SlideShare a Scribd company logo
1 of 26
Актуальность работы


     Методические указания к лабораторной работе для студентов 2 курса
специальности   140610    —    Электрооборудование    и     электрохозяйство
предприятий, организаций и учреждений
     В    армавирском    механико-технологическом     институте     (АМТИ)
изучение теоретических основ электротехники происходит с применением
компьютерных технологий на основе программы Mathcad.
     Методические     указания    состоят   из   описания     лабораторного
эксперимента с применением автоматического осциллографа HPS 10 (40) и
компьютерной обработки результатов эксперимента в программе Mathcad на
основе разработок (know how) доцента Курочкина В.В. ([3],[4]).
     Методические указания внедряют в учебный процесс современные
приемы и аппаратуру эксперимента по данной теме и дают студентам навыки
применения компьютерных технологий обработки результатов эксперимента.
     Использованные приемы и технологии компьютерной обработки могут
быть использованы и в других технических учебных дисциплинах.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФБГОУ ВПО «Кубанский государственный технологический университет»
          Армавирский механико-технологический институт
     Кафедра внутризаводского электрооборудования и автоматики




        ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ


Исследование переходных процессов при заряде и разряде конденсатора
                        через сопротивление
 Методические указания к лабораторной работе для студентов всех форм
        обучения специальности 140610 — Электрооборудование
      и электрохозяйство предприятий, организаций и учреждений




                           Армавир – 2006

                                 2
УДК 681.3.01

     Теоретические основы электротехники. Исследование переходных
процессов при заряде и разряде конденсатора через сопротивление.
Методические указания к лабораторной работе для студентов всех форм
обучения специальности 140610 – Электрооборудование и электрохозяйство
предприятий, организаций и учреждений/ Сост.: Курочкин В.В к.т.н.,
Горяинов А.А. студ. Армавирский механико-технологический институт
(филиал) ФБГОУ ВПО «Кубанский государственный технологический
университет». Каф. внутризаводского электрооборудования и автоматики. –
Армавир: Изд. АМТИ, 2012, 20 с.

     Определено содержание работы и отчета по ней, сформулированы
задания и технология их выполнения, даны вопросы для защиты, указаны
главы и параграфы из литературы. По результатам расчетов моделируются с
помощью программы Mathcad апериодический и периодический переходные
процессы   разряда конденсатора.     В приложениях    показаны   образцы
моделирования с помощью программы Mathcad.
     Предназначено для студентов всех форм обучения специальности
140610.
     Илл.: 5. Табл.: 2. Приложений: 3.
     Печатается     по   решению   Методического   совета   Армавирского
механико-технологического института.


     Рецензенты: Сковородников С.П., доцент кафедры ВЭА АМТИ.
     Орлов С.П., доцент кафедры ВЭА АМТИ, к. т. н.




     © Армавирский механико-технологический институт, 2006
                             © Курочкин В.В.

                                     3
Лабораторная работа «Исследование переходных процессов
         при заряде и разряде конденсатора через сопротивление»

     Цели работы

        1 Исследование       процессов   заряда   и   апериодического   и
  колебательного разряда конденсатора.
        2 Изучение методов косвенного расчета параметров разряда по
  измерениям осциллограмм переходных процессов.
        3 Приобретение навыков моделирования переходных процессов с
  помощью программы Mathcad.

     Предупреждения

           Установка подключена к электросети 220 вольт, напряжение в
  собираемой схеме – 10 В.
           Перед включением показать схему преподавателю для проверки.
           Особую внимательность необходимо соблюдать при работе с
  автоматическим осциллографом.

     Содержание работы

        1. Ознакомление с лабораторной установкой и изучение органов
  управления и индикации автоматического осциллографа HPS10 (HPS40).
        2. Изучение приемов работы с осциллографом на примере
  измерения параметров генератора прямоугольных импульсов.
        3. Измерение и вычисление параметров заряда конденсатора через
  сопротивление.
        4. Измерение и вычисление параметров разряда конденсатора через
  сопротивление.
        5. Моделирование с помощью программы Mathcad зарядно-
  разрядного процесса конденсатора через сопротивление.
     Примечания: 1. Экспериментальные измерения выполняются на
лабораторном стенде за первые два часа лабораторной работы.

                                     4
2. Расчеты, моделирование и оформление отчета выполняются в
  компьютерном классе в последующие 4 часа лабораторной работы.

