SlideShare a Scribd company logo
1 of 1
Download to read offline
Introduc)on	
  
In-­‐vitro	
  fer,liza,on	
  (IVF)	
  is	
  commonly	
  used	
  to	
  treat	
  female	
  and/or	
  male	
  
infer,lity.	
  Successful	
  pregnancy	
  following	
  IVF	
  is	
  dependent	
  on	
  selec,ng	
  
the	
  healthiest	
  embryos	
  for	
  implanta,on.	
  	
  
Importantly,	
  IVF	
  clinics	
  report	
  a	
  rela,vely	
  high	
  frequency	
  of	
  binucleated,	
  
tetraploid	
  blastomeres	
  in	
  human	
  preimplanta,on	
  embryos.	
  
In	
  soma,c	
  cells,	
  tetraploidy	
  is	
  known	
  to	
  decrease	
  fitness	
  and	
  increase	
  
the	
   difficulty	
   of	
   chromosome	
   segrega,on,	
   which	
   result	
   in	
   cell	
   cycle	
  
arrest	
  and	
  ul,mately	
  apoptosis.	
  	
  
However,	
   how	
   binuclea,on	
   affects	
   mammalian	
   embryo	
   development	
  
and	
  IVF	
  success	
  is	
  unknown.	
  
Materials	
  and	
  Methods	
  
Embryos	
  from	
  CD1	
  mice	
  were	
  collected	
  at	
  the	
  two-­‐cell	
  stage.	
  
Live	
   Cell	
   Imaging	
   experiments	
   were	
   visualized	
   using	
   long-­‐term,	
   low	
  
damage	
  4D	
  confocal	
  analysis	
  
Looking	
  for	
  Naturally	
  Occurring	
  Binuclea)on	
  
•  Embryos	
  were	
  fixed	
  and	
  stained	
  with	
  Phalloidin	
  (plasma	
  membrane)	
  
and	
   DRAQ5	
   (nucleus)	
   at	
   the	
   four-­‐cell,	
   eight-­‐cell,	
   morula,	
   and	
  
blastocyst	
  stage	
  	
  
Crea)ng	
  Binucleated	
  Embryos	
  	
  
•  Group	
   1:	
   control	
   embryos	
   developed	
   in-­‐vitro	
   and	
   were	
   fixed	
  
approximately	
  at	
  the	
  eight-­‐cell	
  stage	
  
•  To	
   induce	
   binuclea,on,	
   embryos	
   were	
   treated	
   with	
   cytochalasin	
   B	
  
immediately	
   prior	
   to	
   the	
   four-­‐cell	
   to	
   eight-­‐cell	
   transi,on.	
   AYer	
   12	
  
hours	
  in	
  cytochalasin	
  B,	
  embryos	
  were	
  washed:	
  
•  Group	
  2:	
  was	
  fixed	
  right	
  away	
  aYer	
  wash	
  
•  Group	
  3:	
  developed	
  further	
  and	
  was	
  fixed	
  12	
  hours	
  aYer	
  wash	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Observing	
  Binucleated	
  Divisions	
  
	
  
•  A	
  method	
  was	
  created	
  to	
  visualize	
  binucleated	
  divisions	
  
•  H2B-­‐RFP	
  RNA	
  was	
  microinjected	
  at	
  the	
  two-­‐cell	
  stage	
  of	
  the	
  embryo	
  
to	
  visualize	
  DNA	
  
•  Group	
  1	
  visualized	
  the	
  eight-­‐cell	
  to	
  sixteen-­‐cell	
  division	
  	
  	
  
•  Group	
  2	
  visualized	
  the	
  binucleated	
  four-­‐cell	
  to	
  eight-­‐cell	
  transi,on	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
Results	
  
	
  
Binucleated	
  Embryos	
  Are	
  Rare	
  in	
  Mouse	
  Embryos	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Binucleated	
  Embryos	
  Con)nue	
  to	
  Divide	
  But	
  Contain	
  More	
  Micronuclei	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Live	
  Cell	
  Imaging	
  Confirmed	
  that	
  Binucleated	
  Divisions	
  Contain	
  More	
  Chromosome	
  Segrega)on	
  Errors	
  	
  	
  
	
  
Binuclea,on	
  in	
  the	
  Preimplanta,on	
  Embryo	
  Cause	
  a	
  Higher	
  Frequency	
  of	
  
Segrega,on	
  Errors	
  	
  
Candice	
  Taguibao1,	
  Jenna	
  Haverfield1,	
  Shoma	
  Nakagawa1,	
  Cayetana	
  Vazquez-­‐Diez1,	
  Greg	
  FitzHarris1,2	
  
1Centre	
  Recherche	
  CHUM,	
  Montreal,	
  Canada,	
  H2X	
  0A9.	
  
