SlideShare a Scribd company logo
Anomalous thermodynamic power laws
                        in nodal superconductors
                                                   arXiv:1302.2161


                                    Bayan Mazidian1,2 , Jorge Quintanilla2,3
                                     James F. Annett1 , Adrian D. Hillier2

                                                1
                                                  University of Bristol
                                    2
                                ISIS Facility, STFC Rutherford Appleton Laboratory
                           3
                             SEPnet and Hubbard Theory Consortium, University of Kent




     Functional Materials Symposium, University of Kent, Canterbury 2013



Jorge Quintanilla (Kent and ISIS)         Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   1 / 39
PRELUDE - Symmetry




                              Photo: Eddie Hui-Bon-Hoa, www.shiromi.com
                                                                                                                

                                                                                                                




 Jorge Quintanilla (Kent and ISIS)                                        Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   2 / 39
PRELUDE - Symmetry




                                                                                             Photo: Kenneth G. Libbrecht, snowflakes.com
                              Photo: Eddie Hui-Bon-Hoa, www.shiromi.com
                                                                                                                                                    

                                                                                                                                                    




 Jorge Quintanilla (Kent and ISIS)                                        Anomalous supercond. power laws arXiv:1302.2161                      Canterbury 2013   2 / 39
PRELUDE - Symmetry




                                                                                                              Photo: Kenneth G. Libbrecht, snowflakes.com
                                               Photo: Eddie Hui-Bon-Hoa, www.shiromi.com
                                                                                                                                                                                                       

                                                                                                                                                                                                       
       Virginia Tech, 18 March 2011                                                                                                                         blogs.kent.ac.uk/strongcorrelations




                                          Unconventional superconductors



                                                                                                          
           Photo: commons.wikimedia.org




                                                                                                          




 Jorge Quintanilla (Kent and ISIS)                                                         Anomalous supercond. power laws arXiv:1302.2161                                                        Canterbury 2013   2 / 39
PRELUDE - Symmetry




                                                                                                              Photo: Kenneth G. Libbrecht, snowflakes.com
                                               Photo: Eddie Hui-Bon-Hoa, www.shiromi.com
                                                                                                                                                                                                       

                                                                                                                                                                                                       
       Virginia Tech, 18 March 2011                                                                                                                         blogs.kent.ac.uk/strongcorrelations




                                          Unconventional superconductors



                                                                                                          
           Photo: commons.wikimedia.org




                                                                                                          




 Jorge Quintanilla (Kent and ISIS)                                                         Anomalous supercond. power laws arXiv:1302.2161                                                        Canterbury 2013   2 / 39
PRELUDE - Symmetry




                                                                                                              Photo: Kenneth G. Libbrecht, snowflakes.com
                                               Photo: Eddie Hui-Bon-Hoa, www.shiromi.com
                                                                                                                                                                                                       

                                                                                                                                                                                                       
       Virginia Tech, 18 March 2011                                                                                                                         blogs.kent.ac.uk/strongcorrelations




                                          Unconventional superconductors



                                                                                                          
           Photo: commons.wikimedia.org




                                                                                                          




 Jorge Quintanilla (Kent and ISIS)                                                         Anomalous supercond. power laws arXiv:1302.2161                                                        Canterbury 2013   2 / 39
PRELUDE - Topology




 Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   3 / 39
PRELUDE - Topology




 Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   3 / 39
PRELUDE - Topology




 Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   3 / 39
PRELUDE - Topology




 Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   3 / 39
Anomalous thermodynamic power laws in nodal
superconductors



1   What are they?


2   How to get them


3   An example


4   Take-home message




    Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   4 / 39
Anomalous thermodynamic power laws in nodal
superconductors



1   What are they?


2   How to get them


3   An example


4   Take-home message
Power laws in nodal superconductors

     Low-temperature specific heat of a superconductor gives information on the
     spectrum of low-lying excitations:
                              Fully gapped                 Point nodes                    Line nodes
                             Cv ∼     e −∆/T                  Cv ∼      T3                Cv ∼ T 2
                             ∆




     This simple idea has been around for a while.1
     Widely used to fit experimental data on unconventional superconductors.2


