Trigonometric Identities
by
SBR
www.harekrishnahub.com
www.harekrishnahub.com
We have the following trigonometric identities:
𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘ 2 πœƒ = 1
1 + π‘‘π‘Žπ‘›2 πœƒ = 𝑠𝑒𝑐2 πœƒ
1 + π‘π‘œπ‘‘2
πœƒ = π‘π‘œπ‘ π‘’π‘2
πœƒ
Let us prove one by one.
Note:
𝑠𝑖𝑛 πœƒ 2
, π‘π‘œπ‘  πœƒ 2
, etc., are written as 𝑠𝑖𝑛2
πœƒand π‘π‘œπ‘ 2
πœƒ etc. and read as sine
squared ΞΈ
www.harekrishnahub.com
Consider a right angle triangle ABC as shown below.
Let ∠𝐴𝐡𝐢 = 90°
and ∠𝐢𝐴𝐡 = πœƒ
𝐴𝐡 = π‘₯ , 𝐡𝐢 = 𝑦 , 𝐴𝐢 = π‘Ÿ
www.harekrishnahub.com
we have, 𝒙 𝟐
+ π’š 𝟐
= 𝒓 𝟐
Dividing the above equation throughout by π‘Ÿ2
, we get
𝒙 𝟐
𝒓 𝟐 +
π’š 𝟐
𝒓 𝟐 =
𝒓 𝟐
𝒓 𝟐
𝒙
𝒓
𝟐
+
π’š
𝒓
𝟐
= 𝟏
But
π‘₯
π‘Ÿ
= π‘π‘œπ‘  πœƒ and
𝑦
π‘Ÿ
= 𝑠𝑖𝑛 πœƒ
∴ π‘π‘œπ‘  πœƒ 2 + 𝑠𝑖𝑛 πœƒ 2 = 1
∴ we have the identity
π’”π’Šπ’ 𝟐
𝜽 + 𝒄𝒐𝒔 𝟐
𝜽 = 𝟏
www.harekrishnahub.com
we have, 𝒙 𝟐 + π’š 𝟐 = 𝒓 𝟐
Dividing the above equation throughout by π‘₯2
(for 𝒙 β‰  𝟎) , we get
𝒙 𝟐
𝒙 𝟐
+
π’š 𝟐
𝒙 𝟐
=
𝒓 𝟐
𝒙 𝟐
𝟏 +
π’š
𝒙
𝟐
=
𝒓
𝒙
𝟐
But
π‘Ÿ
π‘₯
= 𝑠𝑒𝑐 πœƒ and
𝑦
π‘₯
= π‘‘π‘Žπ‘› πœƒ
∴ we have 𝟏 + 𝒕𝒂𝒏 𝜽 𝟐 = 𝒔𝒆𝒄 𝜽 𝟐
∴ we have the identity
1 + 𝒕𝒂𝒏2 𝜽 = 𝒔𝒆𝒄2 𝜽
www.harekrishnahub.com
we have, 𝒙 𝟐
+ π’š 𝟐
= 𝒓 𝟐
Dividing the above equation throughout by 𝑦2(for
𝒙 𝟐
π’š 𝟐
+
π’š 𝟐
π’š 𝟐
=
𝒓 𝟐
π’š 𝟐
𝒙
π’š
𝟐
+ 𝟏 =
𝒓
π’š
𝟐
𝒓
π’š
= 𝒄𝒐𝒔𝒆𝒄 𝜽
𝒙
π’š
= 𝒄𝒐𝒕 𝜽
∴ we have 𝒄𝒐𝒕 𝜽 𝟐 + 𝟏 = 𝒄𝒐𝒔𝒆𝒄 𝜽 𝟐
∴ we have the identity
1 + 𝒄𝒐𝒕2
𝜽 = 𝒄𝒐𝒔𝒆𝒄2
𝜽

Trigonometric identities

  • 1.
  • 2.
    www.harekrishnahub.com We have thefollowing trigonometric identities: 𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘ 2 πœƒ = 1 1 + π‘‘π‘Žπ‘›2 πœƒ = 𝑠𝑒𝑐2 πœƒ 1 + π‘π‘œπ‘‘2 πœƒ = π‘π‘œπ‘ π‘’π‘2 πœƒ Let us prove one by one. Note: 𝑠𝑖𝑛 πœƒ 2 , π‘π‘œπ‘  πœƒ 2 , etc., are written as 𝑠𝑖𝑛2 πœƒand π‘π‘œπ‘ 2 πœƒ etc. and read as sine squared ΞΈ
  • 3.
    www.harekrishnahub.com Consider a rightangle triangle ABC as shown below. Let ∠𝐴𝐡𝐢 = 90Β° and ∠𝐢𝐴𝐡 = πœƒ 𝐴𝐡 = π‘₯ , 𝐡𝐢 = 𝑦 , 𝐴𝐢 = π‘Ÿ
  • 4.
    www.harekrishnahub.com we have, π’™πŸ + π’š 𝟐 = 𝒓 𝟐 Dividing the above equation throughout by π‘Ÿ2 , we get 𝒙 𝟐 𝒓 𝟐 + π’š 𝟐 𝒓 𝟐 = 𝒓 𝟐 𝒓 𝟐 𝒙 𝒓 𝟐 + π’š 𝒓 𝟐 = 𝟏 But π‘₯ π‘Ÿ = π‘π‘œπ‘  πœƒ and 𝑦 π‘Ÿ = 𝑠𝑖𝑛 πœƒ ∴ π‘π‘œπ‘  πœƒ 2 + 𝑠𝑖𝑛 πœƒ 2 = 1 ∴ we have the identity π’”π’Šπ’ 𝟐 𝜽 + 𝒄𝒐𝒔 𝟐 𝜽 = 𝟏
  • 5.
    www.harekrishnahub.com we have, π’™πŸ + π’š 𝟐 = 𝒓 𝟐 Dividing the above equation throughout by π‘₯2 (for 𝒙 β‰  𝟎) , we get 𝒙 𝟐 𝒙 𝟐 + π’š 𝟐 𝒙 𝟐 = 𝒓 𝟐 𝒙 𝟐 𝟏 + π’š 𝒙 𝟐 = 𝒓 𝒙 𝟐 But π‘Ÿ π‘₯ = 𝑠𝑒𝑐 πœƒ and 𝑦 π‘₯ = π‘‘π‘Žπ‘› πœƒ ∴ we have 𝟏 + 𝒕𝒂𝒏 𝜽 𝟐 = 𝒔𝒆𝒄 𝜽 𝟐 ∴ we have the identity 1 + 𝒕𝒂𝒏2 𝜽 = 𝒔𝒆𝒄2 𝜽
  • 6.
    www.harekrishnahub.com we have, π’™πŸ + π’š 𝟐 = 𝒓 𝟐 Dividing the above equation throughout by 𝑦2(for 𝒙 𝟐 π’š 𝟐 + π’š 𝟐 π’š 𝟐 = 𝒓 𝟐 π’š 𝟐 𝒙 π’š 𝟐 + 𝟏 = 𝒓 π’š 𝟐 𝒓 π’š = 𝒄𝒐𝒔𝒆𝒄 𝜽 𝒙 π’š = 𝒄𝒐𝒕 𝜽 ∴ we have 𝒄𝒐𝒕 𝜽 𝟐 + 𝟏 = 𝒄𝒐𝒔𝒆𝒄 𝜽 𝟐 ∴ we have the identity 1 + 𝒄𝒐𝒕2 𝜽 = 𝒄𝒐𝒔𝒆𝒄2 𝜽