2Department	
  of	
  Obstetrics	
  and	
  Gynaecology,	
  University	
  of	
  Montreal,	
  Montreal,	
  Canada,	
  H3T	
  1J4.	
  
	
  
Hypothesis	
  
That	
  binucleated	
  blastomeres	
  will	
  con,nue	
  to	
  divide,	
  but	
  chromosome	
  
segrega,on	
  errors	
  will	
  be	
  common.	
  
	
  Aim 	
  	
  
To	
  inves,gate	
  the	
  effect	
  of	
  binuclea,on	
  on	
  the	
  preimplanta,on	
  embryo.	
  
Conclusion	
  	
  
Mouse	
  embryos	
  apparently	
  lack	
  a	
  robust	
  tetraploidy	
  checkpoint,	
  and	
  con,nue	
  to	
  divide	
  even	
  aYer	
  binuclea,on	
  was	
  induced.	
  However,	
  
chromosome	
  segrega,on	
  errors	
  are	
  more	
  frequent	
  in	
  binucleated	
  embryos.	
  We	
  thus	
  propose	
  that	
  tetraploidy	
  in	
  the	
  mammalian	
  
embryo	
  may	
  have	
  the	
  unexpected	
  effect	
  of	
  inducing	
  chromosome	
  segrega,on	
  errors	
  and	
  classical	
  single-­‐chroma,d	
  aneuploidy,	
  which	
  
may	
  in	
  term	
  be	
  detrimental	
  to	
  embryo	
  health.	
  
	
  
Figure	
  2.	
  (A)	
  Image	
  taken	
  immediately	
  aYer	
  embryos	
  were	
  treated	
  for	
  12	
  hours	
  in	
  cytochalasin	
  B;	
  48	
  hours	
  post-­‐collec,on.	
  Each	
  arrow	
  points	
  to	
  a	
  binucleated	
  blastomere	
  in	
  
every	
   embryo	
   (B)	
   Image	
   taken	
   12	
   hours	
   aYer	
   washing	
   from	
   cytochalasin	
   B	
   treatment;	
   60	
   hours	
   post-­‐collec,on.	
   (C)	
   At	
   0	
   hours	
   aYer	
   wash,	
   90%	
   of	
   blastomeres	
   were	
  
binucleated;	
  at	
  12	
  hours	
  aYer	
  washing,	
  9.4%	
  of	
  blastomeres	
  were	
  binucleated;	
  at	
  24	
  hours,	
  0%	
  of	
  blastomeres	
  were	
  binucleated	
  (D)	
  The	
  mononucleated	
  embryos	
  that	
  arose	
  
from	
  binucleated	
  embryos	
  exhibited	
  a	
  larger	
  amount	
  of	
  micronuclei	
  at	
  %17,	
  compared	
  to	
  %6	
  seen	
  in	
  eight-­‐cell	
  controls,	
  and	
  %8	
  seen	
  in	
  sixteen-­‐cell	
  controls.	
  The	
  eight-­‐cell	
  
controls	
  (collected	
  48	
  hours	
  post-­‐collec,on)	
  provide	
  a	
  comparison	
  against	
  a	
  similar	
  cell	
  number;	
  the	
  sixteen-­‐cell	
  (collected	
  60	
  hours	
  post-­‐collec,on)	
  provide	
  a	
  comparison	
  
against	
  a	
  similar	
  cell-­‐stage	
  in	
  development.	
  
Old	
  
Acknowledgements	
  
Candice	
  Taguibao	
  was	
  a	
  2015	
  undergraduate	
  summer	
  RQR	
  CREATE	
  recipient.	
  	
  
Experiments	
  were	
  funded	
  by	
  Founda,on	
  Jean-­‐Louis	
  Levesque.	
  