  1 Anderson     & Morel (1961), Leggett (1975)
  2 Sigrist,   Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)
  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161              Canterbury 2013   6 / 39
Linear nodes

     It all comes from the density of states:                       +


                                      g (E ) ∼ E n−1 ⇒ Cv ∼ T n




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   7 / 39
Linear nodes

     It all comes from the density of states:                         +


                                        g (E ) ∼ E n−1 ⇒ Cv ∼ T n

                                                          linear
                                      point node                            line node




                                               y         2
                              ∆2 = I1 k|| 2 + k||
                               k
                                       x                                  ∆2 = I1 k|| 2
                                                                           k
                                                                                   x

                                               E2 √                                    LE √
                                g (E ) =   2(2π )2 I1 I2
                                                                   g (E ) =             √
                                                                                  (2π )3 I1 I2
                                        n=3                                    n=2




  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161          Canterbury 2013   7 / 39
Linear nodes

     It all comes from the density of states:                         +


                                        g (E ) ∼ E n−1 ⇒ Cv ∼ T n

                                                          linear
                                      point node                            line node




                                               y         2
                              ∆2 = I1 k|| 2 + k||
                               k
                                       x                                  ∆2 = I1 k|| 2
                                                                           k
                                                                                   x

                                               E2 √                                    LE √
                                g (E ) =   2(2π )2 I1 I2
                                                                   g (E ) =             √
                                                                                  (2π )3 I1 I2
                                        n=3                                    n=2

     Key assumption: linear increase of the gap away from the node


  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161          Canterbury 2013   7 / 39
Shallow nodes
     Relax the linear assumption and we also get different exponents:




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   8 / 39
Shallow nodes
     Relax the linear assumption and we also get different exponents:
                                                         shallow
                                      point node                            line node




                                                 y       2
                               ∆2 = I1 (k|| 2 + k|| )2
                                k
                                         x                                ∆2 = I1 k|| 4
                                                                           k
                                                                                   x
                                                                                           √
                                                  E √                                     L E
                                g (E ) =   2(2π )2
                                                  √
                                                    I1 I2
                                                                   g (E ) =                 1√
                                                                                   (2π )3 I14    I2
                                        n=2                                  n = 1.5




  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161               Canterbury 2013   8 / 39
Shallow nodes
     Relax the linear assumption and we also get different exponents:
                                                         shallow
                                      point node                            line node




                                                 y       2
                               ∆2 = I1 (k|| 2 + k|| )2
                                k
                                         x                                ∆2 = I1 k|| 4
                                                                           k
                                                                                   x
                                                                                           √
                                                  E √                                     L E
                                g (E ) =   2(2π )2
                                                  √
                                                    I1 I2
                                                                   g (E ) =                 1√
                                                                                   (2π )3 I14    I2
                                        n=2                                  n = 1.5

     Shallow point nodes first discussed (speculativebeamer reveal one at a
     timely) by Leggett [1979].
     A shallow point node may be required by symmetry e.g. the proposed E2u
     pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
     A shallow line node may result at the boundary between gapless and line node
     behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +
  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161               Canterbury 2013   8 / 39
Line crossings

     A different power law is expected at line crossings
     (e.g. d-wave pairing on a spherical Fermi surface):

                                                     crossing
                                               of linear line nodes




                                                           y               2 2
                                          ∆2 = I1 k|| 2 − k||
                                           k
                                                   x

                                                                 y    2
                                                    or I1 k|| 2 k||
                                                           x

                                                                       √       1
                                                                     L+ E /I1  4
                                                          E (1+2ln|          1       |)
                                                                      √
                                                                        E /I 4
                                      g (E )     =                    √ 1
                                                                (2π )3 I1 I2
                                                 ∼ E 0 .8
                                                n = 1.8 (< 2 !!)

