SlideShare a Scribd company logo
1	
  
Termodynamik	
  for	
  Biokemikere	
  
Jan	
  H.	
  Jensen	
  
Københavns	
  Universitet	
  
1.	
  Ligevægt	
  og	
  ligevægtskonstanten	
  
2.	
  Enthalpi	
  og	
  entropi	
  
3.	
  Enthalpi	
  og	
  entropi	
  for	
  an	
  ideal	
  gas	
  og	
  van’t	
  Hoff	
  ligningen	
  
4.	
  Måling	
  af	
  enthalpi	
  og	
  entropi	
  ændringer	
  vha	
  kalorimetri	
  
5.	
  Enthalpi	
  og	
  entropi	
  for	
  en	
  ideal	
  opløsning	
  
6.	
  Hydrofobisitet	
  og	
  entropi	
  
7.	
  Kemisk	
  akIvitet	
  og	
  ikke-­‐ideale	
  opløsninger	
  
8.	
  Termodynamikens	
  tre	
  love	
  og	
  Boltzmannfordelingen	
  
Playlist	
  med	
  alle	
  videoer	
  
hPps://www.youtube.com/playlist?list=PLVxAq6ZYPp3154Tp_dmz9GOoo7g_3rQBH	
  
	
  
2	
  
Indhold	
  
1.	
  Equilibrium	
  and	
  the	
  equilibrium	
  constant	
  
1.1.	
  Equilibrium	
  constant	
  (K):	
  more	
  reactant	
  or	
  product	
  eeer	
  equilibrium?	
  
1.2.	
  Standard	
  free	
  energy	
  (ΔGo):	
  a	
  molecular	
  understanding	
  of	
  K	
  
1.3.	
  6	
  kJ/mol	
  changes	
  K	
  by	
  about	
  an	
  order	
  of	
  magnitude	
  at	
  25	
  oC	
  
1.4.	
  How	
  do	
  you	
  measure	
  K?	
  
1.5.	
  Le	
  Chatelier’s	
  Principle	
  
	
  
2.	
  Enthalpi	
  og	
  entropi	
  
2.1.	
  EnergiIlstande	
  (ingen	
  slides)	
  
2.2.	
  Enthalpien	
  (H)	
  handler	
  om	
  energi	
  
2.3.	
  Standard	
  dannelsesenthalpi	
  
2.4.	
  Bindingsenergier	
  
2.5.	
  Entropi	
  (S)	
  handler	
  om	
  muligheder	
  
	
  
3.	
  Enthalpi	
  og	
  entropi	
  for	
  en	
  ideal	
  gas	
  og	
  van’t	
  Hoff	
  ligningen	
  
3.1.	
  EnergiIlstande	
  (ingen	
  slides)	
  
3.2.	
  Enthalpibidrag	
  for	
  en	
  ideal	
  gas	
  
3.3.	
  Entropibidrag	
  for	
  en	
  ideal	
  gas	
  
3.4.	
  KonformaIonel	
  entropi	
  
3.5.	
  Hvordan	
  måler	
  man	
  standard	
  enthalpi	
  og	
  entropi	
  ændringer?	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  van’t	
  Hoff	
  ligningen	
  
3	
  
Indhold	
  
4.	
  Måling	
  af	
  enthalpi	
  og	
  entropi	
  ændringer	
  vha	
  kalorimetri	
  
4.1.	
  Kalorimetri	
  (ingen	
  slides)	
  
4.2.	
  Hvordan	
  måler	
  man	
  ΔHo?	
  Kalorimetry	
  
4.3.	
  Hvorfor	
  er	
  varmekapaciteten	
  et	
  maximum	
  når	
  ΔGo(Tm)	
  =	
  0?	
  
4.4.	
  Eksempel:	
  Protein	
  (polymer)	
  foldning	
  
4.5.	
  Udfoldning	
  ved	
  høj	
  temperatur	
  sker	
  pga	
  entropi	
  
	
  
5.	
  Enthalpi	
  og	
  entropi	
  for	
  an	
  ideal	
  opløsning	
  
5.1.	
  Fri	
  energibidrag	
  for	
  en	
  ideal	
  opløsning	
  
5.2.	
  Solveringsfrienergi:	
  det	
  polære	
  bidrag	
  
5.3.	
  Solvent	
  screening	
  
5.4.	
  Den	
  ikke-­‐polære	
  solveringsfrienergi	
  
5.5.	
  Den	
  hydrofobe	
  effekt	
  
	
  
6.	
  Hydrofobicitet	
  og	
  entropi	
  
6.1.	
  Solventen	
  bidrager	
  Il	
  entropiændringen	
  
6.2.	
  Entropien	
  sIger	
  når	
  hydrofobe	
  molekyler	
  bindes	
  
6.3.	
  Hvordan	
  måler	
  man	
  hydrofobicitet	
  
6.4.	
  Ligandbinding	
  Il	
  enzymet	
  carbonic	
  anhydrase	
  
4	
  
Indhold	
  
7.	
  Kemisk	
  akLvitet	
  og	
  ikke-­‐ideale	
  opløsninger	
  
7.1.	
  Ligevægtskonstanten	
  har	
  ingen	
  enheder	
  
7.2.	
  AkIvitet	
  for	
  en	
  opløsning	
  
7.3.	
  Den	
  simple	
  Debye-­‐Hückel	
  ligning	
  
7.4.	
  Brug	
  af	
  den	
  simple	
  Debye-­‐Hückel	
  ligning	
  
	
  
8.	
  Termodynamikens	
  tre	
  love	
  og	
  Boltzmannfordelingen	
  
8.1.	
  Termodynamikens	
  tre	
  love	
  	
  
8.2.	
  Entropi	
  og	
  sandsynlighed	
  –	
  del	
  1	
  
8.3.	
  Entropi	
  og	
  sandsynlighed	
  –	
  del	
  2	
  
8.4.	
  Boltzmannfordelingen	
  
8.5.	
  Boltzmannfordelingen	
  giver	
  ligninger	
  for	
  fri	
  energi-­‐	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  bidrag	
  for	
  en	
  ideal	
  gas	
  