     Описание лабораторной установки

     Лабораторная работа выполнена на учебном лабораторном комплексе
ЭД1 «Теория электрических цепей и основы электроники». На настольной
раме укреплены следующие модули комплекса:
             блок генераторов напряжений БГН2;
             наборная панель НП2 с группами по 4 гнезда для сборки схем;
             три измерительных прибора–мультиметра БМ6.
     Выносная часть комплекса включает в себя:
             набор элементов схем в виде миниблоков;
             набор соединительных проводов и перемычек.
     Модульная      конструкция     лабораторного   комплекса   обеспечивает
возможность сборки электрической цепи требуемой конфигурации с
необходимыми параметрами еѐ элементов и изменения параметров режима
этой цепи.
     Исследуемые в лабораторной работе электрические цепи собираются
из элементов миниблоков:
             активное сопротивление 470 Ом;
             конденсаторы с емкостью 0,1 мкФ, ,0.22 мкФ, 1 мкФ,;
             катушка индуктивности 40 мГн с собственным сопротивлением
  74 Ом;
             катушка индуктивности 10 мГн с собственным сопротивлением
  17 Ом.
     В     лабораторной    работе   используется    генератор   с   выходным
прямоугольным однополярным стабилизированным напряжением. Генератор
имеет следующие технические характеристики:
             регулирование выходного напряжения – от 0 до 10 В;

                                       5
регулирование частоты – от 200 до 20000 Гц;
          скважность (отношение периода повторений к длительности
  импульса) – 2;
          встроенная защита от перегрузки по току – не более 0,2 А.
     Генератор имеет три выхода:
          потенциальный выход;
          выход синхронизации;
          выход на общий провод (0).
     Исследуемую цепь подключают к потенциальному выходу и к выходу
генератора на общий провод.
     Автоматический осциллограф HPS10 (40) обеспечивает наблюдение и
измерение параметров процесса:
          выделенного маркерами интервала по вертикали в вольтах;
          выделенного маркерами интервала по горизонтали в секундах.

     Органы управления и индикации автоматического осциллографа




     Рисунок 1 – Органы управления осциллографом HPS10 (40)

                                    6
В автоматическом осциллографе можно выделить две зоны:
        жидкокристаллический       дисплей,   на   котором   отображается
осциллограмма изучаемого процесса, таблица параметров, текущий режим
и трассеры (горизонтальные и вертикальные линии) двух маркеров:
макера-1 и маркера-2;
        пульт управления с кнопками и клавишами.
     1. Кнопка включения и выключения питания. После включения
питания идет автоматическая установка режимов и, если осциллограф
подключен к измеряемой цепи, произойдет автоматическая настройка
отображения этого процесса.
     2. Кнопка Display/Setup включения и выключения режима выбора
вариантов индикации. Включение режима Display/Setup отображается на
индикаторе в виде надписи Display. После включения режима выбор
вариантов индикации выполняется клавишей  на пульте управления
осциллографа. Имеется четыре варианта индикации:
        Вариант   1     –   с   минимальной   информацией.    На   экране
отображается только исследуемый процесс.
        Вариант 2 – в нижней части экрана отображается измеренное
действующее значение переменного напряжения. Эта информация
занимает часть экрана, поэтому сам процесс отображается в маленьком
масштабе.
        Вариант 3 – в нижней части экрана отображаются две
измеренные величины: действующее значение переменного напряжения и
размах между максимальным и минимальным значением переменного
напряжения. Эта информация занимает часть экрана, поэтому сам процесс
отображается в маленьком масштабе.
        Вариант 4 (основной) – в правой части экрана отображается
таблица параметров (описана ниже)
  Выключают режим Display/Setup нажатием любой другой кнопки.

                                    7
3. Кнопка t-V/div включения режима ручного изменения масштаба
времени t (по горизонтали) и ручного изменения масштаба напряжения V
(по вертикали). Включение режима отображается надписью t-V/div (в
нижней части экрана при втором и третьем варианте индикации или в
нижней строке таблицы параметров при четвертом варианте индикации).
Режим позволяет менять размер процесса по вертикали (напряжение V)
клавишами  или  на пульте управления осциллографом и менять
размер процесса по горизонтали (время развертки t) клавишами  или 
на пульте управления осциллографом. При этих регулировках возможен
выход регулируемых величин за допустимые границы. Такая ситуация
отображается в строке индикации (в таблице параметров или внизу
экрана) вопросительными знаками в позициях измеряемых величин
(напряжения – mV, времени – ms, или того и другого вместе).
      Выключают режим t-V/div кнопкой Auto включения режима
автоматических измерений. После этого исчезает индикация t-V/div и в
строке таблицы параметров появляется индикация run dc (режим
автоматических измерений на постоянном токе) или run ac (режим
автоматических измерений на переменном токе). В данной работе
используется режим run ac, что переключается соответствующей
кнопкой на пульте управления осциллографом.
      4. Кнопка   X/Y-pos   включения    режима     ручной    настройки
положения (position) по горизонтали X и по вертикали Y. Включение
режима отображается надписью X/Y-pos (в нижней части экрана при
втором и третьем варианте индикации или в нижней строке таблицы
параметров при четвертом варианте индикации). Режим позволяет менять
положение процесса по вертикали (координата Y) клавишами  или  на
пульте управления осциллографом и менять положение процесса по
горизонтали (координата X) клавишами  или  на пульте управления
осциллографом. Выключают режим X/Y-pos кнопкой Auto включения