  Jorge Quintanilla (Kent and ISIS)    Anomalous supercond. power laws arXiv:1302.2161    Canterbury 2013   9 / 39
Crossing of shallow line nodes
       When shallow lines cross we get an even lower exponent:
                                                      crossing
                                               of shallow line nodes




                                                              y               2 4
                                             ∆2 = I1 k|| 2 − k||
                                              k
                                                      x

                                                                    y    4
                                                       or I1 k|| 4 k||
                                                              x

                                                                                 1 1
                                                            √              L+E 4 /I1  8
                                                                E (1+2ln|                   |)
                                                                               1 1
                                                                             E 4 /I18
                                        g (E )      =                       1√
                                                                   (2π )3 I14 I2
                                                    ∼ E 0 .4
                                                     n = 1.4 *
* c.f. gapless excitations of a Fermi liquid: g (E ) = constant ⇒ n = 1
+

    Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161        Canterbury 2013   10 / 39
Anomalous thermodynamic power laws in nodal
superconductors



1   What are they?


2   How to get them


3   An example


4   Take-home message
A generic mechanism
More generically, we expect this to happen at topological phase transitions in
superocnductors with multi-component order parameters:




                                                                ∆1
                             ∆0




                                                      Fermi Sea




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   12 / 39
A generic mechanism
More generically, we expect this to happen at topological phase transitions in
superocnductors with multi-component order parameters:




                                                                                        Shallow
                                                Shallow
                                                node




                                                                                        node
                                                                ∆1
                             ∆0




                                                      Fermi Sea




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161             Canterbury 2013   13 / 39
A generic mechanism
More generically, we expect this to happen at topological phase transitions in
superocnductors with multi-component order parameters:




                                                Linear




                                                                                        Linear
                                                nodes




                                                                                        nodes
                                                                ∆1
                             ∆0




                                                      Fermi Sea




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161            Canterbury 2013   14 / 39
Anomalous thermodynamic power laws in nodal
superconductors



1   What are they?


2   How to get them


3   An example


4   Take-home message
Singlet-triplet mixing in noncentrosymmetric
                        Virginia Tech, 18 March 2011                                                       blogs.kent.ac.uk/strongcorrelations

superconductors Singlet, triplet, or both?
     Non-centrosymmetric superconductors are the multi-component order
     parameter supercondcutors par excellence:

                                              0  0  dx  id y                                             dz   
                                      k  
                                      ˆ                                                                          
                                              0 0   dz                                               dx  id y 
                                                               singlet                          triplet
                                                          [ 0(k) even ]                    [ d(k) odd ]

              



  3 Batkova et al. JPCM (2010)
  4 Zuev et al. PRB (2007)
  5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
  6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
  7 Bauer et al. PRL (2004)
  Jorge Quintanilla (Kent and ISIS)                    Anomalous supercond. power laws arXiv:1302.2161                             Canterbury 2013   16 / 39
Singlet-triplet mixing in noncentrosymmetric
                        Virginia Tech, 18 March 2011                                                       blogs.kent.ac.uk/strongcorrelations

superconductors Singlet, triplet, or both?
     Non-centrosymmetric superconductors are the multi-component order
     parameter supercondcutors par excellence:

                                              0  0  dx  id y                                             dz   
                                      k  
                                      ˆ                                                                          
                                              0 0   dz                                               dx  id y 
                                                               singlet                          triplet
                                                          [ 0(k) even ]                    [ d(k) odd ]

          
     In practice, there is a varied phenomenology:




  3 Batkova et al. JPCM (2010)
  4 Zuev et al. PRB (2007)
  5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
  6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
  7 Bauer et al. PRL (2004)
  Jorge Quintanilla (Kent and ISIS)                    Anomalous supercond. power laws arXiv:1302.2161                             Canterbury 2013   16 / 39
Singlet-triplet mixing in noncentrosymmetric
                        Virginia Tech, 18 March 2011                                                       blogs.kent.ac.uk/strongcorrelations

superconductors Singlet, triplet, or both?
     Non-centrosymmetric superconductors are the multi-component order
     parameter supercondcutors par excellence:

                                              0  0  dx  id y                                             dz   
                                      k  
                                      ˆ                                                                          
                                              0 0   dz                                               dx  id y 
                                                               singlet                          triplet
                                                          [ 0(k) even ]                    [ d(k) odd ]