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.,Ligevægt,og,ligevægtskonstanten,
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
!"#$%&'"(&)*+),-"'./&%0)
;)
9.>"*)474)
-P#QRR0*C&C7H"R!STU42IO,1V)
!"#$%&'"(&)*+),-"'./&%0)
!:;0'0<+0;,(
-P#QRR'N7G*(G*%>7*%:R'*>"="%R)
E)
!"#$%&'"(&)*+),-"'./&%0)
!:;0'0<+0;,(1-$"7&$7(W!XQ)'*%")%"$G&$(&)*%)#%*>CG&)$Y"%)#:;0'0<+0;,Z)
W"BC.=.H%.C'Q)(*)G-$(:").()G*(G"(&%$D*(X)
K =
P[ ]
R[ ]
X[ ]= concentration of X
K>1! [P] > [R] ! more product than reactant
R ! P
[-$&)./)6]^)+*%)$)4)F)/*=CD*()*+),6?,__6Z)
`7  47KE)a)4T1I)F))
27  T7TTE4J)F)
,7  T7I4;)F)
!7  47TTT)F)
CH3COOH ! CH3COO!
+ H+
K = 1.74 "10!5
I)
!"#$%&'"(&)*+),-"'./&%0)
L)
9.>"*)47;)
-P#QRR0*C&C7H"RbcI:I.+Nde8)
!"#$%&'"(&)*+),-"'./&%0)
=7&$.&+.(2+##(#$#+>/)Wf"*XQ)$)'*="GC=$%)C(>"%/&$(>.(:)*+)!#
K = e!"Go
/RT
!Go
= Go
(P) " Go
(R)
$)./)&-"):$/)G*(/&$(&)
L7?4E)5R'*=)g)
*)h)/&$(>$%>)/&$&")
[-$&)./)f"*)+*%)&-./)%"$GD*()$&);I)*,Z))
`7  14;7I)e5R'*=)
27  T744)e5R'*=)
,7  ;K7;)e5R'*=)
!7  ;JiTT)e5R'*=)
CH3COOH ! CH3COO!
+ H+
K = 1.74 "10!5
i)
!"#$%&'"(&)*+),-"'./&%0)
K = e!"Go
/RT
#
"Go
= !RT ln(K)
$)./)&-"):$/)G*(/&$(&)
L7?4E)5R'*=)g)
CH3COOH ! CH3COO!
+ H+
K = 1.74 "10!5
!Go
= ("8.314)(298.15)ln(1.74 #10"5
)
= 2.72 #104
J/mol = 27.2 kJ/mol
44)
=7&$.&+.(2+##(#$#+>/)Wf"*XQ)$)'*="GC=$%)C(>"%/&$(>.(:)*+)!#
[-$&)./)f"*)+*%)&-./)%"$GD*()$&);I)*,Z))
!"#$%&'"(&)*+),-"'./&%0)
4;)
9.>"*)47?)
-P#QRR0*C&C7H"R5:SjE$T[.LF)
!"#$%&'"(&)*+),-"'./&%0)
J)e5R'*=)G-$(:"/)!)H0)$H*C&)$()*%>"%)*+)'$:(.&C>")$&);I)*,)
K = e!"Go
/RT
= e!"Go
/(0.008314#298.15)
= e!"Go
/2.48
= 10!"Go
/2.48#ln(10)
= 10!"Go
/5.7
$ 10!"Go
/6
4?)
!"#$%&'"(&)*+),-"'./&%0)
K ! 10"#Go
/6
K ! 10"27/6
! 10"4.5
K between 10"4
and 10"5
CH3COOH ! CH3COO!
+ H+
K = 1.74 "10!5
# $Go
= 27.2 kJ/mol
U+)f"*)./)1;;7I)e5R'*=)$&);I)*,)N-$&)./)!Z)
`7  47;4)a)4T1;)
27  ;7;K))
,7  L7KI)a)4T?)
!7  I7ii)a)4TI)) 4E)
J)e5R'*=)G-$(:"/)!)H0)$H*C&)$()*%>"%)*+)'$:(.&C>")$&);I)*,)
!"#$%&'"(&)*+),-"'./&%0)
4J)
9.>"*)47E)
-P#QRR0*C&C7H"R$!"[k`BF5-V)
!"#$%&'"(&)*+),-"'./&%0)
?-@(.-(/-;(,#&";+#(!A(
HA ! A!
+ H+
K =
[A!
][H+
]
[HA]
fA! =
[A!
]
[HA]+ [A!
]
=
1
[H+
]
K
+1
=
K
[H+
]+ K
" fA! =
1
2
" K = [H+
]
A!
!log K( ) = 6.3
4K)
U'$:")$>$#&">)+%*'Q))
-P#QRRD(0C=%7G*'R0lI##"))
!"#$%&'"(&)*+),-"'./&%0)
HA ! A!
+ H+
K =
[A!
][H+
]
[HA]
A!
!log K( ) = 6.3
U+)m=*:W!XhJ7?)N-$&)./)f"*)$&);I)*,Z))
`7  I7?)e5R'*=)
27  ?J7T)e5R'*=)
,7  4IT7;)e5R'*=)
!7  J??7;)e5R'*=) 4L)
?-@(.-(/-;(,#&";+#(!A(
!"#$%&'"(&)*+),-"'./&%0)
;T)
9.>"*)47I)
-P#QRR0*C&C7H"R6,1*UJ,bnMN)
!"#$%&'"(&)*+),-"'./&%0)
B#(6*&7#'0#+C"(D+0$10E'#(
%&#'()*+,-#./0&1,#2*#0#+3+2,(#'&#,45'6'78'5(#8,+562+#
'&#0#+/'9#'&#,45'6'78'5(#2/02#.*5&2,80.2+#2/,#'()*+,-#./0&1,#
K =
[B]
[A]
=
1.0 ! x
0.25 + x
= 2
x = 0.17 " [A] = 0.42 og [B] = 0.83 " A ! B
A ! B K =
[B]
[A]
= 2
<a$'#="7Q)$&)"BC.=.H%.C')`^)h)T7;I)F)*:)2^)h)T7IT)F)
)
U+)U)$>>)'*%")2o)/*)&-$&)2^)h)47T)F)H"+*%")"BC.=.H%.C'o))
[-$&)$%")`^)$(>)2^)$Y"%)"BC.=.H%.C'Z)
)
;4)
!"#$%&'"(&)*+),-"'./&%0)
A ! B+ C
`Y"%)"BC.=.H%.C').()$BC"*C/)/*=CD*()U)="&)-$=+)&-")N$&"%)"9$#*%$&")
)
[-$&)N.==)-$##"()$GG*%>.(:)&*)c"),-$&"=."%@/)#%.(G.#="Z)
A. Equilibrium shifts towards products: A ! B+ C
B. Equilibrium shifts towards reactant: A " B+ C
C. There is no change in equilibrium
;;)
!"#$%&'"(&)*+),-"'./&%0)
A ! B+ C
<9$#*%$D*().(G%"$/"/)&-")G*(G"(&%$D*(/)
)
M-")/-.Y).()"BC.=.H%.C')&*N$%>/)%"$G&$(&)>"G%"$/"/)&-")(C'H"%)*+)#$%DG="/)
$(>)&-"%"+*%")&-")G*(G"(&%$D*()
B#(6*&7#'0#+C"(D+0$10E(
K =
[B][C]
[A]
evaporation
! "!!!
2[B]( ) 2[C]( )
2[A]
> K equilibrium
! "!!! K =
[B #] [C #]
[A #]
2[B] > [B #] , 2[C] > [C #] , 2[A] < [A #]
;E)
%&#'()*+,-#./0&1,#2*#0#+3+2,(#'&#,45'6'78'5(#8,+562+#
'&#0#+/'9#'&#,45'6'78'5(#2/02#.*5&2,80.2+#2/,#'()*+,-#./0&1,#
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.,Enthalpi,og,entropi,
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Video&2.1&
h+p://youtu.be/Qv2rKiNi2rQ&
(ingen&slides)&
Video&2.2&
h+ps://youtu.be/NGkGEoQ503A&
!Go
= !H o
" T !So
H2CO3(aq)
! "!# !! H2
O(l) + CO2(g) !ngas = 1
Enthalpien*(H)*handler*om*energi*
!H o
= !U + po
!V
!H o
= ændringen i enthapi når trykket er po
= 1 bar
!U = ændringen i den indre energi
!V = ændringen i volumen
po
!V " !ngasRT
!ngas = ændring i antal mol af gas molekyler
RT = 2.5 kJ/mol ved 25 o
C
!H o
= !H Molekyle
+ !H o,Translation
+ !H Rotation
+ !HVibration
Enthalpien*(H)*s3ger*når*bindinger*brydes*
H2
! "!# !! 2H
!H o
= 460.2 + 6.3" 2.5 " 26.4 = 437.6 kJ/mol
!H Molekyle
= energien for elektroner og kerner, såsom bindingsenergier
H2O !!!HOH ! "!# !! 2H2O
"H o
= 20.5 + 6.3+ 3.8 #17.6 = 13.0 kJ/mol
ΔHo&er&posiFv&primært&fordi&det&kræver&energi&at&bryde&
&kovalente&bindinger&og&hydrogenbindinger&&
!H o
= !H Molekyle
+ !H o,Translation
+ !H Rotation
+ !HVibration
Enthalpien*(H)*s3ger*når*bindinger*brydes*
!H Molekyle
= energien for elektroner og kerner, såsom bindingsenergier
H2O !!!HOH ! "!# !! 2H2O
"H o
= 20.5 + 6.3+ 3.8 #17.6 = 13.0 kJ/mol
ΔHo&er&posiFv&primært&fordi&det&kræver&energi&at&bryde&
&kovalente&bindinger&og&hydrogenbindinger&&