                                 8
режима автоматических измерений. После этого исчезает индикация X/Y-
pos и в строке таблицы параметров появляется индикация run ac (режим
автоматических измерений на переменном токе).
     5. Кнопка Marker1-2 включения и выключения режима управления
маркерами (первое нажатие – маркер-1, второе нажатие – маркер-2,
третье нажатие – отключение режима). Включение режима отображается
надписью Marker1 или Marker2 в нижней строке таблицы параметров
при четвертом варианте индикации. Режим позволяет перемещать
трассеры (горизонтальные и вертикальные линии на экране) с помощью
горизонтальных (,) и вертикальных (,) клавиш на пульте
управления осциллографом. Осциллограф автоматически измеряет и
отображает     в    строках     таблицы   параметров   расстояние   между
горизонтальными трассерами как напряжение (mV), а расстояние между
вертикальными трассерами как время (ms). В режиме Marker1
вертикальный трассер до начала его перемещения находится слева, а
горизонтальный трассер – вверху. В режиме Marker2 вертикальный
трассер до начала его перемещения находится справа, а горизонтальный
трассер – внизу. При этом до начала перемещений трассеров в строках
таблицы параметров отображается максимальное расстояние между
горизонтальными трассерами как наибольшее напряжение (mV) и
максимальное       расстояние    между    вертикальными   трассерами   как
наибольшее время (ms).
     6. Кнопка Memory включения и выключения режима сохранения
изображения в памяти. Включение режима отображается надписью Hold
(«замораживания») в строке таблицы параметров вместо надписи run ac.
Режим применяется при неустойчивом изображении в режиме реального
времени, когда трудно выделить маркерами нужные точки на измеряемом
процессе. В режиме действуют способы измерений с помощью маркеров.
Выключается режим повторным нажатием кнопки Memory.

                                     9
7. Кнопку включения и выключения режима регулировки яркости и
контрастности дисплея использовать не рекомендуется, так как эти
параметры не зависят от измерений и уже установлены.
      8. Кнопку     внутренних     настроек     осциллографа      использовать
запрещается!
      9. Таблица параметров измерений выводится в четвертом варианте
индикации (см. пункт 2), располагается в правой части экрана и имеет
строки:
          ms/div – масштаб развертки мс/дел;
          ms (или μs) – интервал в мс (или в мкс) между вертикальными
трассерами Marker1 и Marker2. Это – одна из двух основных строк,
используемых при измерениях в данной работе. В начале измерений (до
перемещения       вертикальных     трассеров)     в     строке    отображается
длительность всей развертки;
          Hz – частота развертки (в данной работе не используется);

          mV   – строка отображения измерения напряжения между
горизонтальными трассерами. Это – вторая              из двух основных строк,
используемых при измерениях в данной работе. В начале измерений (до
перемещения      горизонтальных     трассеров)    в      строке   отображается
максимальное напряжение;
          mV~ действующее значение переменного напряжения (в данной
работе не используется);
          mV~Ø     –   размах    между   максимальным        и    минимальным
значениями переменного напряжения (в данной работе не используется);
          run ac или Hold – режим автоматических измерений на
переменном токе или режим сохранения изображения в памяти;
          нижняя строка таблицы параметров отображает режимы: Display,
или t-V/div, или X/Y-pos , или Marker1 (Marker2);


                                    10
несколько строк таблицы параметров узкоспецифичны и в данной
  работе не используется.

     Выполнение работы

     Задание 1: Изучение приемов работы с осциллографом на примере
измерения параметров генератора прямоугольных импульсов




     Рисунок 2 – Установка опорной точки и точки привязки


     Изображение исследуемого с помощью осциллографа процесса,
     где: ОТ — опорная точка (маркер 1);
      ТП — точка привязки (маркер 2);
      Ti — длительность импульса генератора, мс;
      Umax — размах импульса генератора, В.