          
     In practice, there is a varied phenomenology:
             Some are conventional (singlet) superconductors:
             BaPtSi33 , Re3W4 ,...
             Others seem to be correlated triplet superconductors:
             LaNiC25 (c.f. centrosymmetric LaNiGa26 ), CePtr3Si (?)                                                    7
  3 Batkova et al. JPCM (2010)
  4 Zuev et al. PRB (2007)
  5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
  6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
  7 Bauer et al. PRL (2004)
  Jorge Quintanilla (Kent and ISIS)                    Anomalous supercond. power laws arXiv:1302.2161                             Canterbury 2013   16 / 39
Li2 Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   17 / 39
Li2 Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
      Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
      Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   17 / 39
Li2 Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
      Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
      Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
Experimentally, the series is found to go
from fully-gapped (x = 3) to nodal
behaviour (x = 0):




   Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   17 / 39
Li2 Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
      Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
      Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
Experimentally, the series is found to go
from fully-gapped (x = 3) to nodal                                   NMR suggests the nodal state is a
behaviour (x = 0):                                                              triplet:




   Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161    Canterbury 2013   17 / 39
Li2 Pdx Pt3−x B: Phase diagram



     Assume the order parameter corresponds to the most symmetric (A1 )
     irreducible representation:

     ∆0 (k) = ∆0
        d(k) = ∆0 × {
                                                     2    2       2    2       2    2
                 A (x ) (kx , ky , kz ) − B (x ) kx ky + kz , ky kz + kx , kz kx + ky }

     Treat A and B as in dependent tuning parameters and study quasiparticle
     spectrum.
       +




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   18 / 39
Li2 Pdx Pt3−x B: Phase diagram
We find a very rich phase diagram with topollogically-distinct phases.8




  8 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,

PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
   Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   19 / 39
Li2 Pdx Pt3−x B: Phase diagram
We find a very rich phase diagram with topollogically-distinct phases.9




  9 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,

PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
   Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   20 / 39
Li2 Pdx Pt3−x B: Phase diagram




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   21 / 39
Li2 Pdx Pt3−x B: Phase diagram




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   22 / 39
Li2 Pdx Pt3−x B: Phase diagram




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   23 / 39
Li2 Pdx Pt3−x B: Phase diagram




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   24 / 39
Detecting the topological transitions




                                                                       4        3       7




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161       Canterbury 2013   25 / 39
Detecting the topological transitions




                                                                       4        3       7




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161       Canterbury 2013   26 / 39
Li2 Pdx Pt3−x B: predicted specific heat power-laws




                                                                       4        3




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   27 / 39
Li2 Pdx Pt3−x B: predicted specific heat power-laws


                                                                                   5

                                                                       n=2                         j


                                                                                   4


                                                                       n=2


                                                                                  3


                                                                       n = 1.8


                                                                                  11

                                                                       n = 1.4




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   28 / 39
Li2 Pdx Pt3−x B: predicted specific heat power-laws




                                                                               3




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   29 / 39
Li2 Pdx Pt3−x B: predicted specific heat power-laws


                                                                                   5

                                                                       n=2                         j


                                                                                   4


                                                                       n=2


                                                                                  3


                                                                       n = 1.8


                                                                                  11

                                                                       n = 1.4




  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   30 / 39
Anomalous power laws throughout the phase diagram
     pPut these curves on a density plot:




     The influence of the topological transition extends throughout the phase
     diagram (c.f. quantum critical endpoints)
  Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   31 / 39
Anomalous thermodynamic power laws in nodal
superconductors



1   What are they?


2   How to get them


3   An example


4   Take-home message
Topological transitions in nodal superconductors
   have clear signatures in bulk thermodynamic properties.




Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   33 / 39
Topological transitions in nodal superconductors
   have clear signatures in bulk thermodynamic properties.

                                    THANKS!