!H o
< 0 exotermisk A! "!# !! B + varme
!H o
> 0 endotermisk A+varme! "!# !! B
Exoterme&og&endoterme&reakFoner&
Er&de+e&en&endotem&eller&exoterm&process&
Video&2.3&
h+ps://youtu.be/S03m6ADws9o&
Standard*dannelsesenthalpi*
(standard&enthalpi&of&formaFon,&heat&of&formaFon)&
elementer i standardtilstand! "!# !! molekyle !H f
o
2C(s,grafit) + 3H2(g)
! "!# !! C2H6(g) !H f
o
(C2H6 )
!H f
o
(C2H6 ) = H o
(C2H6 ) " 2H o
(C) " 3H o
(H2 )
C2H4(g) + H2(g)
! "!# !! C2H6(g) !H o
!H o
= H o
(C2H6 ) " H o
(C2H4 ) " H o
(H2 )
= !H f
o
(C2H6 ) " !H f
o
(C2H4 ) " !H f
o
(H2 )
0
$ %& '&
C2H4(g) + H2(g)
! "!# !! C2H6(g) !H o
= ?
Brug&eksperimentelle&dannelsesenthalpier&(fra&Google)&&
og&Molecule&Calculator&Fl&at&udregne&ΔHo&for&denne&reakFon&&
A.  103.2&(eksp)&og&112.9&(MolCalc)&kJ/mol&
B.  53.2&(eksp)&og&49.3&(MolCalc)&kJ/mol&
C.  Z33.2&(eksp)&og&Z77.2&(MolCalc)&kJ/mol&
D.  Z135.9&(eksp)&og&&Z145.3&&kJ/mol&
Video&2.4&
h+ps://youtu.be/7gDqFbMZhd0&
Bindingsenergier*
(Bond&energies)&
C2H4(g) + H2(g)
! "!# !! C2H6(g) !H o
= ?
!H o
" 611+ 436 # 347 + 2 $ 414( ) = #128 kJ/mol
h+p://chemwiki.ucdavis.edu/TheoreFcal_Chemistry/Chemical_Bonding/General_Principles/Bond_Energies&
Brug&bindingenergier&Fl&at&esFmere&
ΔHo&for&denne&reakFon&
A.  152&kJ/mol&
B.  67&kJ/mol&
C.  Z166&kJ/mol&
D.  Z267&kJ/mol&
Video&2.5&
h+ps://youtu.be/dhUsMOH9dc&
Entropien*(S)*handler*om*muligheder*
S = k ln(W )
k =
R
NA
Boltzmanns konstant, NA = Avogadros tal
W = antal måder man kan lave den samme tilstand
AA! "!# !! A + A
!S = k ln WA+ A( )" k ln WAA( )> 0
WAA = 6 WA+ A = 15
!
2&parFkler&har&mere&entropi&end&1&
Entropien*(S)*s3ger*når*bindinger*brydes*
H2
! "!# !! 2H
!So
= 11.6 +101.1"12.8 " 0.0 = 98.9 J/molK
H2O !!!HOH ! "!# !! 2H2O
"So
= #17.3+136.2 + 9.3# 66.0 = 79.4 J/molK
ΔSo&er&posiFv&primært&fordi&2&parFkler&har&mere&entropi&end&1&
!So
= !SKonformation
+ !So,Translation
+ !SRotation
+ !SVibration
Mere&bevægelsesfrihed&=&større&entropi&
Hvad&er&ΔSo&sandsynligvis&for&denne&process?&
A. !So
> 0
B. !So
= 0
C. !So
< 0
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.,Enthalpi,og,entropi,for,an,ideal,gas,og,van’t,Hoff,ligningen,
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Video&3.1&
h+ps://youtu.be/Qv2rKiNi2rQ&
(ingen&slides)&
Video&3.2&
h+ps://youtu.be/47MEHOwFxAg&
ΔGo
= ΔH o
− T ΔSo
ΔH o
= ΔH Molekyle
+ ΔH o,Translation
+ ΔH Rotation
+ ΔHVibration
H Molekyle
= ingen simpel ligning
H o,Translation
= 3
2 nRT + po
V = 5
2 nRT
H Rotation
= 3
2 nRT (nRT liniært molekyle)
HVibration
= nNAhc νi
1
2 +
1
eNAhc νi /RT
−1
⎛
⎝⎜
⎞
⎠⎟
i=1
3Nat − X
∑
Enthalpibidrag-for-en-ideal-gas-
ν = bølgetal ( ≈ frekvens) i cm-1
Nat = antal atomer i molekylet
h = Plancks konstant X = 6, 5 (liniær)
c = lysets hastighed i cm/s NAhc = 11.96 J cm
Hvad&er&Hrot&for&et&vand&molekyle&ved&25&oC&
og&hvor&mange&forskellige&vibraOoner&bidrager&Ol&Hvib?&
A.&&2.5&kJ/mol&og&4&vibraOoner&&
&
B.  3.7&kJ/mol&og&3&vibraOoner&
C.  2.5&kJ/mol&og&3&vibraOoner&
D.  3.7&kJ/mol&og&2&vibraOoner&&
Video&3.3&
h+ps://youtu.be/wWx3b3MZidc&
ΔSo
= ΔSKonformation
+ ΔSo,Translation
+ ΔSRotation
+ ΔSVibration
ΔGo
= ΔH o
− T ΔSo
Entropibidrag-for-en-ideal-gas-
SKonf
= nRln(gKonf
) gKonf
= antal konformationer med samme energi
(udartning)
So,Trans
= nRln
2πm( )3/2
kTe( )5/2
h3
po
⎛
⎝
⎜
⎞
⎠
⎟ = nRln aM 3/2
T 5/2
( ) a = 0.3117
mol3/2
g3/2
K5/2
SRot
= nRln
8π2
keT
h2
⎛
⎝⎜
⎞
⎠⎟
3/2
πI1I2 I3
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
(ikke liniær) I = intertimoment
SVib
= nR
NAhcνi
RT eNAhc νi /RT
−1( )
− ln 1− e−NAhc νi /RT
( )
⎛
⎝
⎜
⎞
⎠
⎟
i=1
3Nat − X
∑
ν = bølgetal ( ≈ frekvens) i cm-1
NAhc = 11.96 J cm
Hvad&er&STrans&for&et&acetylen&molekyle&ved&25&oC&
og&hvor&mange&forskellige&vibraOoner&bidrager&Ol&SVib?&
A.&&63.2&J/molK&og&7&vibraOoner&&
&
B.  149.4&J/molK&og&6&vibraOoner&&
C.  63.2&J/molK&og&6&vibraOoner&&
D.  149.4&J/molK&og&7&vibraOoner&&
Video&3.4&
h+ps://youtu.be/tcvaf0iAxbo&
R A-
R B-
(ΔHo) -
R5A-
&
Hvis , , ….&
A&&&&mere&RFA&end&RFB&&&&&&&&&&&&&&&&&&&&C&&&&&lige&meget&RFA&og&RFB-
&
B&&&&mere&RFB&end&RFA&&&&&&&&&&&&&&&&&&&&&&&&&&&&&D&&&&&ved&ikke&
&
Se&bort&fra&translaOon,&rotaOon,&og&vibraOon&
Entropi-og-udartning-
SR− A
Konf
= Rln(4)
SKonf
= nRln(gKonf
) gKonf
= antal konformationer med samme energi
(udartning)
Konforma;onel-entropi-og-udartning-
A& B&R& R&
SR− B
Konf
= Rln(1) = 0
1
2
3
4
3
4
1
2
2
3
4
1
4
1
2
3
SR− A
Konf
= −R fi ln fi( )
i=1
4
∑
≤ Rln(4)
f4 = brøkdel i denne
konformation
S = k ln(W ) = k ln gNA
( )= Rln(g) hvis all tilstande har samme energi
S ≈ Rln(g) ⇒
gprodukt
greaktant
≈ eΔS/R
≈ 10ΔS/20
H2O ⋅⋅⋅HOH    2H2O
ΔSo
= −17.3+136.2 + 9.3− 66.0 = 79.4 J/molK
ΔSo
= ΔSKonformation
+ ΔSo,Translation
+ ΔSRotation
+ ΔSVibration
g2H2O
Konf
gH2O⋅⋅⋅HOH
Konf
= ?
A.  1/8&&&&&&&&&&C.&4&
B.  ½&&&&&&&&&&&&&D.&8&
&
H2O ⋅⋅⋅HOH    2H2O
ΔSo
= −17.3+136.2 + 9.3− 66.0 = 79.4 J/molK
ΔSo
= ΔSKonformation
+ ΔSo,Translation
+ ΔSRotation
+ ΔSVibration
g2H2O
Konf
gH2O⋅⋅⋅HOH
Konf
=
1
8
g2H2O
Trans
gH2O⋅⋅⋅HOH
Trans
≈ 107
g2H2O
Rot
gH2O⋅⋅⋅HOH
Rot
≈ 5
g2H2O
Vib
gH2O⋅⋅⋅HOH
Vib
≈
1
1000