A	
   B	
   D	
  C	
  
A
B
Figure	
  3.	
  (A)	
  The	
  top	
  panel	
  shows	
  snapshots	
  at	
  NEBD,	
  metaphase,	
  anaphase,	
  and	
  the	
  resul,ng	
  two	
  daughter	
  cells.	
  The	
  pink	
  arrows	
  mark	
  the	
  loca,on	
  of	
  the	
  dividing	
  nuclei	
  
and	
  metaphase	
  plate	
  as	
  well	
  as	
  the	
  posi,on	
  of	
  the	
  daughter	
  nuclei.	
  (B)	
  This	
  binucleated	
  blastomere	
  forms	
  a	
  single	
  metaphase	
  plate	
  with	
  misaligned	
  chromosomes.	
  During	
  
anaphase,	
  2	
  lagging	
  chromosomes	
  are	
  seen	
  to	
  then	
  form	
  micronuclei.	
  The	
  green	
  arrows	
  indicate	
  misaligned	
  chromosomes,	
  lagging	
  chromosomes	
  and	
  micronuclei.	
  (C)	
  This	
  
par,cular	
  binucleated	
  division	
  is	
  characterized	
  as	
  “other	
  segrega,on	
  errors’.	
  The	
  binucleated	
  blastomere	
  forms	
  2	
  metaphase	
  plates	
  and	
  divides	
  into	
  what	
  appears	
  to	
  be	
  5	
  
separate	
  nuclei.	
  (D)	
  The	
  pie	
  charts	
  display	
  the	
  data	
  collected.	
  More	
  chromosome	
  segrega,on	
  errors	
  occur	
  in	
  binucleated	
  divisions	
  than	
  in	
  the	
  control	
  embryos	
  (p=0.012)	
  
C
D
Figure	
  1.	
  (A)	
  Normal	
  embryos	
  shown	
  are	
  at	
  
8-­‐cell,	
   morula,	
   and	
   blastocyst	
   and	
   do	
   not	
  
display	
  binuclea,on	
  
A	
  
36 hrs
12 hrs
Cyt B
12 hrs
Wash:
12 hrs
fix right
away
Group 1: eight-cell controls
Group 3: eight-cell from
Binucleated embryos
Group 2: four-cell
Binucleated embryos
microinject
H2B-RFP
36 hrs
12 hrs
12 hrs
Cyt B
Wash
Group 1: eight-cell to sixteen-cell transition
Group 2: binucleated four-cell to
eight-cell transition
48:00 72:00 96:00
48:00 48:00
60:00
Misaligned
Chromosomes
Lagging
Chromosomes Micronuclei
Series 001
z=13/27
Series 001
z=9/27
Series 002
z=14/28
48:00 49:83 50:17 50:50 51:08 51:17 51:83
49:83 50:08 51:8351:2551:1751:0849:83
49:00 51:9151:7551:5051:3349:33 52:08
CONTROL
BINUCLEATED
BINUCLEATED

More Related Content

What's hot

What's hot (20)

Cloning
CloningCloning
Cloning
 
Gene Clo Ning
Gene Clo NingGene Clo Ning
Gene Clo Ning
 
Cloning Notes
Cloning NotesCloning Notes
Cloning Notes
 
MAMMALIAN CLONING
MAMMALIAN CLONINGMAMMALIAN CLONING
MAMMALIAN CLONING
 
The Clone Wars
The Clone WarsThe Clone Wars
The Clone Wars
 
Somatic cell nuclear_transfer
Somatic cell nuclear_transferSomatic cell nuclear_transfer
Somatic cell nuclear_transfer
 
History of Cloning and Ethical Issues of Human Cloning
History of Cloning and Ethical Issues of Human CloningHistory of Cloning and Ethical Issues of Human Cloning
History of Cloning and Ethical Issues of Human Cloning
 
Cloning
CloningCloning
Cloning
 
Cloning Powerpoint
Cloning PowerpointCloning Powerpoint
Cloning Powerpoint
 
Advantages and disadvantages of cloning.sidhu
Advantages and disadvantages of cloning.sidhuAdvantages and disadvantages of cloning.sidhu
Advantages and disadvantages of cloning.sidhu
 
Animal cloning
Animal cloningAnimal cloning
Animal cloning
 
Cloning Presentation
Cloning PresentationCloning Presentation
Cloning Presentation
 
Cloning(human cloning) sreenivas.m final ppt
Cloning(human cloning) sreenivas.m final pptCloning(human cloning) sreenivas.m final ppt
Cloning(human cloning) sreenivas.m final ppt
 
Cloning3603
Cloning3603Cloning3603
Cloning3603
 
Cloning ethical issues
Cloning   ethical issuesCloning   ethical issues
Cloning ethical issues
 