                                             www.cond-mat.org




Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   33 / 39
ADDITIONAL INFORMATION




 Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   34 / 39
Power laws in nodal superconductors


Let’s remember where this came from:

                                                                                           
                                 dS            1                                 dEk 
                                                                                      Ek sech2 Ek
                                                          ∑  Ek − T
                                                               
              Cv = T                     =
                                 dT          2kB T 2       k
                                                                                dT           2kB T
                                                                                   ≈0
                                                                                                ≈4e −Ek /KB T

                     ∼ T −2           dEg (E ) E 2 e −E /kB T at low T


              g (E ) ∼ E n−1 ⇒ Cv ∼ T −2 T 1+2+n−1                                  d       2+n −1 −
                                                                                                 e     ∼ Tn

                                                                                      a number




  Jorge Quintanilla (Kent and ISIS)       Anomalous supercond. power laws arXiv:1302.2161               Canterbury 2013   35 / 39
Power laws in nodal superconductors


                                                                                          k_
                                                                                           |   ∆(k||x,k||y)
         Ek =             2
                          k   + ∆2
                                 k
                                                                                                       k||y
                                         y         2
               ≈        I2 k⊥ + ∆ k|| , k||
                            2      x


                  on the Fermi surface
                                                                                                k||x

     Compute density of states:

                                      g (E ) =                 δ(Ek − E )dkx dky dkz

                                                                                                                            Q.E.D.




  Jorge Quintanilla (Kent and ISIS)     Anomalous supercond. power laws arXiv:1302.2161                   Canterbury 2013      36 / 39
Shallow line nodes in pnictides




back




   Jorge Quintanilla (Kent and ISIS)   Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   37 / 39
Numerics

                                 4.5
                                                             linear point node
                                                          shallow point node
                                                               linear line node
                                       4         crossing of linear line nodes
                                                            shallow line node
                                               crossing of shallow line nodes
                                 3.5


                                       3
                                n




                                 2.5


                                       2


                                 1.5


                                       1
                                           0       0.05      0.1      0.15      0.2      0.25        0.3   0.35
                                                                         T / Tc


back

   Jorge Quintanilla (Kent and ISIS)               Anomalous supercond. power laws arXiv:1302.2161                Canterbury 2013   38 / 39
Li2 Pdx Pt3−x B: Phase diagram

       Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

                                                                  h (k)            ∆ (k)
                                                H (k) =
                                                                  ∆ † (k)        −hT (−k)
                                                 h (k) = ε k I + γk · σ

       Assuming |ε k |                 | γk |        |d (k)| the quasi-particle spectrum is

                                       E =±           (ε k − µ ± |γk |)2 + |∆0 ± d (k )|2 .

       Take the most symmetric (A1 ) irreducible representation

        d(k)/∆0 = A (X , Y , Z ) − B X Y 2 + Z 2 , Y Z 2 + X 2 , Z X 2 + Y 2



back




   Jorge Quintanilla (Kent and ISIS)            Anomalous supercond. power laws arXiv:1302.2161   Canterbury 2013   39 / 39

More Related Content

Viewers also liked

França
FrançaFrança
11.18.2009
11.18.200911.18.2009
11.18.2009
Mr. Benson
 
Tangent Wine Presentation
Tangent Wine PresentationTangent Wine Presentation
Tangent Wine Presentation
Lauren Jeter
 
Proy ds reglamento ley libro 15 10 2013
Proy ds reglamento ley libro 15 10 2013Proy ds reglamento ley libro 15 10 2013
Proy ds reglamento ley libro 15 10 2013
Erbol Digital
 
Tema 2
Tema 2Tema 2
15 Genero Suspense
15 Genero Suspense15 Genero Suspense
15 Genero Suspense
Carmen Heredia
 
La famille
La familleLa famille
La famille
Mercedes58
 
Taller genero atacama_2
Taller genero atacama_2Taller genero atacama_2
Taller genero atacama_2
MacaCarter
 
Lengua castellana en bolivia
Lengua castellana en boliviaLengua castellana en bolivia
Lengua castellana en bolivia
Daniela Ardaya Dorado
 
IJCAI 2011 Presentation
IJCAI 2011 PresentationIJCAI 2011 Presentation
IJCAI 2011 Presentation
Babak Khosravifar
 
Poder Ejecutvio (Secretaria De Marina)
Poder Ejecutvio (Secretaria De Marina)Poder Ejecutvio (Secretaria De Marina)
Poder Ejecutvio (Secretaria De Marina)
UNITEC Campus SUR
 