gAA = 6 gA+ A = 15
2 × 3 vibrationer
12 vibrationer
10006
≈ 3 (næsten) ens tilstande per ekstra vibration
Video&3.5&
h+ps://youtu.be/ZOWBLWp32N4&
ΔGo
= ΔH o
− T ΔSo
−RT ln K( ) = ΔH o
− T ΔSo
ln K( ) =
−ΔH o
R
1
T
⎛
⎝⎜
⎞
⎠⎟ +
ΔSo
R
Man&går&ud&fra&at&ΔHo&og&ΔSo&er&uacængig&af&temperatur&&
Hvordan-måler-man-ΔHo-og-ΔSo?:-van’t-Hoff-ligningen-
&
Måling&af&K&ved&forskellige&temperaturer&giver&ΔHo&og&ΔSo?&&&
ln K( )
1
TΔSo
R
hældning =
−ΔH o
R
Lav&T&
Høj&T&
Her&vises&et&van’t&Hoff&plot&for&en&reakOon&
&
Er&reakOonen&endoterm&eller&exoterm?&
&&&
ln K( )
1
T
A  B
Hvis&reakOonen&er&endoterm&hvad&sker&der&med&
ligevægtskonstanten&når&temperaturen&sOger?&
A.  K&falder&
B.  K&sOger&
C.  K&er&uændret&
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.,Måling,af,enthalpi,og,entropi,ændringer,vha,kalorimetri,
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Video&4.1&
h+ps://youtu.be/EAgbknIDKNo&
(ingen&slides)&
Video&4.2&
h+ps://youtu.be/OKamlXPmkvw&
ΔH o
= Q
= mCp
vand
ΔT
Varmekapaciteten&ved&konstant&tryk&
h+p://www.youtube.com/watch?v=EAgbknIDKNo&
Hvordan(måler(man(ΔHo?:(calorimetri(
&
Måling&af&temperatur&ændring&giver&ΔHo&
Cp =
∂H o
∂T
⎛
⎝⎜
⎞
⎠⎟
p
K&måles&med&andre&metoder&og&giver&ΔSo&
ΔSo
=
ΔH o
− ΔGo
T
=
ΔH o
+ RT ln K( )
T
Hvordan(måler(man(ΔHo?:(calorimetri(
&
Måling&af&temperatur&ændring&giver&ΔHo&
ΔH o
= Q
= mCp
vand
ΔT
Hvordan(måler(man(ΔHo(og(ΔSo?:(differen5al(scanning(calorimetry(
&
Måling&af&varmekapacitetsændring&giver&ΔHo&
Rent&vand&
ΔH o
Tm( )= arealet under kurven
“Smeltepunkt”&
ΔCp
K(Tm ) = 1⇒ ΔGo
(Tm ) = 0
ΔSo
(Tm ) =
ΔH o
(Tm )
Tm
ΔH o
(T ) = ΔH o
(Tm ) + ΔCp T − Tm( )
ΔSo
(T ) = ΔSo
(Tm ) + ΔCp ln
T
Tm
⎛
⎝⎜
⎞
⎠⎟
Hvad&er&enhederne&for&varmekapaciteten?&
A.  J/mol&
B.  J/molK&
C.  K/mol&J&
D.  mol/J&
Video&4.3&
h+ps://youtu.be/MB7akfMkReQ&
10&
Hvorfor(er(varmekapaciteten(et(maximum(når(ΔGo(Tm)(=(0?(
(
I&de+e&eksempel:&ΔV&=&0&så&U&bruges&istedet&for&Ho&
Når CV =
∂U
∂T
⎛
⎝⎜
⎞
⎠⎟
V
er størst, så er
∂T
∂U
⎛
⎝⎜
⎞
⎠⎟
V
mindst
Dvs&den&]lførte&energi&bruges&]l&at&bryde&bindinger&i&stedet&for&at&hæve&T'
'
Når&(alle)&bindinger&brydes&spontant&er&Go
reaktant(=(Go
produkt&
∂T
∂U
⎛
⎝⎜
⎞
⎠⎟
V
≈ 0
_1&
_0.8&
_0.6&
_0.4&
_0.2&
0&
0.2&
0.4&
0& 500& 1000& 1500& 2000& 2500& 3000&
U((eV)(
T((K)(
11&
The&simula]on&computes&T&as&a&func]on&of&U&
Here&we&switch&the&axes&
_1&
_0.8&
_0.6&
_0.4&
_0.2&
0&
0.2&
0.4&
0& 500& 1000& 1500& 2000& 2500& 3000&
U((eV)(
T((K)(
12&
The&data&is&noisy&primarily&because&of&the&fast&hea]ng&rate&
We&smooth&it&by&fihng&it&to&a&polynomial&(blue&curve)&
0&
0.0002&
0.0004&
0.0006&
0.0008&
0.001&
0.0012&
0.0014&
0.0016&
_1&
_0.8&
_0.6&
_0.4&
_0.2&
0&
0.2&
0.4&
0& 500& 1000& 1500& 2000& 2500& 3000&
Cv((eV/K)(
U((eV)(
T((K)(
13&
From&the&smoothed&data&(blue&curve)&we&can&compute&the&&
heat&capacity&(red&curve,&right&y_axis)&
CV =
∂U
∂T
⎛
⎝⎜
⎞
⎠⎟
V
≈
U(T2 ) −U(T1)
T2 − T1
Hvilken&]lstand&
har&den&højeste&
varmekapacitet?&
A(
B(
C(
0&
0.0002&
0.0004&
0.0006&
0.0008&
0.001&
0.0012&
0.0014&
0.0016&
_1&
_0.8&
_0.6&
_0.4&
_0.2&
0&
0.2&
0.4&
0& 500& 1000& 1500& 2000& 2500& 3000&
Cv((eV/K)(
U((eV)(
T((K)(
16&
Video&4.4&
h+ps://youtu.be/C2GheQMeVnY&
Protein((polymer)(foldning(eksempel(
&
Termisk&denaturering&af&proteinet&Barnase&
Tm&
Varme(+(
F  U K =
[U]
[F]
= e−ΔGo
/RT
fU =
[U]
[F]+ [U]
=
e−ΔGo
/RT
1+ e−ΔGo
/RT
fF =
1
1+ e−ΔGo
/RT
ΔH o
≈ ΔH Molekyle
ΔSo
≈ ΔSKonf
= Rln(4) − Rln 1( )
ΔGo
≈ ΔH Molekyle
− T Rln 4( )( )
Foldet( Udfoldet&
En(meget(simpel(protein(model(
Tmax&~&99&K& Tm&~&216&K&
For&små&systemer,&hvor&ΔSo&er&lille,&er&varmekapaciteten&
ikke&et&maximum&ved&smeltetemperaturen&og&Cp&kurven&er&
bred&
&
&Tm&≠&Tmax'
fF
fU
Cp
H molekyle
= 2.5 kJ/mol
gU&=&100&&
&
&
gU&=&10.000&
For&store&systemer,&hvor&ΔSo&er&stor,&er&varmekapaciteten&i&
et&maximum&ved&smeltetemperaturen&og&Cp&kurven&er&skarp&
&
&Tm&≈&Tmax'
fF
fU
Cp
Varmekapaciteten(er(et(maximum(når(halvdelen(af(proteinerne(er(udfoldet(
&
Tm,(ΔHo(og(ΔSo,(kan(måles(spektroskopisk(via(van’t(Hoff(methoden((
C: θ230nm = θ230nm
U
fU +θ230nm
F
fF ∝ fU
Tm&
fF fU
Cp
∝ fU
θ230nm → fU (T ) → K(T ) → ΔH o
,ΔSo
fU (T ) =
K(T )
1+ K(T )
En(lille(ændring(i(ΔHo(kan(have(en(stor(effekt(på(stabiliteten(&
fF fU
Cp
Ca&100%&folded&protein&ved&25&oC& Ca&50%&udfolded&protein&ved&25&oC&
ΔHo
&reduceret&med&15&kJ/mol&≈&1&H_binding&
Video&4.4&
Ved&hvilken&pH&er&ΔSo&størst?&
DOI:&10.1021/bi00129a007&
Video&4.5&
h+ps://youtu.be/jeZAbwNE3zM&
Varme(+(
F  U fU =
e−ΔGo
/RT
1+ e−ΔGo
/RT
ΔSo
≈ Rln(4) ⇒ fU =
4e−ΔH o
/RT
1+ 4e−ΔH o
/RT
= 4 fU,mikro
fU,mikro < fF altid ⇒ udfoldning (fU > fF ) sker pga entropi
Foldet(
Udfoldet&makro]lstand&
Udfoldning(ved(høje(temperaturer(sker(pga(entropi(
mikro]lstand&
Image&adapted&from&Molecular'Driving'Forces'by&Dill&and&Bromberg&
fF
fU
fU,mikro
Udfoldet&makro]lstand&
mikro]lstand&
Udfoldning(ved(høje(temperaturer(sker(pga(entropi(
A.  Udartningen&for&den&udfoldede&makro]lstand&er&4&
B.  Udartningen&for&den&udfoldede&mikro]lstand&er&4&
C.  Udartningen&for&den&foldede&makro]lstand&er&1&
D.  Entropien&for&den&udfoldede&mikro]lstand&er&størrer&end&for&den&foldede&
Hvilken&påstand&er&ikke&sandt&
(der&kan&godt&være&mere&end&én)&
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.,Enthalpi,og,entropi,for,en,ideal,opløsning,
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Department)of)Chemistry)
Video)5.1)
h6ps://youtu.be/6i4tDj6f6uc)
2)
Department)of)Chemistry)
ΔGo
= ΔGMolecule/Conformation
+ ΔGo,Translation
+ ΔGRotation
+ ΔGVibration
+ ΔΔGSolvation
Free$energy$contribu.ons$for$an$ideal$solu.on$
ΔH o,Trans
= 3
2 nRT + po
ΔV ≈ 3
2 nRT + ΔngasRT
So,Trans
= nRln
2πm( )3/2
e5/2
h3
Co
⎛
⎝
⎜
⎞
⎠
⎟ = nRln bM 3/2
T 3/2
( ) b = 3.7487
mol3/2
g3/2
K3/2
Co)=)1.0)mol/L)
Ideal)soluEon)=)no)interacEons)between)
)))))))))))))))))))))))))))))solute)molecules)
H o,Trans
≈ 3
2 nRT
Solute:)the)molecule)that)is)dissolved)
)
Solvent) 3)
Department)of)Chemistry)
4)
ΔGo
= ΔGMolecule/Conformation
+ ΔGsolution
o,Translation
+ ΔGRotation
+ ΔGVibration
+ ΔΔGSolvation
ΔGgas
o
+ 5.5 A ⋅B  A + B
ΔGgas
o
− 5.5 A + B  A ⋅B
ΔGgas
o
A  B
Ssolution
o,Trans
= Sgas
o,Trans
− Rln
0.3117
3.7487
T
⎛
⎝⎜
⎞
⎠⎟ = Sgas
o,Trans
− 26.69 J/molK
Hsolution
o,Trans
= Hgas
o,Trans
− RT = Hgas
o,Trans
− 2.5 kJ/molK at$25$oC$
Gsolution
o,Trans
= Hgas
o,Trans
− 2.5( )− T Sgas
o,Trans
− 0.02669( )
= Ggas
o,Trans
− 2.5 − 298.15(−0.02669)
= Ggas
o,Trans
+ 5.5 kJ/mol
Department)of)Chemistry)
5)
What)is)ΔH°correcEon)at)50)°C)for)this)reacEon?)
A + B  A⋅B
A.  O10.0)kJ/mol)
B.  O2.7)kJ/mol)
C.  2.7)kJ/mol)
D.  10)kJ/mol))
ΔH o
= ΔH Molecule
+ ΔHsolution
o,Translation
+ ΔH Rotation
+ ΔHVibration
+ ΔΔHSolvation
ΔHgas
o
+ ΔHcorrection A + B  A⋅B
Video&5.2&
h+ps://youtu.be/CyR7JiLw1O0&
ΔGo
= ΔGMolekyle/Konformation
+ ΔGo,Translation
+ ΔGRotation
+ ΔGVibration
+ ΔΔGSolvering
Solveringsfrienergi:$det$polære$bidrag$
+&
ΔGSolvering
(A)
ΔGSolvering
= ΔGpolær
Solvering
+ ΔGikke polær
Solvering
A$ A$
ΔGpolær
Solvering
≈ −
694.7q2
R
1−
1
ε
⎛
⎝⎜
⎞
⎠⎟ −
60.25 ε −1( )µ2
2ε +1( )R3
Hvis&molekylet&er&kugleformet&
og&solvent&beskrives&som&et&homogent&felt&med&dielectrisk&konstant&ε&
R#
ε#
≈&
q&=&ladningen&på&molekylet&&&&&&&&&&μ&=&dipolmomentet&(i&Debye)&
&
R&=&radius&a&kuglen&(i&Å)&&&&&&&&&&&&&&&&&ε&=&solventets&dielektriske&konstant&(1&<&ε#<&∞)&
694.7
kJ Å
mol
og 60.25
kJ Å3
mol Debye2
ΔGpolær
Solvering
≈ −
694.7q2
R
1−
1
ε
⎛
⎝⎜
⎞
⎠⎟ −
60.25 ε −1( )µ2
2ε +1( )R3
Ud&fra&denne&ligning&hvad&er&sansynligvis&ikke&sandt?&
(der&kan&være&mere&end&et&usandt&svar)&
A.&en&ion&har&en&større&solveringsenergi&end&et&neutralt&molekyle&
&
B.&alt&andet&lige,&et&lille&molekyle&har&en&mindre&solveringsenergi&end&et&stort&
&
C.&et&molekyle&har&en&størrer&solveringsenergi&i&et&opløsningsmiddel&med&stor&ε#
#
D.&alt&andet&lige,&en&anion&har&en&større&solveringsenergi&&end&en&ka`on&
&
E.&et&neutralt&ikke&polært&molekyle&har&en&lille&solveringsenergi&&&&
solveringsenergi = ΔGpolær
Solvering
Video&5.3&
h+ps://youtu.be/SoHWl96_L68&
&
h+ps://www2.chemistry.msu.edu/faculty/reusch/vir+xtjml/enrgtop.htm&
+$ <$
+&
+&
+&
+&
+&
+& +&
+&+&
+&
+&
+&
i&
i&
i&
i&
i&
i&
i&
i&i&
i&
i&
i&
E =
1389qAqB
εr
1389
kJ Å
mol
ε# εvand = 80
εvakuum = 1
r#
Solvent$“screening”$
elektrosta`ske&vækselvirkninger&svækkes&af&solventen&
I&hvilken&solvent&er&elektrosta`ske&vækselvirkninger&størst?&
A.&vand&
&
B.&acetone&
&
C.&cyclohexan&
&
D.&kloroform&
Video&5.4&
h+ps://youtu.be/C0R59ekRy2o&
ΔGSolvering
= ΔGpolær
Solvering
+ ΔGikke polær
Solvering
ΔGikke polær
Solvering
= ΔGkavitation
Solvering
+ ΔGvan der Waals
Solvering
ΔGkavitation
Solvering
= γ osSASA
γos&=&solventets&overfladespænding&
&
SASA&=&arealet&af&molekyle/solvent&overflade&
#############(SASA&=&solvent&accessible&surface&area)&
Den$ikke<polære$solvaAonsenergi$
h+p://www.liv.ac.uk/researchintelligence/issue32/tension.htm&
ΔGSolvering
= ΔGpolær
Solvering
+ ΔGikke polær
Solvering
ΔGikke polær
Solvering
= ΔGkavitation
Solvering
+ ΔGvan der Waals
Solvering
ΔGvan der Waals
Solvering
≈ −cSASA
c&=&empirisk&konstant&
&
ΔGikke polær
Solvering
= ΔGkavitation
Solvering
+ ΔGvan der Waals
Solvering
≈ γ osSASA − cSASA
≈ γ ipSASA + b
γos&=&0.438&kJ/molÅ2&&
&
γip&=&0.0227&kJ/molÅ2&(b&=&3.85&kJ/mol)&&&
for&vand&ved&25&oC:&
DOI:&10.1063/1.4745084&&
&&
DOI:&10.1021/j100058a043&
A$ B$
C$ D$
for&hvilken&`lstand&er&den&ikkeipolære&solva`onsenergi&mindst?&&
ΔGikke polær
Solvering
≈ γ ipSASA + b
Video&5.5&
h+ps://youtu.be/xVmrgm5XobM&
Den$hydrofobe$effekt$
Ikkeipolære&molekyler&opløst&i&vand&binder&stærkere&end&i&vakuum&
for&at&mindske&kontakten&med&solventen&(dvs&SASA)&
ΔGo
≈ ΔΔGikke polær
Solvering
≈ γ ipΔSASA + b