       1. На наборной панели создайте потенциальный вывод генератора
  прямоугольных импульсов и нулевой вывод генератора (используйте
  группы по 4 гнезда на наборной панели).
       2. Подключите к выходным потенциальному и нулевому выводам
  генератора импульсов мультиметр, переключите его на измерение
  переменного напряжения на шкале 20 В.



                                   11
3. Подключите к выходным потенциальному и нулевому выводам
генератора входные штекеры автоматического осциллографа.
     4. Покажите схему преподавателю.
     5. Включите    генератор   прямоугольных    импульсов,   включите
мультиметр и установите напряжение генератора 1 В по мультиметру,
частоту импульсов 0.25 кГц по индикатору на генераторе.
     6. Включите питание осциллографа и нажмите кнопку Auto. После
прохождения заставки осциллограф автоматически настроит режим
синхронизации и покажет вид исследуемого процесса (прямоугольные
импульсы).
     7. Выведите в правую часть дисплея таблицу параметров. Для
этого нажмите кнопку DISPLAY/SETUP и нажимайте клавишу  на
пульте управления осциллографом до тех пор, пока не появиться таблица.
Ознакомьтесь с содержанием строк таблицы.
     8. Измените положение изображенного процесса, установив его в
средней части дисплея. Для этого нажмите кнопку X/Y-pos. Четыре
управляющие клавиши позволяют перемещать по дисплею изображение.
     9. Переключитесь в режим автоматического измерения кнопкой
Auto. Обратите внимание на изменение отображения режима.
     10.     Измените размеры изображенного процесса, установив его
максимальным по вертикали и на величину одного – двух периодов
повторения генератора по горизонтали. Для этого нажмите кнопку t-V/div.
Управляющие клавиши , позволяют изменять масштаб амплитуды
исследуемого процесса, управляющие клавиши , позволяют изменять
масштаб длительности исследуемого процесса. Горизонтальные клавиши
влияют также на синхронизацию изображения. Если изображение выходит
за пределы дисплея, то осциллограф не определяет параметры, проставляя
знак «?». Устраните такую ситуацию управляющими клавишами.



                                 12
11.      Переключитесь      в    режим       автоматического    измерения
кнопкой Auto. Обратите внимание на изменение отображения режима.
     12.      Сохраните изображение в памяти, нажав кнопку Memory.
Обратите внимание на изменение отображения режима. Выключите
режим Memory, повторно нажав кнопку Memory.
     13.      Нажмите кнопку Marker1-2. В нижней строке таблицы
параметров должна появиться надпись Marker1. Вертикальный трассер
маркера-1   будет   находиться       по   левой     границе   рабочего    поля,
горизонтальный трассер маркера-1 будет находиться по верхней границе
рабочего поля.
     14.      Управляющими           клавишами      установите      перекрестие
трассеров маркера-1 внизу начала положительного импульса генератора.
Это положение принимается «опорной точкой» при измерении, его
больше не меняют и называют «жесткий» маркер.
     15.      Нажмите повторно кнопку Marker1-2. В нижней строке
таблицы параметров должна появиться надпись Marker2. Вертикальный
трассер маркера-2 будет находиться по правой границе рабочего поля,
горизонтальный трассер маркера-2 будет находиться по нижней границе
рабочего поля.


     16.      Управляющими           клавишами      установите      перекрестие
трассеров маркера-2 вверху конца положительного импульса генератора.
Это положение трассеров маркера-2 называют «точкой привязки».
     17.      В таблице параметров на дисплее будут показаны
интервалы между маркерами по вертикали в вольтах и по горизонтали в
миллисекундах или в микросекундах. Результат запишите как размах
импульса генератора Umax и длительность импульса генератора Ti для
расчетов в задании 6.



                                     13
Задание 2: Измерение параметров осциллограммы заряда
конденсатора через сопротивление и вычисление постоянной времени
заряда

     1.      Соберите схему эксперимента в соответствии с рисунком 1.
Покажите схему преподавателю.
     2.      Включите генератор напряжений и установите напряжение 1 В,
частоту 0.25 кГц.
     3.      Включите питание осциллографа и нажмите кнопку Auto. После
прохождения         заставки   осциллограф   автоматически   настроит     режим
синхронизации и покажет вид зарядно-разрядный импульс переходного
процесса.
                                           R1
                                         470 Ом

    G1
            вых 0,2 А                                                   PS1
                                           C1
                                PV1
                                         1 мкФ
            синхр




     Рисунок 3 – Схема эксперимента для исследования переходного
процесса заряда – разряда конденсатора через сопротивление


     4.      Выведите в правую часть дисплея таблицу параметров.
     5.      Измените положение изображенного процесса, установив его в
средней части дисплея.
     6.      Измените размеры изображенного процесса, установив его
максимально по вертикали и по горизонтали на величину одного-двух
периодов повторения.