Newsletter May 2010
Newsletter May 2010Newsletter May 2010
Newsletter May 2010
simonanink
 
Form 9
Form 9Form 9

Viewers also liked (13)

França
FrançaFrança
França
 
11.18.2009
11.18.200911.18.2009
11.18.2009
 
Tangent Wine Presentation
Tangent Wine PresentationTangent Wine Presentation
Tangent Wine Presentation
 
Proy ds reglamento ley libro 15 10 2013
Proy ds reglamento ley libro 15 10 2013Proy ds reglamento ley libro 15 10 2013
Proy ds reglamento ley libro 15 10 2013
 
Tema 2
Tema 2Tema 2
Tema 2
 
15 Genero Suspense
15 Genero Suspense15 Genero Suspense
15 Genero Suspense
 
La famille
La familleLa famille
La famille
 
Taller genero atacama_2
Taller genero atacama_2Taller genero atacama_2
Taller genero atacama_2
 
Lengua castellana en bolivia
Lengua castellana en boliviaLengua castellana en bolivia
Lengua castellana en bolivia
 
IJCAI 2011 Presentation
IJCAI 2011 PresentationIJCAI 2011 Presentation
IJCAI 2011 Presentation
 
Poder Ejecutvio (Secretaria De Marina)
Poder Ejecutvio (Secretaria De Marina)Poder Ejecutvio (Secretaria De Marina)
Poder Ejecutvio (Secretaria De Marina)
 
Newsletter May 2010
Newsletter May 2010Newsletter May 2010
Newsletter May 2010
 
Form 9
Form 9Form 9
Form 9
 

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Jorge Quintanilla
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Jorge Quintanilla
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
Jorge Quintanilla
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
Jorge Quintanilla
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Jorge Quintanilla
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
Jorge Quintanilla
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
Jorge Quintanilla
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Jorge Quintanilla
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
Jorge Quintanilla
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Jorge Quintanilla
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
Jorge Quintanilla
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
Jorge Quintanilla
 

More from Jorge Quintanilla (19)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Thermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductorsThermodynamic signatures of topological transitions in nodal superconductors
Thermodynamic signatures of topological transitions in nodal superconductors
 
Talk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_webTalk bristol uk-nl_2013_v01_for_web
Talk bristol uk-nl_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Talk kent symposium_2013_v01_for_web