SASAX+X SASAX⋅X
SASAX⋅X < SASAX+ X ⇒ ΔGikke polær
Solvering
(X ⋅ X) < ΔGikke polær
Solvering
(X + X)
Arealet&er&lavest&
A$ B$ C$ D$

|ΔSASA|&størst&for&B$
Ud&fra&følgende&`lnærmelse,&hvilket&“molekyle”&bindes&sandsynligvis&stærkest&med&sig&selv?&
ΔGo
≈ ΔΔGikke polær
Solvering
≈ γ ipΔSASA + b
Olie&er&hydrofobisk&
h+p://youtu.be/D6aoJNqt1MQ&
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.,Hydrofobisitet,og,entropi,
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Video&6.1&
h+ps://youtu.be/KqSjPspb0EA&
Hvad&er&&&&&&&&&&for&denne&simulaDon?&
A ΔSo
= 0
B ΔSo
< 0
C ΔSo
> 0
ΔSo
h+p://youtu.be/zKNmBjqGijI&
+& 
+&  +&
ΔSo
> 0
2&parDkler& 1&parDkel&
2&parDkler& 5&parDkler&
Solventen(bidrager(/l(entropiændringen(
vandet&i&bindingslommen&er&anderledes&=&hydrofob&
+&  +&
h+p://youtu.be/1WkZznwmO0c&
+&  +&
h+p://youtu.be/ETMmH2trTpM&
ΔSo
> 0
vandet&tæ+est&på&liganden&er&anderledes&=&hydrofob&

ΔSo,Trans
= ? ved 25 o
C
(H2O)4'smelter'i'vand'
A.'2.4'J/molK'
'
B.'35.2'J/molK'
'
C.'99.2'J/molK'
'
D.'337.0'J/molK'

ΔSo,Trans
= ? ved 25 o
C
Sopløsning
o,Trans
= nRln 3.7487M 3/2
T 3/2
( )
ΔSo,Trans
= 4Rln 3.7487M 3/2
T 3/2
( )− Rln 3.7487 4M( )3/2
T 3/2
( )
= 3Rln 3.7487M 3/2
T 3/2
( )
118.1
  
− 3
2 ln 4( )
17.3

= 337.0 J/molK
“isbjergsmodellen”'kun'kvalitaHv'
ΔSo'kommer'sandsynligvis'mest'fra'ΔSvib'og'ΔSkonf''
'
(H2O)4'smelter'i'vand' A.'2.4'J/molK'
'
B.'35.2'J/molK'
'
C.'99.2'J/molK'
'
D.'337.0'J/molK'
Video&6.2&
h+ps://youtu.be/g7Fe4FGN9tE&
h+p://youtu.be/ETMmH2trTpM&
ΔSo
> 0
ΔH o
≈ +0
ΔGo
< 0
 +&
Entropien(s/ger(når(hydrofobe(molekyler(bindes(
ΔGikke polær
Solvering
= ΔGkavitation
Solvering
+ ΔGvan der Waals
Solvering
≈ γ osSASA − cSASA
≈ γ ipSASA + b
ΔSikke polær
Solvering
=
∂ΔGikke polær
Solvering
∂T
≈
∂γ os
∂T
SASA −
∂c
∂T
SASA
≈
∂γ os
∂T
SASA
∂γ os
∂T
= −0.00112 kJ/molÅ2
K
Den&ikkePpolære&solveringsentropi&er&negaDv&
 +&
h+p://youtu.be/ETMmH2trTpM&
ΔSo
> 0
ΔH o
≈ +0
ΔGo
< 0
ΔSo
≈ ΔΔSikke polær
Solvering
≈
∂γ os
∂T
<0

ΔSASA
<0

> 0
En&negaDv&ikkePpolær&solveringsentropi&betyder&
at&entropien&sDger&når&hydrofobe&molekyler&bindes&
&
benzen(benzen)  benzen(aq)
Hvad&er&&&&&&&&&&for&denne&proces?&
A ΔSo
= 0
B ΔSo
< 0
C ΔSo
> 0
ΔSo
Video&6.3&
h+ps://youtu.be/gAaV7bEWqOw&
Hvordan(måler(man(hydrofobisitet?(

solute(vand)  solute(octanol)
log(Pwo ) = log
[solute(octanol) ]
[solute(vand) ]
⎛
⎝
⎜
⎞
⎠
⎟
log(P)&>&1&=&hydrofobisk&
ε&=&80&ε&=&10&
Cl((O((C(((H( Hvilket&molekyle&har&det&laveste&log(Pwo)?&&
Video&6.4&
h+ps://youtu.be/7CVzdXnM1eM&
P + L  P ⋅L
For&hvilken&ligand&vil&ΔSo&være&mest&posiDv?&
Ligand&binding&Dl&enzymet&carbonic&anhydrase&(ved&25&oC)&
ΔGo&&&&&&&&&&&&&&&P56.5&&&&&&&&&&&&&&&&&&&&&&&&&P54.4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P55.2&&&&&&&&&&&&&&&&&&&&&&&&&&&P55.6&kJ/mol&
&
ΔHo&&&&&&&&&&&&&&&P79.1&&&&&&&&&&&&&&&&&&&&&&&&&P68.2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P51.9&&&&&&&&&&&&&&&&&&&&&&&&&&&P35.1&kJ/mol&
&
PTΔSo&&&&&&&&&&&&&23.0&&&&&&&&&&&&&&&&&&&&&&&&&&&14.2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P2.9&&&&&&&&&&&&&&&&&&&&&&&&&&&P20.1&kJ/mol&
&
log(Pwo)&&&&&&&&&0.25&&&&&&&&&&&&&&&&&&&&&&&&&&1.33&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&P0.65&&&&&&&&&&&&&&&&&&&&&&&&&&&0.12&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&
&
P + L  P ⋅L
Binding&Dl&enzymet&carbonic&anhydrase&(ved&25&oC)&
DOI:&10.1002/anie.201301813&
+&  +&
+&  +&

octanol&
log(Pwo)(måler(den(totale(hydrofobisitet(af(liganden((
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.,Kemisk,akLvitet,og,ikkeMideale,opløsninger,
8.$Termodynamikens$tre$love$og$Boltzmannfordelingen$
Video&7.1&
h+ps://youtu.be/D_eGyby1whM&
A  B+ C K =
[B][C]
[A]
ΔGo
= −RT ln(K)
ΔGo
= −
J
mol K
⎛
⎝⎜
⎞
⎠⎟ K( )ln(K) = J/mol
ΔGo
= −
J
mol K
⎛
⎝⎜
⎞
⎠⎟ K( )ln
M ⋅M
M
⎛
⎝⎜
⎞
⎠⎟ = J/molln(M)
??

Ligevægtskonstanten-har-ingen-enheder-
ΔGo
= ΔGMolekyle/Konformation
+ ΔGo,Translation
+ ΔGRotation
+ ΔGVibration
+ ΔΔGSolvering
Fri-energibidrag-for-en-ideal-opløsning-
ΔH o,Trans
= 3
2 nRT + po
ΔV ≈ 3
2 nRT + ΔngasRT
So,Trans
= nRln
2πm( )3/2
e5/2
h3
Co
⎛
⎝
⎜
⎞
⎠
⎟ Co&=&1.0&mol/L&
Ideal&opløsning&=&ingen&vækselvirkninger&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&mellem&solute&molekyler&
H o,Trans
≈ 3
2 nRT
Solute:&molekylet&der&er&opløst&
&
Solvent&
STrans
= Rln
2πm( )3/2
e5/2
h3
C
⎛
⎝
⎜
⎞
⎠
⎟
= Rln
2πm( )3/2
e5/2
h3
Co C
Co
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
= Rln
2πm( )3/2
e5/2
h3
Co
⎛
⎝
⎜
⎞
⎠
⎟ − Rln
C
Co
⎛
⎝⎜
⎞
⎠⎟
= So,Trans
− Rln
C
Co
⎛
⎝⎜
⎞
⎠⎟
S = So
+ Rln
C
Co
⎛
⎝⎜
⎞
⎠⎟ ⇒ G = Go
+ RT ln
C
Co
⎛
⎝⎜
⎞
⎠⎟
STrans,&og&derfor&G,&er&en&funkKon&af&koncentraKon,&C&
R  P
G(X) = Go
(X) + RT ln
[X]
Co
⎛
⎝⎜
⎞
⎠⎟
G(P) − G(R) = Go
(P) − Go
(R) + RT ln
[P]
Co
[R]
Co
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
ΔG = ΔGo
+ RT ln
[P]
Co
[R]
Co
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
ΔG = 0 ⇒
[P]
Co
[R]
Co
= e−ΔGo
/RT
vi skriver K =
[P]
[R]
men mener K =
[P]
Co
[R]
Co
A  B+ C
K =
[B][C]
[A]
K-har-ingen-enheder,&men&bliver&Kt&angivet&som,&f.eks.&0.001&M&eller&1&mM&
ved&ligevægt&
ingen&enheder&
Ligevægtskonstanten-har-ingen-enheder-
R  P
G(X) = Go
(X) + RT ln
[X]
Co
⎛
⎝⎜
⎞
⎠⎟
G(X) = Go
(X) + RT ln
pX
po
⎛
⎝⎜
⎞
⎠⎟
G(X) = Go
(X) + RT ln
[X]
CX
o
⎛
⎝⎜
⎞
⎠⎟
Co&=&1&M&ideal&opløsning&&
po&=&1&bar&ideal&gas&&
CX
o&=&koncentraKon&af&ren&væske&
eller&faststof&
opløsning&
gas&
faststof/væske&
H2O(l)  H2O(g)
K =
pH2O
po
⎛
⎝⎜
⎞
⎠⎟
[H2O]
CH2O
o
⎛
⎝⎜
⎞
⎠⎟
1
  