Cloning, Animal cloning, clone
Cloning, Animal cloning, cloneCloning, Animal cloning, clone
Cloning, Animal cloning, clone
 
Cloning
CloningCloning
Cloning
 
Biotech2012 spring 10_cloning
Biotech2012 spring 10_cloningBiotech2012 spring 10_cloning
Biotech2012 spring 10_cloning
 
Cloning
CloningCloning
Cloning
 
Cloning Ppt
Cloning PptCloning Ppt
Cloning Ppt
 

Similar to TaguibaoCandice_Binucleation in Preimplantation Embryos Poster

Time lapse observations
Time lapse observations Time lapse observations
Time lapse observations Kosmogonia IVF
 
Bipartición embrionaria
Bipartición embrionariaBipartición embrionaria
Bipartición embrionariaHeber Rengifo
 
Developmental Biology
Developmental Biology Developmental Biology
Developmental Biology Dr.S.Selvaraj
 
Embryo splitting.pptx
Embryo splitting.pptxEmbryo splitting.pptx
Embryo splitting.pptxAkhil426243
 
Cloning word doc
Cloning word docCloning word doc
Cloning word docsanjayk66
 
H uman reproduction
H uman reproductionH uman reproduction
H uman reproductionRUHULAMIN428
 
Human reproduction
Human reproductionHuman reproduction
Human reproductionRUHULAMIN428
 
ICSI Lab procedures for gynecologist
ICSI Lab procedures for gynecologist ICSI Lab procedures for gynecologist
ICSI Lab procedures for gynecologist Aboubakr Elnashar
 
cell cloning- Therapeutic and reproductive cloning
cell cloning- Therapeutic and reproductive cloningcell cloning- Therapeutic and reproductive cloning
cell cloning- Therapeutic and reproductive cloningAlisha Shaikh
 
Olivia_Creasey_Nebraska_Poster
Olivia_Creasey_Nebraska_PosterOlivia_Creasey_Nebraska_Poster
Olivia_Creasey_Nebraska_PosterOlivia Creasey
 
Morfologia cromatina mayo10[1]
Morfologia cromatina mayo10[1]Morfologia cromatina mayo10[1]
Morfologia cromatina mayo10[1]amyoliveros
 
Biology form 4 chapter 5 cell dvision part 2 (meiosis)
Biology form 4 chapter 5   cell dvision part 2 (meiosis)Biology form 4 chapter 5   cell dvision part 2 (meiosis)
Biology form 4 chapter 5 cell dvision part 2 (meiosis)Nirmala Josephine
 
Cell cycle (Without Mieosis)
Cell cycle (Without Mieosis)Cell cycle (Without Mieosis)
Cell cycle (Without Mieosis)Dion Orquia
 
Summer Conference 2016
Summer Conference 2016 Summer Conference 2016
Summer Conference 2016 Nina Ngo
 
Revealing human embryos,ragaa mansour
Revealing human embryos,ragaa mansourRevealing human embryos,ragaa mansour
Revealing human embryos,ragaa mansourHesham Al-Inany
 

Similar to TaguibaoCandice_Binucleation in Preimplantation Embryos Poster (20)

Time lapse observations
Time lapse observations Time lapse observations
Time lapse observations
 
Bipartición embrionaria
Bipartición embrionariaBipartición embrionaria
Bipartición embrionaria
 
Developmental Biology
Developmental Biology Developmental Biology
Developmental Biology
 
Reproductive Biotechnology
Reproductive BiotechnologyReproductive Biotechnology
Reproductive Biotechnology
 
Embryo splitting.pptx
Embryo splitting.pptxEmbryo splitting.pptx
Embryo splitting.pptx
 
Cloning word doc
Cloning word docCloning word doc
Cloning word doc
 
H uman reproduction
H uman reproductionH uman reproduction
H uman reproduction
 
Human reproduction
Human reproductionHuman reproduction
Human reproduction
 
ICSI Lab procedures for gynecologist
ICSI Lab procedures for gynecologist ICSI Lab procedures for gynecologist
ICSI Lab procedures for gynecologist
 
cell cloning- Therapeutic and reproductive cloning
cell cloning- Therapeutic and reproductive cloningcell cloning- Therapeutic and reproductive cloning
cell cloning- Therapeutic and reproductive cloning
 
Olivia_Creasey_Nebraska_Poster
Olivia_Creasey_Nebraska_PosterOlivia_Creasey_Nebraska_Poster
Olivia_Creasey_Nebraska_Poster
 