                                        14
7.    Необходимо измерить максимальную высоту зарядного импульса
в вольтах и временной интервал первой точки привязки. Для этого:
             установите горизонтальный и вертикальный трассеры маркера-1
в вершину зарядного импульса. Это будет опорная точка для измерений
зарядного процесса. Во всех последующих измерениях зарядного процесса
не трогайте этот маркер, который будем называть «жестким» маркером. В
дальнейшем от опорной точки будут выполняться отсчеты интервалов по
высоте (напряжение) и по горизонтали (время);
             установите маркер-2 в первую точку привязки (начало зарядного
процесса) и выполните отсчет интервала напряжения ΔU1z между
горизонтальной линией «жесткого» маркера и горизонтальной линией
маркера-2 и отсчет интервала времени ΔT1z между вертикальной линией
«жесткого» маркера и вертикальной линией маркера-2. Результаты запишите
в первой строке таблицы 1.
       8.    Два измерения на кривой заряда позволяют вычислить по
формуле (1) постоянную времени цепи заряда.

                                 T1z    T 2z
                            z                , мс;                         (1)
                                     U 1z
                                 ln(      )
                                     U 2z

где:        T1z      - интервал времени заряда конденсатора при первом
измерении;
            T 2z -    интервал   времени     заряда   конденсатора   при   втором
измерении;
            U1z - интервала напряжения заряда конденсатора при первом
измерении;
            U 2z - интервала напряжения заряда конденсатора при втором
измерении.




                                           15
Для этих измерений:
        установите маркер-2 во вторую точку привязки. Выполните отсчет
   интервала напряжения ΔU2z между опорной точкой «жесткого» маркера
   и точкой привязки маркера-2 и отсчет интервала времени ΔT2z между
   опорной точкой «жесткого» маркера и точкой привязки маркера-2.
   Результаты запишите в таблицу 1 во второю строку.
        9. Для лучшей достоверности измерений и вычислений выполните
  несколько таких пар измерений. Для экспоненциального зарядного
  процесса можно использовать любые пары измерений, но с обязательным
  условием: в каждой паре измерений вторая точка привязки должна
  находиться правее первой точки привязки (иначе логарифм отношения
  ΔU1z/ΔU2z в формуле (1) будет отрицательным числом!).




     Рисунок 4 – Пример измерения интервалов времени и напряжения
заряда конденсатора через сопротивление

                                   16
10.    Вычисления выполняются по компьютерной технологии в
программе Mathcad в следующем порядке:
    По таблице 1 ввести в Mathcad матрицу;
    Выделить из матрицы вектор напряжения Uz и вектора времени Tz ;
    Сформировать функцию пользователя по формуле (1);
    На основе функции пользователя сформировать элементы массива
постоянных времени заряда z. При этом значение интервала времени       T1z
должно быть больше интервала времени         T 2z , а значение интервала
напряжения     U1z   должно быть больше интервала напряжения       U 2z .
Вывести эти элементы как вектор постоянных времени заряда z.
    Вычислить среднее значение постоянных времени заряда z с помощью
функции Mathcad - mean( )

       №               Интервал напряжения         Интервал времени
   измерения                 ΔUz, В                     ΔTz, мс
        1
        2
        3
        4
        5


     Таблица 1 – Результаты измерений параметров заряда конденсатора
через сопротивление




                                   17
Задание 3: Измерение параметров осциллограммы разряда
конденсатора через сопротивление и вычисление постоянной времени
разряда

       1.    Два измерения на кривой разряда позволяют вычислить по
формуле (2) значение постоянной времени цепи разряда.

                               T 1r   T 2r
                           r               , мс;                   (2)
                                   U 1r
                               ln(      )
                                   U 2r

где:        T1r      - интервал времени разряда конденсатора при первом
измерении;
            T 2r -    интервал времени разряда конденсатора при втором
измерении;
            U1r - интервала напряжения разряда конденсатора при первом
измерении;
            U 2r - интервала напряжения разряда конденсатора при втором
измерении.