=
pH2O
po
⎛
⎝⎜
⎞
⎠⎟  pH2O[H2O] = CH2O
o
= 55.56 M
forskellige-standard7lstande-
uaMængig&af&fordampning&
H2CO3(aq)  H2
O(l) + CO2(g)
A. K =
[HH2O ]pCO2
[H2CO3 ]
B. K =
[HH2O ]
[H2CO3 ]
C. K =
pCO2
[H2CO3 ]
D. K = pCO2
Hvad&er&ligevægtskonstanten&for&denne&reakKon?&
Video&7.2&
h+ps://youtu.be/Va5LJ8UX7sY&
PbI2(s)  Pb(aq)
2+
+ 2I(aq)
−
K = [Pb2+
][I−
]2
ΔGo
= 46.1 kJ/mol ⇒ K = 5.93×10−9
⇒ [Pb2+
] = 1.14 ×10−3
M
målt: [Pb2+
] = 1.37 ×10−3
M
Mere&Pb2+&opløst&end&forventet!&
K = e−ΔGo
/RT
20&oC&
Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&
sammenlignet&med&ideal&opløsning&
Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&
sammenlignet&med&ideal&opløsning&
+- +-
+-
9-
9-
h+p://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equaKon&
Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&
sammenlignet&med&ideal&opløsning&
PbI2(s)  Pb(aq)
2+
+ 2I(aq)
−
K = aPb2+ aI−
2
ΔGo
= 46.1 kJ/mol ⇒ K = 5.93×10−9
⇒ aPb2+ = 1.14 ×10−3
M
målt: [Pb2+
] = 1.37 ×10−3
M
Mere&Pb2+&opløst&end&forventet&
K = e−ΔGo
/RT
aPb2+ = γ Pb2+ [Pb2+
] ⇒ γ Pb2+ =
1.14 ×10−3
M
1.37 ×10−3
M
= 0.83
Ak7vitet-(a)-for-en-ikke9ideal-opløsning-
R(aq)  P(aq)
K =
aP
aR
= e−ΔGo
/RT
aP = γ P
[P]
Co
ingen&
enheder&
aP = 1⇒ γ P = 1,
[P]
Co
= 1
standard&Klstand&
1&M&ideal&opløsning&
Kc =
[P]
[R]
⇒ K =
γ P
γ R
Kc ⇒ ΔGo
= −RT ln K( )
ΔGo
⇒ K = e−ΔGo
/RT
⇒ Kc =
γ R
γ P
K
γ&kaldes&akKvitetskoefficienten&
A γ Na+ ≈ γ Ca2+
B γ Na+ < γ Ca2+
C γ Na+ > γ Ca2+
D ved ikke
Hvad&vil&du&forvente&(samme&koncentraKon)?&
h+p://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equaKon&
Vækselvirkninger&mellem&solute&molekyler&øger&koncentraKonen&af&fri&ioner&
sammenlignet&med&ideal&opløsning&
Video&7.3&
h+ps://youtu.be/LFqWtMudxJc&
γ ± = 10− q+ q− A I
I = 1
2 q+
2
[+]+ q−
2
[−]( )
γ±&=&middel&akKvitetskoefficienten&
'
q+&=&ladning&af&kaKoner&
&
I&=&ionstyrke&
&
A&=&0.509&for&vandig&opløsning&ved&25&oC&
&
[+]&=&koncentraKon&af&kaKoner&
Den-simple-Debye9Hückel-ligning-
(the&limited&DebyejHückel&law)&
KCl(s)  K(aq)
+
+ Cl(aq)
−
K = aK+ aCl− = γ K+ [K+
]γ Cl− [Cl−
] = γ K+ γ Cl−( )[K+
][Cl−
] = γ ±
2
[K+
][Cl−
]
γ ± = 10− q+ q− A I
I = 1
2 q+
2
[+]+ q−
2
[−]( )
Den-simple-Debye9Hückel-ligning-
(the&limited&DebyejHückel&law)&
middel&akKvitetskoefficienten&for&0.001&M&CaCl2&
I = 1
2 q+
2
[+]+ q−
2
[−]( )
= 1
2 +2( )2
0.001( )+ −1( )2
0.002( )⎡
⎣
⎤
⎦
= 0.003
γ ± = γ Ca2+
2
γ Cl−( )
1/3
= 10− q+ q− A I
= 10− +2⋅−1 0.509 0.003
= 0.88
målt=&0.89&
γ ± = 10− q+ q− A I
I = 1
2 q+
2
[+]+ q−
2
[−]( )
Den-simple-Debye9Hückel-ligning-
(the&limited&DebyejHückel&law)&
Ud&fra&denne&ligning&hvad&er&sansynligvis&ikke&sandt?&
(der&kan&være&mere&end&et&usandt&svar)&
A.&&γ±&går&mod&1&når&ionkoncentraKonen&falder&
&
B.&alt&andet&lige&har&Zn2+&en&mindre&γ±&end&Brj&&
&
C.&γ±&er&0&for&neutrale&molekyler&
&
D.&0.01&M&CaCl2&har&en&størrer&γ±&end&0.01&M&CaSO4&&
&
E.&γ±&kan&være&størrer&end&1&&&
Video&7.4&
h+ps://youtu.be/MZGwsQ61T7M&
PbI2(s)  Pb(aq)
2+
+ 2I(aq)
−
5.93×10−9
= [Pb2+
][I−
]2
= x 2x( )2
= 4x3
⇒ [Pb2+
] = 1.14 ×10−3
M
målt: [Pb2+
] = 1.37 ×10−3
M
Mere&Pb2+&opløst&end&forventet!&
Den-simple-Debye9Hückel-ligning:-et-eksempel-
PbI2(s)  Pb(aq)
2+
+ 2I(aq)
−
5.93×10−9
= γ Pb2+ [Pb2+
]γ I−
2
[I−
]2
= γ ±
3
[Pb2+
][I−
]2
⇒ [Pb2+
] = 1.32 ×10−3
M
målt: [Pb2+
] = 1.37 ×10−3
M
Mere&Pb2+&opløst&end&forventet!&
γ ± = 10−2 0.509( ) I
I = 1
2 22
[Pb2+
]+ [I-
]( )
5.93×10−9
= 10−2 0.509( ) 3x
( )
3
4x3
( )
log γ ±( )= −
A q−q+ I
1+ B I
+ CI
γ ± = 10− q+ q− A I
Den-simple-Debye9Hückel-ligning-
(the&limited&DebyejHückel&law)&
Den-udvidede-Debye9Hückel-ligning-
(the&extended&DebyejHückel&law)&
I ≤ 0.01 M
log γ ±( )= −
0.509 q−q+ I
1+ I
− 0.3IDavies:& I ≤ 0.1 M
Termodynamik,for,Biokemikere,
,
Jan$H.$Jensen$
Københavns$Universitet$
1.$Ligevægt$og$ligevægtskonstanten$
2.$Enthalpi$og$entropi$
3.$Enthalpi$og$entropi$for$an$ideal$gas$og$van’t$Hoff$ligningen$
4.$Måling$af$enthalpi$og$entropi$ændringer$vha$kalorimetri$
5.$Enthalpi$og$entropi$for$en$ideal$opløsning$
6.$Hydrofobisitet$og$entropi$
7.$Kemisk$akIvitet$og$ikkeJideale$opløsninger$
8.,Termodynamikens,tre,love,og,Boltzmannfordelingen,
Video&8.1&
h+ps://youtu.be/XeupZ3YwCaM&
dU = dq + dw
q
Tkoldt
−
q
Tvarmt
> 0
ΔSunivers > 0
dS =
dqrev
T
dqrev&=&en&varmeoverførsel&der&så&lille&at&T&er&upåvirket&
&&&&&&&&&&&&&T&er&upåvirket&=&reversible&process&=&ligevægt&
S 0 K( ) = 0
U&=%indre&energi%
q&=&varme&&
w&=&arbejde&
Termodynamikkens&3&love&
1.&
2.&
3.&
Varme&overførers&spontant'fra&varme&Ll&kolde&legemer&
ΔSunivers ≥ 0
dSsystem + dSbad ≥ 0
dSsystem +
dqbad
T
≥ 0
dSsystem −
dqsystem
T
≥ 0
dSsystem −
dUsystem + pdVsystem( )
T
≥ 0
0 ≥ dHsystem − TdSsystem
0 ≥ dGsystem
2.'lov' >&for&spontan&process&
=&ved&ligevægt&
&
dU = dq + dw
= dq − pdV
dq = dU + pdV
dGsystem ≡ dG = 0
universets'entropi's0ger,'og'systemets'fri'energi'falder,'for'en'spontant'process'
Ligevægt:& ⇒ K = e−ΔGo
/RT
Dill&&&Bromberg&Molecular%Driving%Forces%
Hvad&er&sandt?&
A.&G&er&uaUængig&af&koncentraLon,&Go&er&aUængig&af&koncentraLon&
&
B.&ΔG&er&fri&energi&ændring&for&blandingen&af&reaktant&og&produkt,&
&&&&&ΔGo&er&fri&energi&forskellen&i&fri&energi&af&reaktant&eller&produkt&i&deres&standard&Llstande&
&
C.&ΔG&er&den&fri&energi&ændring&ved&et&tryk&andet&end&1&bar,&&
&&&&ΔGo&er&den&fri&energi&ændring&for&et&tryk&=&1&bar,&&
&
D.&Go&den&lavest&mulige&værdi&af&G%
Video&8.2&
h+ps://youtu.be/vVSDlReY2LQ&
A&
B&
B&
A&
A&
B&
A&Ll&venstre&x&B&Ll&venstre&
½&x&½&=&¼&
½&x&½&=&¼&½&x&½&=&¼&
½&x&½&=&¼&
½&x&½&x&½&=&⅛&
½&x&½&x&½&=&⅛&
⅛& ⅛& ⅛&
A&
B& C&
A&
C& B&
B&
C& A&
3&x&⅛&
Video&8.3&
h+ps://youtu.be/h2h3nNiQYxs&
0&
0.1&
0.2&
0.3&
0.4&
0.5&
0.6&
0& 1& 2&
sandsynlighed'
Antal'par0kler'i'højre'side'
NH
p(NH )
p(0) = 1× 1
2( )2
p(2) = 1× 1
2( )2
p(1) = 2 × 1
2( )2
0&
0.05&
0.1&
0.15&
0.2&
0.25&
0.3&
0.35&
0.4&
0& 1& 2& 3&
sandsynlighed'
antal'par0kler'i'højre'side'
NH
p(NH )
p(0) = 1× 1
2( )3
p(3) = 1× 1
2( )3
p(1) = 3× 1
2( )3
p(2) = 3× 1
2( )3
p(NH ) =
3!
NH !(3− NH )!
1
2( )3
3!= 3⋅2 ⋅1
0&
0.01&
0.02&
0.03&
0.04&
0.05&
0.06&
0.07&
0.08&
0.09&
0& 5& 10& 15& 20& 25& 30& 35& 40& 45& 50& 55& 60& 65& 70& 75& 80& 85& 90& 95& 100&
sandsynlighed'
antal'par0kler'i'højre'side'
p(NH ) =
100!
NH !(100 − NH )!
1
2( )100
= W 1
2( )100
NH
p(NH )
dGsystem ≡ dHsystem − TdSsystem = −TdSsystem ≤ 0
Hvorfor'fylder'gassen'spontant'begge'beholdere?'
systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&sandsynlighed&
&
systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&mulLplicitet&(W)&
&
systemet&går&spontant&mod&den&Llstand&der&har&den&højeste&entropi&
&
S ∝W
p(NH ) = W (NH ) 1
2( )100
S ∝W
S = k ln W( )
S'='k'ln(W)'
dS =
dqrev
T
S&har&J/K&enheder&
dS = dSA + dSB
W = WAWB
ln WA( )+ ln WB( )= ln WAWB( )
k =
R
NA
S&er&addiLv&
Hvad&er&ΔS&for&denne&process?&(N&=&100)&
A.&1.11&x&10j18&J/K&&
&
B.&5.32&x&10j19&J/K&
&
C.&8.47&x&10j20&J/K&
&
D.&2.96&x&10j21&J/K&
&
E.&9.22&x&10j22&J/K&
Hvad&er&ΔS&for&denne&process?&(N&=&100)&
ΔS = S(NH = 50) − S(NH = 0)
= k ln
100!
50!( )2
⎛
⎝
⎜
⎞
⎠
⎟ − k ln
100!
0! 100!( )
⎛
⎝⎜
⎞
⎠⎟
1
  