Morfologia cromatina mayo10[1]
Morfologia cromatina mayo10[1]Morfologia cromatina mayo10[1]
Morfologia cromatina mayo10[1]
 
Biology-PQ.pdf
Biology-PQ.pdfBiology-PQ.pdf
Biology-PQ.pdf
 
Biology form 4 chapter 5 cell dvision part 2 (meiosis)
Biology form 4 chapter 5   cell dvision part 2 (meiosis)Biology form 4 chapter 5   cell dvision part 2 (meiosis)
Biology form 4 chapter 5 cell dvision part 2 (meiosis)
 
Human cloning
Human cloningHuman cloning
Human cloning
 
Cell cycle (Without Mieosis)
Cell cycle (Without Mieosis)Cell cycle (Without Mieosis)
Cell cycle (Without Mieosis)
 
Summer Conference 2016
Summer Conference 2016 Summer Conference 2016
Summer Conference 2016
 
Holubcova et al
Holubcova et alHolubcova et al
Holubcova et al
 
Revealing human embryos,ragaa mansour
Revealing human embryos,ragaa mansourRevealing human embryos,ragaa mansour
Revealing human embryos,ragaa mansour
 
31
3131
31
 

TaguibaoCandice_Binucleation in Preimplantation Embryos Poster

  • 1. Introduc)on   In-­‐vitro  fer,liza,on  (IVF)  is  commonly  used  to  treat  female  and/or  male   infer,lity.  Successful  pregnancy  following  IVF  is  dependent  on  selec,ng   the  healthiest  embryos  for  implanta,on.     Importantly,  IVF  clinics  report  a  rela,vely  high  frequency  of  binucleated,   tetraploid  blastomeres  in  human  preimplanta,on  embryos.   In  soma,c  cells,  tetraploidy  is  known  to  decrease  fitness  and  increase   the   difficulty   of   chromosome   segrega,on,   which   result   in   cell   cycle   arrest  and  ul,mately  apoptosis.     However,   how   binuclea,on   affects   mammalian   embryo   development   and  IVF  success  is  unknown.   Materials  and  Methods   Embryos  from  CD1  mice  were  collected  at  the  two-­‐cell  stage.   Live   Cell   Imaging   experiments   were   visualized   using   long-­‐term,   low   damage  4D  confocal  analysis   Looking  for  Naturally  Occurring  Binuclea)on   •  Embryos  were  fixed  and  stained  with  Phalloidin  (plasma  membrane)   and   DRAQ5   (nucleus)   at   the   four-­‐cell,   eight-­‐cell,   morula,   and   blastocyst  stage     Crea)ng  Binucleated  Embryos     •  Group   1:   control   embryos   developed   in-­‐vitro   and   were   fixed   approximately  at  the  eight-­‐cell  stage   •  To   induce   binuclea,on,   embryos   were   treated   with   cytochalasin   B   immediately   prior   to   the   four-­‐cell   to   eight-­‐cell   transi,on.   AYer   12   hours  in  cytochalasin  B,  embryos  were  washed:   •  Group  2:  was  fixed  right  away  aYer  wash   •  Group  3:  developed  further  and  was  fixed  12  hours  aYer  wash                     Observing  Binucleated  Divisions     •  A  method  was  created  to  visualize  binucleated  divisions   •  H2B-­‐RFP  RNA  was  microinjected  at  the  two-­‐cell  stage  of  the  embryo   to  visualize  DNA   •  Group  1  visualized  the  eight-­‐cell  to  sixteen-­‐cell  division       •  Group  2  visualized  the  binucleated  four-­‐cell  to  eight-­‐cell  transi,on                 Results     Binucleated  Embryos  Are  Rare  in  Mouse  Embryos                 Binucleated  Embryos  Con)nue  to  Divide  But  Contain  More  Micronuclei                               Live  Cell  Imaging  Confirmed  that  Binucleated  Divisions  Contain  More  Chromosome  Segrega)on  Errors         Binuclea,on  in  the  Preimplanta,on  Embryo  Cause  a  Higher  Frequency  of   Segrega,on  Errors     Candice  Taguibao1,  Jenna  Haverfield1,  Shoma  Nakagawa1,  Cayetana  Vazquez-­‐Diez1,  Greg  FitzHarris1,2   1Centre  Recherche  CHUM,  Montreal,  Canada,  H2X  0A9.   2Department  of  Obstetrics  and  Gynaecology,  University  of  Montreal,  Montreal,  Canada,  H3T  1J4.     