       Для этих измерений:
             установите опорную точку маркера-1 в правую нижнюю часть
кривой разряда. В последующих измерениях разрядного процесса не
трогайте этот маркер, который будем называть «жестким маркером»;
             установите точку привязки маркера-2 в вершину импульса.
Выполните отсчет интервала напряжения ΔU1r между опорной точкой и
точкой привязки маркера-2. Выполните отсчет интервала времени ΔT1r
между опорной точкой и точкой привязки маркера-2. Результаты запишите в
первой строке таблицы 2;
             установите маркер-2 во вторую точку привязки      разрядного
процесса (правее и ниже первой точки привязки). Выполните отсчет
интервала напряжения ΔU2r между опорной точкой и второй точкой


                                         18
привязки маркера-2. Выполните отсчет интервала времени ΔT2r между
опорной точкой и второй точкой привязки маркера-2. Результаты запишите
во вторую строку таблицы 2.
     2. Для лучшей достоверности измерений и вычислений выполните
несколько таких пар измерений. Для экспоненциального разрядного
процесса можно использовать любые пары измерений, но с обязательным
условием: в каждой паре измерений вторая точка привязки должна
находиться правее первой точки привязки.




     Рисунок 5 – Пример измерения интервалов времени и напряжения
разряда конденсатора через сопротивление

                                   19
3. Вычисления выполняются по компьютерной технологии в программе
Mathcad в следующем порядке:
      По таблице 2 ввести в Mathcad матрицу;
      Выделить из матрицы вектор напряжения Ur и вектора времени Tr ;
      Сформировать функцию пользователя по формуле (2);
      На основе функции пользователя сформировать элементы массива
постоянных времени разряда r. При этом значение интервала времени T1r
должно быть больше интервала времени           T 2r , а значение интервала
напряжения     U1r    должно быть больше интервала напряжения        U 2r .
Вывести эти элементы как вектор постоянных времени разряда r.
      Вычислить среднее значение постоянных времени разряда             r с

помощью функции Mathcad - mean( )
     Таблица 1 – Результаты измерений параметров разряда конденсатора
через сопротивление
       №                Интервал напряжения          Интервал времени
   измерения                   ΔUr, В                     ΔTr, мс
           1
           2
           3
           4
           5




                                    20
Задание 4: По результатам вычислений в заданиях 2 и 3
смоделировать с помощью программы Mathcad процесс заряда-разряда
конденсатора через сопротивление и построить его график.

     Для этого необходимо:
           В программе Mathcad присвоить частоте значение 250 Гц;
           Вычислить период и полупериод функции;
           Задать переменной Umax значение максимального интервала
напряжения исходя из измеренных параметров;
           Создать постоянные времени заряда и разряда конденсатора 1 и
 2 вычисленные в 1 и 2 заданиях, как среднее значение постоянных времени;
           Сформировать функцию пользователя интервала напряжений
заряда конденсатора по формуле:
                                                 t1
                               Uz U max (1 e      1
                                                      ) , В;

           Сформировать функцию пользователя, интервала напряжений
разряда конденсатора по формуле:
                                                t2
                                   Ur U max e    2
                                                     , В;
           Создать интервалы времени с помощью ранжированных
переменных t1 - для заряда (от 0 до 6· 1 с шагом 1/100) и t2 – для разряда
(от 0 до 5· 2 с шагом 1/100) конденсатора;
           Смоделировать график переходного процесса.




                                      21
Содержание отчета по лабораторной работе

     1. Титульный лист с наименованием учебного заведения, кафедры и
учебной   дисциплины,     номером         и   названием   работы,   фамилией
исполнителя и преподавателя, датой выполнения и защиты.
     2. Цели работы.
     3. Измерение параметров осциллограммы заряда конденсатора
через сопротивление и вычисление постоянной времени заряда
     4. Измерение параметров осциллограммы разряда конденсатора
через сопротивление и вычисление постоянной времени разряда
      5. Результаты моделирования в программе Mathcad процесса заряда
и разряда конденсатора C1 через сопротивление R1 (приложение A.3).

  Вопросы к защите лабораторной работы
     1. По каким законам происходит заряд и разряд конденсатора через
сопротивление? Поясните формулы (1), (2)
     2. Какие параметры осциллограммы заряда конденсатора через
сопротивление необходимы для вычисления постоянной времени цепи
заряда и как они определяются на экране автоматического осциллографа?
     3. Какие параметры осциллограммы разряда конденсатора через
сопротивление необходимы для вычисления постоянной времени цепи
разряда   и   как   они   определяются         на   экране    автоматического
осциллографа?
     4. Как вычисляется с помощью программы Mathcad постоянные
времени цепи заряда и разряда?
     5. Как     смоделировать    в        Mathcad   процесс    заряда-разряда
конденсатора через сопротивление, соответствующий экспериментальным
данным?