= 1.38 ×10−23
J/K( ) 66.8( )
= 9.22 ×10−22
J/K
≈ 100k ln(2)
W =
100!
NH !(100 − NH )!
Video&8.4&
h+ps://youtu.be/r_jHsUjXWHQ&
S = k ln W( ) = k ln
N!
N1!N2 !…Nt !
⎛
⎝⎜
⎞
⎠⎟
ε1&=&0&
ε2&&
ε3&&
N1&=&antal&molekyler&
&&&&&&&&med&energi&ε1&
ε2&&
ε1&=&0&
ε2&&
ε1&=&0&
′S = k ln N!( )− ln N1 −1( )!( )− ln N2 +1( )!( )⎡⎣ ⎤⎦
S = k ln
N!
N1!N2
⎛
⎝⎜
⎞
⎠⎟
= k ln N!( )− ln N1!( )− ln N2 !( )⎡⎣ ⎤⎦
dU = ε2 − ε1 ⇒ N1 → N1 −1 and N2 → N2 +1
Boltzmann'fordelingen'
dS = ′S − S
= k ln
N1!
N1 −1( )!
⎛
⎝
⎜
⎞
⎠
⎟ + ln
N2 !
N2 +1( )!
⎛
⎝
⎜
⎞
⎠
⎟
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
≈ k ln N1( )+ ln
1
N2 +1
⎛
⎝⎜
⎞
⎠⎟
⎡
⎣
⎢
⎤
⎦
⎥
= k ln
N1
N2 +1
⎛
⎝⎜
⎞
⎠⎟
≈ k ln
N1
N2
⎛
⎝⎜
⎞
⎠⎟
ε2&&
ε1&=&0&
ε2&&
ε1&=&0&
dU = ε2 − ε1 ⇒ N1 → N1 −1 and N2 → N2 +1
ln x!( ) ≈ xln(x) − x
stor&x%
ε2&&
ε1&=&0&
ε2&&
ε1&=&0&
dU = ε2 − ε1 = ε2 ⇒ N1 → N1 −1 and N2 → N2 +1
dS =
dU
T
k ln
N1
N2
⎛
⎝⎜
⎞
⎠⎟ =
ε2
T
k ln
N2
N1
⎛
⎝⎜
⎞
⎠⎟ = −
ε2
T
N2
N1
= e−ε2 /kT
Ni = e−εi /kT
N1
N1 e−εi /kT
i
∑ = N
N1
N
=
1
e−εi /kT
i
∑
Ni
N
=
e−εi /kT
e−εi /kT
i
∑
ved&ligevægt:&
Ni
N
=
e−εi /kT
e−εi /kT
i
∑
pi =
e−εi /kT
q
Boltzmann'fordelingen'
den&fordeling&af&energi&blandt&molekyler&
der&har&den&laveste&fri&energi&
pi&=&sandsynligheden&for&at&et&molekyle&har&energi&εi&eoer&ligevægt&&
&
q&kaldes&Llstandssummen&(parLLon&funcLon)&
ε1&=&0&
ε2&&
ε3&&
Ni&=&antal&molekyler&
&&&&&&&&med&energi&εi&
ε1&=&0&
ε2&&
ε3&&Hvad&er&S&for&denne&fordeling?&
A.&1.91&x&10j20&J/K&&
&
B.&1.22&x&10j22&J/K&
&
C.&8.58&x&10j23&J/K&
&
D.&3.36&x&10j24&J/K&
&
E.&6.42&x&10j25&J/K&
Video&8.5&
h+ps://youtu.be/gne9xlUe5lQ&
ΔSunivers ≥ 0 og S = k ln W( )⇒ pi =
e−εi /kT
q
U = U(0) + N ε
ε = piεi
i
∑ =
1
q
εie−βεi
i
∑ = −
1
q
d
dβ
e−βεi
i
∑
⎡
⎣
⎢
⎤
⎦
⎥ = −
1
q
dq
dβ
Boltzmann'fordelingen'giver'ligningerne'for''
fri'energibidrag'for'en'ideal'gas'
β = 1
kT
S = k ln
N!
N1!N2 !…Nt !
⎛
⎝⎜
⎞
⎠⎟
= k ln Ni ln N − Ni ln Ni( )
i
∑ = −k Ni ln
Ni
Ni
∑
= −k Ni
i
∑ ln
e−βεi
q
⎛
⎝⎜
⎞
⎠⎟ = kβ Niεi
i
∑ + Nk lnq
=
U
T
+ Nk lnq
ε1&=&0&
ε2&&
ε3&&
Eksempel:'den'transla0onelle'indre'energi'
εnx nynz
T
= εnx
T
+ εny
T
+ εnz
T
εnx
T
= (nx
2
−1)
h2
8mX2
= (nx
2
−1)ε nx = 1,2,3,....
Kvantemekanik&
(parLkel&i&en&kasse&
med&længde&X%
og&masse%m)&
qX
T
= e−βεi
i=1
∞
∑ = e−(n2
−1)βε
dn
1
∞
∫ ≈ e−n2
βε
dn
0
∞
∫ ≈
2πm
h2
β
X
qT
=
2πm
h2
β
⎛
⎝⎜
⎞
⎠⎟
3/2
XYZ =
2πm
h2
β
⎛
⎝⎜
⎞
⎠⎟
3/2
V
εT
= −
1
q
dq
dβ
⎛
⎝⎜
⎞
⎠⎟
V
= 3
2 kT
UT
= UT
(0)
0
 + N εT
= 3
2 nRT
εTrans
kT
≈ 10−20
εTrans
kT
≈ 10−20
⇒UTrans
=
3
2
nRT ⇒ H Trans
= UTrans
+ pV =
5
2
nRT
εRot
kT
≈ 0.01− 0.001⇒URot
= H Rot
=
3
2
nRT
εVib
kT
≈ 2 −10 ⇒UVib
= HVib
= nNAhc νi
1
2 +
1
eNAhc νi /RT
−1
⎛
⎝⎜
⎞
⎠⎟
i=1
3Nat − X
∑
UVib
= UVib
(0)
≠0
 + N εVib
Vibra0on'er'lidt'anderledes'
ε1&=&0&
ε2&&
ε3&&
pi =
e−εi /kT
q
og S =
U
T
+ Nk lnq
STrans
= nRln
2πm( )3/2
kTe( )5/2
h3
p
⎛
⎝
⎜
⎞
⎠
⎟
SRot
= nRln
8π2
keT
h2
⎛
⎝⎜
⎞
⎠⎟
3/2
πI1I2 I3
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
SVib
= nR
NAhcνi
RT eNAhc νi /RT
−1( )
− ln 1− e−NAhc νi /RT
( )
⎛
⎝
⎜
⎞
⎠
⎟
i=1
3Nat −6
∑
εi
Trans
,εi
Vib
, og εi
Vib
fra kvantemekanik
S = k ln W( ) = k ln
N!
N1!N2 !…Ng !
⎛
⎝
⎜
⎞
⎠
⎟
Ni
N
=
e−εi /kT
e−εi /kT
i
∑
ε1 = ε2 = … = εg
⇒ N1 = N2 = … = Ng = N
g
W =
N!
N g( )!g
=
N e( )N
N g( ) N g( )g
=
N e( )N
N e( ) 1 g( )
⎛
⎝
⎜
⎞
⎠
⎟
N
= gN
Entropi'og'udartning'
S = k ln W( ) = Nk ln g( )
x!≈ x e( )x
ε1&=&0&
ε2&=&kT&&
ε3&=&2kT&Hvad&er&U&for&denne&fordeling?&
A. U =
9
q
kTe−1
+ 2kTe−2
( )
B. U =
9
q
kTe + 2kTe2
( )
C. U =
9
q
1+ kTe−1
+ 2kTe−2
( )
D. U = kTe−1
+ 2kTe−2
( )
ε1&=&0&
ε2&=&kT&&
ε3&=&2kT&Hvad&er&U&for&denne&fordeling?&
U = U(0)
0
 + N ε
ε = piεi
i
∑ = p1 ε1
0
 + p2ε2 + p3ε3 = p2kT + p3 2kT
pi =
e−εi /kT
q
p2 =
e−kT /kT
q
=
e−1
q
p3 =
e−2kT /kT
q
=
e−2
q q = e−εi /kT
i
∑
= 1+ e−1
+ e−2
N ε =
9
q
kTe−1
+ 2kTe−2
( )