Hypothesis   That  binucleated  blastomeres  will  con,nue  to  divide,  but  chromosome   segrega,on  errors  will  be  common.    Aim     To  inves,gate  the  effect  of  binuclea,on  on  the  preimplanta,on  embryo.   Conclusion     Mouse  embryos  apparently  lack  a  robust  tetraploidy  checkpoint,  and  con,nue  to  divide  even  aYer  binuclea,on  was  induced.  However,   chromosome  segrega,on  errors  are  more  frequent  in  binucleated  embryos.  We  thus  propose  that  tetraploidy  in  the  mammalian   embryo  may  have  the  unexpected  effect  of  inducing  chromosome  segrega,on  errors  and  classical  single-­‐chroma,d  aneuploidy,  which   may  in  term  be  detrimental  to  embryo  health.     Figure  2.  (A)  Image  taken  immediately  aYer  embryos  were  treated  for  12  hours  in  cytochalasin  B;  48  hours  post-­‐collec,on.  Each  arrow  points  to  a  binucleated  blastomere  in   every   embryo   (B)   Image   taken   12   hours   aYer   washing   from   cytochalasin   B   treatment;   60   hours   post-­‐collec,on.   (C)   At   0   hours   aYer   wash,   90%   of   blastomeres   were   binucleated;  at  12  hours  aYer  washing,  9.4%  of  blastomeres  were  binucleated;  at  24  hours,  0%  of  blastomeres  were  binucleated  (D)  The  mononucleated  embryos  that  arose   from  binucleated  embryos  exhibited  a  larger  amount  of  micronuclei  at  %17,  compared  to  %6  seen  in  eight-­‐cell  controls,  and  %8  seen  in  sixteen-­‐cell  controls.  The  eight-­‐cell   controls  (collected  48  hours  post-­‐collec,on)  provide  a  comparison  against  a  similar  cell  number;  the  sixteen-­‐cell  (collected  60  hours  post-­‐collec,on)  provide  a  comparison   against  a  similar  cell-­‐stage  in  development.   Old   Acknowledgements   Candice  Taguibao  was  a  2015  undergraduate  summer  RQR  CREATE  recipient.     Experiments  were  funded  by  Founda,on  Jean-­‐Louis  Levesque.   A   B   D  C   A B Figure  3.  (A)  The  top  panel  shows  snapshots  at  NEBD,  metaphase,  anaphase,  and  the  resul,ng  two  daughter  cells.  The  pink  arrows  mark  the  loca,on  of  the  dividing  nuclei   and  metaphase  plate  as  well  as  the  posi,on  of  the  daughter  nuclei.  (B)  This  binucleated  blastomere  forms  a  single  metaphase  plate  with  misaligned  chromosomes.  During   anaphase,  2  lagging  chromosomes  are  seen  to  then  form  micronuclei.  The  green  arrows  indicate  misaligned  chromosomes,  lagging  chromosomes  and  micronuclei.  (C)  This   par,cular  binucleated  division  is  characterized  as  “other  segrega,on  errors’.  The  binucleated  blastomere  forms  2  metaphase  plates  and  divides  into  what  appears  to  be  5   separate  nuclei.  (D)  The  pie  charts  display  the  data  collected.  More  chromosome  segrega,on  errors  occur  in  binucleated  divisions  than  in  the  control  embryos  (p=0.012)   C D Figure  1.  (A)  Normal  embryos  shown  are  at   8-­‐cell,   morula,   and   blastocyst   and   do   not   display  binuclea,on   A   36 hrs 12 hrs Cyt B 12 hrs Wash: 12 hrs fix right away Group 1: eight-cell controls Group 3: eight-cell from Binucleated embryos Group 2: four-cell Binucleated embryos microinject H2B-RFP 36 hrs 12 hrs 12 hrs Cyt B Wash Group 1: eight-cell to sixteen-cell transition Group 2: binucleated four-cell to eight-cell transition 48:00 72:00 96:00 48:00 48:00 60:00 Misaligned Chromosomes Lagging Chromosomes Micronuclei Series 001 z=13/27 Series 001 z=9/27 Series 002 z=14/28 48:00 49:83 50:17 50:50 51:08 51:17 51:83 49:83 50:08 51:8351:2551:1751:0849:83 49:00 51:9151:7551:5051:3349:33 52:08 CONTROL BINUCLEATED BINUCLEATED