0.73 0.64 βR (Exp) 0.52 0.66 σe (x 10-22 cm2) 21.9 56.1 τR (x 10-3 s) 1.70 0.46 σe x τR (x 10-25 cm2) 37.3 25.9 The Judd-Ofelt intensity fitting parameters (λ) for KPb2Cl5 and reduced matrix elements (U ) for Dy3+ is obtained from literatures 2=4.05x10-20 cm2 , 4=0.06x10-20 cm2 , 6=0.39x10-20 cm2  To calculate the radiative parameters for KPb2Cl5: Dy3+ , crystal refractive index n=2 • Transition Probability (AR) • Total Transmission Rate (AT) • Decay Rate (𝝉 𝑹) • Branching Ratio (𝜷 𝑹)
  • 10. Lifetime & Emission Cross-Section Spectra Dy: CPC;  ~1ms (low concentration <0.5wt%) Dy: KPC; ~0.36ms σ-product: 3.7x10-24cm2 2 0 2 8 p radn c         % Fuchtbauer Ladenburg: 0 1000 2000 3000 4000 5000 6000 7000 0.001 0.01 0.1 1 slow component Dy3+ intra-4f emission Intensity(a.u) Time (ms) fast component yellow background emission monitor wavelength: 575nm low conc sample <0.5wt% 0 1000 2000 0.001 0.01 0.1 1 300K: average lifetime: 363us Intensity(a.u) Time (ms) Dy: KPC 300K σ-product: 2.6 x10-24cm2 550 560 570 580 590 600 0 1 2 EmissionCross-section(x10-21 cm2 ) Wavelength (nm) 576.6nm 550 560 570 580 590 0 2 4 6 EmissionCross-Section(x10-21 cm2 ) Wavelength (nm) Dy:KPC 574.1nm 1 thP  : σp=2.1x10-20cm2 σp=5.6x10-20cm2
  • 11. Laser Potential & Comparison Crystals λp (nm) βR σe (x 10-22 cm2) τR (Cal) τR (Exp) σe x τR (x 10-24 cm2) η (%) Dy:KPC 575 0.64 56.1 0.46 ms 0.36 ms 2.6 78.2 Dy:CPC 577 0.52 21.9 1.70 ms 1.0 ms 3.7 58.8 Dy:KGF 577 0.53 13.6 1.68 ms 1.04 ms 2.2 61.9 Dy:NGM 573 0.75 0.01 255.7 µs 125 µs 2.8 48.9 Dy:YAG 582.7 0.59 0.003 2.020 ms 376 µs 6.1 18.6 In comparison to other Dysprosium doped crystal explored for 575 nm lasing application, • Dy:CPC and Dy: KPC show high branching ratios, quantum efficiencies, emission cross-sections, and σ-products, which are comparable or better that reported for other Dysprosium doped crystals. • Dy:KPC and Dy:CPC are promising candidates for yellow laser applications. Crystal growth process and sample quality have to be improved.
  • 12. Initial IR emission data Emitted peaks in Near IR window ~ 1.1 µm (6H7/2 + 6F9/2) ~ 1.3 µm (6F11/2 + 6H9/2) Emitted peaks in Near IR window ~ 1.1 µm (6H7/2 + 6F9/2) ~ 1.3 µm (6F11/2 + 6H9/2) ~ 1.5 µm (6H11/2) • Dy: CPC and Dy: KPC emission spectrum shows peaks in the 1.1µm, 1.3µm and 1.5µm. • Both crystals are candidates for optical amplifiers/lasers operating at the Near-IR communication windows (1.3 & 1.5 µm) 0 2 4 6 8 10 12 1.7mm 1.5mm 1.3mm 6 H5/2 6 F5/2 6 F7/2 6 H7/2+6 F9/2 6 H9/2+6 F11/2 6 H11/2 6 H13/2 6 H15/2 Energy(103 cm-1 ) 1.1mm 0 2 4 6 8 10 12 1.7mm 1.5mm 1.3mm 6 H5/2 6 F5/2 6 F7/2 6 H7/2+6 F9/2 6 H9/2+6 F11/2 6 H11/2 6 H13/2 6 H15/2 Energy(103 cm-1 ) 1.1mm 1000 1200 1400 1600 0.00 0.01 0.02 0.03 1.5 mm 1.3 mm Intensity(a.u) Wavelength (nm) 6 F9/2 + 6 H7/2 -> 6 H15/2 6 F5/2 ->6 H11/2 6 F11/2 + 6 H9/2 -> 6 H15/2 Dy:KPC 1000 1200 1400 1600 0.000 0.002 0.004 0.006 1.5 mm 6 F5/2 ->6 H11/2 6 F11/2 + 6 H9/2 -> 6 H15/2 6 F9/2 + 6 H7/2 -> 6 H15/2 Intensity(a.u) laser 2n order Dy:CPC 1.3 mm
  • 13. Summary & Conclusion • Dy:CPC was synthesized using high purity (5N) CsCl and PbCl2, 2 wt.% DyCl3 was added for doping (under argon glove box) and Dy:KPC was synthesized under the same conditions for comparison. • Dy: CPC and Dy: KPC exhibited bright “yellow” emission under direct intra4f pumping at ~455nm. Absorption, visible emission/excitation, near IR- emission were conducted and a Judd-Ofelt analysis was performed to determine radiative decay rates and branching ratios for both crystals. • Dy: CPC and Dy: KPC exhibit large emission cross-sections, σeτR values, and high quantum efficiencies making them viable candidates as gain medium for the 575 nm “yellow” lasers. Both crystals also revealed near-IR emissions which are currently being explored for laser applications. • Preparation of Dy3+ doped CPC perovskites nanoparticles is underway for possible light source applications in optoelectronic devices. Acknowledgement: • NSF PREM support through NSF grant 827820 (Hampton-Brandeis PREM) and ARO grant W911NF1810447.