                                     22
Список литературы к лабораторной работе
         1. Бессонов   Л.А.    Теоретические      основы      электротехники:
Электрические цепи: Учебник.–10-е изд. – М.: Гардарики, 2002. – 638 с.,
гл. 8.
         2. Теоретические основы электротехники: В 3-х т. Учебник для
вузов. Том 2. – 4-е изд./К.С. Демирчан, Л.Р. Нейман, Н.В. Коровкин, В.Л.
Чепурин. – СПб.: Питер, 2003. – 576 с., гл. 9, §§ 9.1, 9.6, 9.7, 9.8.
         3. Курочкин В.В. Расчеты в Mathcad электрических и магнитных
цепей электрооборудования: Учеб. пособие/ Кубан. гос. технол. ун-т,
Армавир: Изд. АМТИ, – 2006. 272 с. Занятие 14.
         4. Курочкин В.В. Лабораторный практикум с компьютерной
обработкой результатов эксперимента: Учеб. пособие/ Кубан. гос. технол.
ун-т, Армавир: Изд. АМТИ, – 2004. 116 с. Гл. 1, Лаб. работа 6.




                                     23
Приложение А. Образцы компьютерных расчетов по результатам
экспериментов
А.1. Статическая обработка в Mathcad результатов измерений заряда конденсатора через
сопротивление
1. Матрица результатов измерений интервалов напряжений и времени от опорной точки до точки
привязки по осциллограмме заряда на автоматическом осциллографе HPS10(40)
                                           3                                                                                            3
             1.745 1.7 10                                                                                                    1.7 10
                                               3                                          1.745                                            3
             1.105 1.5510                                                                                                    1.55 10
                                               3                                          1.105                                            3
                                                               ORIGIN         1
             0.814 1.4510                                                                                                    1.45 10
                                                                                          0.814
                                               3                                                                                           3
             0.581 1.3510                                                 1               0.581                      2       1.35 10
  UT                                                           U     UT               U                 T       UT       T
                                                3                                         0.407                                             3
             0.407 1.25810                                                                                                   1.258 10
                                                                                          0.349
                                               3                                                                                           3
             0.349 1.1510                                                                 0.232                              1.15 10
                                               3                                                                                           3
             0.232 1.0510                                                                 0.174                              1.05 10
                                           3                                                                                           4
             0.174 0.9 10                                                                                                     9   10

2. Функция пользователя для вычисления постоянной времени цепи заряда
                                           t1        t2
       fz( t 1 t 2 u1 u2 )
                                                    u1
                                           ln
                                                    u2
 3. Формирование массива результатов вычислений по отдельным реализациям эксперимента
                                                                                  4                                                             4
          fz T T U U                                           3.283 10                           fz T T U U                      2.77 10
   1           1       2       1       2                  1                                15       3       5   3    5       15
                                                                                  4                                                             4
          fz T T U U                                           3.278 10                           fz T T U U                      5.886 10
   2           1       3       1       3                  2                                16       3       6   4    6       16
                                                                                  4                                                             4
          fz T T U U                                           3.183 10                           fz T T U U                      3.187 10
   3           1       4       1       4                  3                                17       3       7   3    7       17
                                                                                  4                                                             4
          fz T T U U                                           3.036 10                           fz T T U U                      3.565 10
   4           1       5       1       5                  4                                18       3       8   3    8       18
                                                                                  4                                                             4
          fz T T U U                                           3.417 10                           fz T T U U                      2.585 10
   5           1       6       1       6                  5                                19       4       5   4    5       19
                                                                                  4                                                             4
          fz T T U U                                           3.221 10                           fz T T U U                      3.924 10
   6           1       7       1       7                  6                                20       4       6   4    6       20
                                                                              4                                                                 4
          fz T T U U                                           3.47 10                            fz T T U U                      3.268 10
   7           1       8       1       8                  7                                21       4       7   4    7       21
                                                                                  4                                                             4
          fz T T U U                                           3.272 10                           fz T T U U                      3.732 10
   8           2       3       2       3                  8                                22       4       8   4    8       22
                                                                                  4                                                             4
          fz T T U U                                           3.111 10                           fz T T U U                      7.025 10
   9           2       4       2       4                  9                                23       5       6   5    6       23
                                                                                  4                                                             4
           fz T T U U                                              2.924 10                       fz T T U U                      3.701 10
   10              2       5       2       5              10                               24       5       7   5    7       24
                                                                                  4                                                             4
           fz T T U U                                              3.471 10                       fz T T U U                      4.213 10
   11              2       6       2       6              11                               25       5       8   5    8       25
                                                                                  4                                                             4
           fz T T U U                                              3.203 10                       fz T T U U                      2.449 10
   12              2       7       2       7              12                               26       6       7   6    7       26
                                                                                  4                                                             4
           fz T T U U                                              3.516 10                       fz T T U U                      3.592 10
   13              2       8       2       8              13                               27       6       8   6    8       27
                                                                                  4                                                             4
           fz T T U U                                              2.966 10                       fz T T U U                      5.214 10
   14              3       4       3       4              14                               28       7       8   7    8       28