  • 1. Anomalous thermodynamic power laws in nodal superconductors arXiv:1302.2161 Bayan Mazidian1,2 , Jorge Quintanilla2,3 James F. Annett1 , Adrian D. Hillier2 1 University of Bristol 2 ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent Functional Materials Symposium, University of Kent, Canterbury 2013 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 1 / 39
  • 2. PRELUDE - Symmetry Photo: Eddie Hui-Bon-Hoa, www.shiromi.com   Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39
  • 3. PRELUDE - Symmetry Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com     Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39
  • 4. PRELUDE - Symmetry Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com     Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Unconventional superconductors  Photo: commons.wikimedia.org  Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39
  • 5. PRELUDE - Symmetry Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com     Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Unconventional superconductors  Photo: commons.wikimedia.org  Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39
  • 6. PRELUDE - Symmetry Photo: Kenneth G. Libbrecht, snowflakes.com Photo: Eddie Hui-Bon-Hoa, www.shiromi.com     Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Unconventional superconductors  Photo: commons.wikimedia.org  Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39
  • 7. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39
  • 8. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39
  • 9. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39
  • 10. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39
  • 11. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 4 / 39
  • 12. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 13. Power laws in nodal superconductors Low-temperature specific heat of a superconductor gives information on the spectrum of low-lying excitations: Fully gapped Point nodes Line nodes Cv ∼ e −∆/T Cv ∼ T3 Cv ∼ T 2 ∆ This simple idea has been around for a while.1 Widely used to fit experimental data on unconventional superconductors.2 1 Anderson & Morel (1961), Leggett (1975) 2 Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 6 / 39
  • 14. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39
  • 15. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n linear point node line node y 2 ∆2 = I1 k|| 2 + k|| k x ∆2 = I1 k|| 2 k x E2 √ LE √ g (E ) = 2(2π )2 I1 I2 g (E ) = √ (2π )3 I1 I2 n=3 n=2 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39
  • 16. Linear nodes It all comes from the density of states: + g (E ) ∼ E n−1 ⇒ Cv ∼ T n linear point node line node y 2 ∆2 = I1 k|| 2 + k|| k x ∆2 = I1 k|| 2 k x E2 √ LE √ g (E ) = 2(2π )2 I1 I2 g (E ) = √ (2π )3 I1 I2 n=3 n=2 Key assumption: linear increase of the gap away from the node Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39
  • 17. Shallow nodes Relax the linear assumption and we also get different exponents: Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39
  • 18. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node y 2 ∆2 = I1 (k|| 2 + k|| )2 k x ∆2 = I1 k|| 4 k x √ E √ L E g (E ) = 2(2π )2 √ I1 I2 g (E ) = 1√ (2π )3 I14 I2 n=2 n = 1.5 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39
  • 19. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node y 2 ∆2 = I1 (k|| 2 + k|| )2 k x ∆2 = I1 k|| 4 k x √ E √ L E g (E ) = 2(2π )2 √ I1 I2 g (E ) = 1√ (2π )3 I14 I2 n=2 n = 1.5 Shallow point nodes first discussed (speculativebeamer reveal one at a timely) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39
  • 20. Line crossings A different power law is expected at line crossings (e.g. d-wave pairing on a spherical Fermi surface): crossing of linear line nodes y 2 2 ∆2 = I1 k|| 2 − k|| k x y 2 or I1 k|| 2 k|| x √ 1 L+ E /I1 4 E (1+2ln| 1 |) √ E /I 4 g (E ) = √ 1 (2π )3 I1 I2 ∼ E 0 .8 n = 1.8 (< 2 !!) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 9 / 39
  • 21. Crossing of shallow line nodes When shallow lines cross we get an even lower exponent: crossing of shallow line nodes y 2 4 ∆2 = I1 k|| 2 − k|| k x y 4 or I1 k|| 4 k|| x 1 1 √ L+E 4 /I1 8 E (1+2ln| |) 1 1 E 4 /I18 g (E ) = 1√ (2π )3 I14 I2 ∼ E 0 .4 n = 1.4 * * c.f. gapless excitations of a Fermi liquid: g (E ) = constant ⇒ n = 1 + Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 10 / 39
  • 22. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 23. A generic mechanism More generically, we expect this to happen at topological phase transitions in superocnductors with multi-component order parameters: ∆1 ∆0 Fermi Sea Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 12 / 39
  • 24. A generic mechanism More generically, we expect this to happen at topological phase transitions in superocnductors with multi-component order parameters: Shallow Shallow node node ∆1 ∆0 Fermi Sea Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 13 / 39
  • 25. A generic mechanism More generically, we expect this to happen at topological phase transitions in superocnductors with multi-component order parameters: Linear Linear nodes nodes ∆1 ∆0 Fermi Sea Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 14 / 39
  • 26. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 27. Singlet-triplet mixing in noncentrosymmetric Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations superconductors Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y dz  k   ˆ     0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ]  3 Batkova et al. JPCM (2010) 4 Zuev et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39