More Related Content

Viewers also liked

Peer instruction questions on thermodynamics part 1
Peer instruction questions on thermodynamics part 1Peer instruction questions on thermodynamics part 1
Peer instruction questions on thermodynamics part 1molmodbasics
 
Peer instruction question on Entropy
Peer instruction question on EntropyPeer instruction question on Entropy
Peer instruction question on Entropy
molmodbasics
 
Quantum Biochemistry: the rise of semiempirical methods
Quantum Biochemistry: the rise of semiempirical methodsQuantum Biochemistry: the rise of semiempirical methods
Quantum Biochemistry: the rise of semiempirical methods
molmodbasics
 
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
molmodbasics
 
Drug Design and pH
Drug Design and pHDrug Design and pH
Drug Design and pH
molmodbasics
 
Teaching Tools and Tips
Teaching Tools and TipsTeaching Tools and Tips
Teaching Tools and Tips
molmodbasics
 
Different kinds of peer instruction questions for thermodynamics
Different kinds of peer instruction questions for thermodynamicsDifferent kinds of peer instruction questions for thermodynamics
Different kinds of peer instruction questions for thermodynamics
molmodbasics
 
Short answer questions on thermodynamics
Short answer questions on thermodynamicsShort answer questions on thermodynamics
Short answer questions on thermodynamics
molmodbasics
 
Quantum biochemistry
Quantum biochemistryQuantum biochemistry
Quantum biochemistry
molmodbasics
 
I lecture nomore
I lecture nomoreI lecture nomore
I lecture nomore
molmodbasics
 
Protein structure determination & refinement using QM-derived chemical shifts
Protein structure determination & refinement using QM-derived chemical shiftsProtein structure determination & refinement using QM-derived chemical shifts
Protein structure determination & refinement using QM-derived chemical shifts
molmodbasics
 
Why I blog
Why I blogWhy I blog
Why I blog
molmodbasics
 
Why I tweet
Why I tweetWhy I tweet
Why I tweet
molmodbasics
 
Understanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum ChemistryUnderstanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum Chemistry
winterschool
 
EIGHT RULES OF AROMATICITY
EIGHT RULES OF AROMATICITYEIGHT RULES OF AROMATICITY
EIGHT RULES OF AROMATICITY
winterschool
 

Viewers also liked (15)

Peer instruction questions on thermodynamics part 1
Peer instruction questions on thermodynamics part 1Peer instruction questions on thermodynamics part 1
Peer instruction questions on thermodynamics part 1
 
Peer instruction question on Entropy
Peer instruction question on EntropyPeer instruction question on Entropy
Peer instruction question on Entropy
 
Quantum Biochemistry: the rise of semiempirical methods
Quantum Biochemistry: the rise of semiempirical methodsQuantum Biochemistry: the rise of semiempirical methods
Quantum Biochemistry: the rise of semiempirical methods
 
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
Blurring the boundary between linear scaling QM, QM/MM and polarizable force ...
 
Drug Design and pH
Drug Design and pHDrug Design and pH
Drug Design and pH
 
Teaching Tools and Tips
Teaching Tools and TipsTeaching Tools and Tips
Teaching Tools and Tips
 
Different kinds of peer instruction questions for thermodynamics
Different kinds of peer instruction questions for thermodynamicsDifferent kinds of peer instruction questions for thermodynamics
Different kinds of peer instruction questions for thermodynamics
 
Short answer questions on thermodynamics
Short answer questions on thermodynamicsShort answer questions on thermodynamics
Short answer questions on thermodynamics
 
Quantum biochemistry
Quantum biochemistryQuantum biochemistry
Quantum biochemistry
 
I lecture nomore
I lecture nomoreI lecture nomore
I lecture nomore
 
Protein structure determination & refinement using QM-derived chemical shifts
Protein structure determination & refinement using QM-derived chemical shiftsProtein structure determination & refinement using QM-derived chemical shifts
Protein structure determination & refinement using QM-derived chemical shifts
 
Why I blog
Why I blogWhy I blog
Why I blog
 
Why I tweet
Why I tweetWhy I tweet
Why I tweet
 
Understanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum ChemistryUnderstanding Chemical Reaction Mechanisms with Quantum Chemistry
Understanding Chemical Reaction Mechanisms with Quantum Chemistry
 
EIGHT RULES OF AROMATICITY
EIGHT RULES OF AROMATICITYEIGHT RULES OF AROMATICITY
EIGHT RULES OF AROMATICITY
 

More from molmodbasics

xyz2mol for organometallic compounds
xyz2mol for organometallic compoundsxyz2mol for organometallic compounds
xyz2mol for organometallic compounds
molmodbasics
 
Chemical Space Exploration
Chemical Space ExplorationChemical Space Exploration
Chemical Space Exploration
molmodbasics
 
ChemRxiv, Plan S, and OA publishing
ChemRxiv, Plan S, and OA publishingChemRxiv, Plan S, and OA publishing
ChemRxiv, Plan S, and OA publishing
molmodbasics
 
A Quantum Chemist Meets Cheminformatics
A Quantum Chemist Meets CheminformaticsA Quantum Chemist Meets Cheminformatics
A Quantum Chemist Meets Cheminformatics
molmodbasics
 
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
Can We Automate Computational Studies of Enzymes?  Lessons from Small-Molecul...Can We Automate Computational Studies of Enzymes?  Lessons from Small-Molecul...
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
molmodbasics
 
Open is Better
Open is BetterOpen is Better
Open is Better
molmodbasics
 
Proteiner du kan regne med
Proteiner du kan regne med Proteiner du kan regne med
Proteiner du kan regne med
molmodbasics
 
Using semiempirical methods for fast and automated predictions
Using semiempirical methods for fast and automated predictionsUsing semiempirical methods for fast and automated predictions
Using semiempirical methods for fast and automated predictions
molmodbasics
 
Jan H. Jensen: profile
Jan H. Jensen: profileJan H. Jensen: profile
Jan H. Jensen: profile
molmodbasics
 
Peer instruction questions for DFT
Peer instruction questions for DFTPeer instruction questions for DFT
Peer instruction questions for DFT
molmodbasics
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
molmodbasics
 
IRENE Conference
IRENE Conference IRENE Conference
IRENE Conference
molmodbasics
 

More from molmodbasics (12)

xyz2mol for organometallic compounds
xyz2mol for organometallic compoundsxyz2mol for organometallic compounds
xyz2mol for organometallic compounds
 
Chemical Space Exploration
Chemical Space ExplorationChemical Space Exploration
Chemical Space Exploration
 
ChemRxiv, Plan S, and OA publishing
ChemRxiv, Plan S, and OA publishingChemRxiv, Plan S, and OA publishing
ChemRxiv, Plan S, and OA publishing
 
A Quantum Chemist Meets Cheminformatics
A Quantum Chemist Meets CheminformaticsA Quantum Chemist Meets Cheminformatics
A Quantum Chemist Meets Cheminformatics
 
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
Can We Automate Computational Studies of Enzymes?  Lessons from Small-Molecul...Can We Automate Computational Studies of Enzymes?  Lessons from Small-Molecul...
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
 
Open is Better
Open is BetterOpen is Better
Open is Better
 
Proteiner du kan regne med
Proteiner du kan regne med Proteiner du kan regne med
Proteiner du kan regne med
 
Using semiempirical methods for fast and automated predictions
Using semiempirical methods for fast and automated predictionsUsing semiempirical methods for fast and automated predictions
Using semiempirical methods for fast and automated predictions
 
Jan H. Jensen: profile
Jan H. Jensen: profileJan H. Jensen: profile
Jan H. Jensen: profile
 
Peer instruction questions for DFT
Peer instruction questions for DFTPeer instruction questions for DFT
Peer instruction questions for DFT
 
Peer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanicsPeer instructions questions for basic quantum mechanics
Peer instructions questions for basic quantum mechanics
 
IRENE Conference
IRENE Conference IRENE Conference
IRENE Conference
 

Thermodynamics for Biochemists: a YouTube textbook