  • 28. Singlet-triplet mixing in noncentrosymmetric Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations superconductors Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y dz  k   ˆ     0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ]  In practice, there is a varied phenomenology: 3 Batkova et al. JPCM (2010) 4 Zuev et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39
  • 29. Singlet-triplet mixing in noncentrosymmetric Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations superconductors Singlet, triplet, or both? Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence:  0  0  dx  id y dz  k   ˆ     0 0   dz dx  id y  singlet triplet [ 0(k) even ] [ d(k) odd ]  In practice, there is a varied phenomenology: Some are conventional (singlet) superconductors: BaPtSi33 , Re3W4 ,... Others seem to be correlated triplet superconductors: LaNiC25 (c.f. centrosymmetric LaNiGa26 ), CePtr3Si (?) 7 3 Batkova et al. JPCM (2010) 4 Zuev et al. PRB (2007) 5 Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6 Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7 Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39
  • 30. Li2 Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39
  • 31. Li2 Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39
  • 32. Li2 Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Experimentally, the series is found to go from fully-gapped (x = 3) to nodal behaviour (x = 0): Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39
  • 33. Li2 Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2 Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Experimentally, the series is found to go from fully-gapped (x = 3) to nodal NMR suggests the nodal state is a behaviour (x = 0): triplet: Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39
  • 34. Li2 Pdx Pt3−x B: Phase diagram Assume the order parameter corresponds to the most symmetric (A1 ) irreducible representation: ∆0 (k) = ∆0 d(k) = ∆0 × { 2 2 2 2 2 2 A (x ) (kx , ky , kz ) − B (x ) kx ky + kz , ky kz + kx , kz kx + ky } Treat A and B as in dependent tuning parameters and study quasiparticle spectrum. + Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 18 / 39
  • 35. Li2 Pdx Pt3−x B: Phase diagram We find a very rich phase diagram with topollogically-distinct phases.8 8 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 19 / 39
  • 36. Li2 Pdx Pt3−x B: Phase diagram We find a very rich phase diagram with topollogically-distinct phases.9 9 C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 20 / 39
  • 37. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 21 / 39
  • 38. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 22 / 39
  • 39. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 23 / 39
  • 40. Li2 Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 24 / 39
  • 41. Detecting the topological transitions 4 3 7 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 25 / 39
  • 42. Detecting the topological transitions 4 3 7 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 26 / 39
  • 43. Li2 Pdx Pt3−x B: predicted specific heat power-laws 4 3 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 27 / 39
  • 44. Li2 Pdx Pt3−x B: predicted specific heat power-laws 5 n=2 j 4 n=2 3 n = 1.8 11 n = 1.4 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 28 / 39
  • 45. Li2 Pdx Pt3−x B: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 29 / 39
  • 46. Li2 Pdx Pt3−x B: predicted specific heat power-laws 5 n=2 j 4 n=2 3 n = 1.8 11 n = 1.4 Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 30 / 39
  • 47. Anomalous power laws throughout the phase diagram pPut these curves on a density plot: The influence of the topological transition extends throughout the phase diagram (c.f. quantum critical endpoints) Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 31 / 39
  • 48. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 49. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39
  • 50. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. THANKS! www.cond-mat.org Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39
  • 51. ADDITIONAL INFORMATION Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 34 / 39
  • 52. Power laws in nodal superconductors Let’s remember where this came from:   dS 1 dEk   Ek sech2 Ek ∑  Ek − T  Cv = T = dT 2kB T 2 k  dT  2kB T ≈0 ≈4e −Ek /KB T ∼ T −2 dEg (E ) E 2 e −E /kB T at low T g (E ) ∼ E n−1 ⇒ Cv ∼ T −2 T 1+2+n−1 d 2+n −1 − e ∼ Tn a number Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 35 / 39
  • 53. Power laws in nodal superconductors k_ | ∆(k||x,k||y) Ek = 2 k + ∆2 k k||y y 2 ≈ I2 k⊥ + ∆ k|| , k|| 2 x on the Fermi surface k||x Compute density of states: g (E ) = δ(Ek − E )dkx dky dkz Q.E.D. Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 36 / 39
  • 54. Shallow line nodes in pnictides back Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 37 / 39
  • 55. Numerics 4.5 linear point node shallow point node linear line node 4 crossing of linear line nodes shallow line node crossing of shallow line nodes 3.5 3 n 2.5 2 1.5 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 T / Tc back Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 38 / 39
  • 56. Li2 Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: h (k) ∆ (k) H (k) = ∆ † (k) −hT (−k) h (k) = ε k I + γk · σ Assuming |ε k | | γk | |d (k)| the quasi-particle spectrum is E =± (ε k − µ ± |γk |)2 + |∆0 ± d (k )|2 . Take the most symmetric (A1 ) irreducible representation d(k)/∆0 = A (X , Y , Z ) − B X Y 2 + Z 2 , Y Z 2 + X 2 , Z X 2 + Y 2 back Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 39 / 39