4. Среднее значение постоянной времени заряда
                                           24
                                   4
     z  mean( )        z 3.588 10
А.2. Статическая обработка в Mathcad результатов измерений разряда конденсатора через
      сопротивление

           1. Матрица результатов измерений интервалов напряжений и времени от опорной точки до точки
привязки по осциллограмме разряда на автоматическом осциллографе HPS10(40)
                                       3            ORIGIN             1
               1.745 1.7 10
                                       3
               1.221 1.6 10                                                                1.745
                                       3                                                   1.221
               0.989 1.5 10
                                                                                           0.989
                                       3
               0.756 1.4 10
 UT                                                               1                        0.756
                                       3            U       UT             U
               0.523 1.3 10                                                                0.523
                                       3                                                   0.407
               0.407 1.2 10
                                                                                           0.29
                                       3
               0.290 1.1 10                                                                0.174
                                       3
               0.174 1 10

2. Функция пользователя для вычисления постоянной времени цепи разряда

                                   t1          t2
  fr ( t 1 t 2 u1 u2 )
                                           u1
                                   ln
                                           u2
 3. Формирование массива результатов вычислений по отдельным реализациям эксперимента
                                                                               4                                                            4
               fr T T U U                                        4.201 10                                fr T T U U              3.014 10
      1            1       2       1       2            1                                          15      3    5   3   5   15
                                                                               4                                                            4
               fr T T U U                                        4.403 10                                fr T T U U              4.845 10
      2            1       3       1       3            2                                           16     3    6   4   6   16
                                                                               4                                                            4
               fr T T U U                                        4.184 10                                fr T T U U              3.26 10
      3            1       4       1       4            3                                          17      3    7   3   7   17
                                                                               4                                                                4
               fr T T U U                                        3.668 10                                fr T T U U              3.165 10
      4            1       5       1       5            4                                           18      3   8   3   8   18
                                                                                   4                                                            4
               fr T T U U                                        3.778 10                                fr T T U U              2.497 10
      5            1       6       1       6            5                                           19     4    5   4   5   19
                                                                               4                                                            4
               fr T T U U                                        3.622 10                                fr T T U U              3.23 10
      6            1       7       1       7            6                                           20     4    6   4   6   20
                                                                               4                         fr T T U U                             4
               fr T T U U                                        3.47 10                           21      4    7   4   7        3.131 10
      7            1       8       1       8            7                                                                   21
                                                                                   4                                                            4
               fr T T U U                                        4.745 10                                fr T T U U              3.063 10
      8            2       3       2       3            8                                           22     4    8   4   8   22
                                                                                   4                                                        4
               fr T T U U                                        4.172 10                                fr T T U U              4.307 10
      9            2       4       2       4            9                                           23     5    6   5   6   23
                                                                                       4                                                        4
                fr T T U U                                        3.444 10                               fr T T U U              3.527 10
      10               2       5       2       5        10                                          24      5   7   5   7   24
                                                                                       4                                                        4
                 fr T T U U                                       3.641 10                               fr T T U U              3.253 10
      11               2       6       2       6        11                                          25      5   8   5   8   25
                                                                                       4                                                    4
                 fr T T U U                                       3.478 10                               fr T T U U              2.95 10
      12               2       7       2       7            12                                      26      6   7   6   7   26
                                                                                       4                                                        4
                 fr T T U U                                       3.336 10                               fr T T U U              2.942 10
          13           2       8       2       8            13                                      27      6   8   6   8   27
                                                                                       4                                                    4
                fr T T U U                                            3.722 10                           fr T T U U              2.936 10
      14               3       4       3       4            14                                      28      7   8   7   8   28
4. Среднее значение постоянной времени разряда

      r        mean( )                                                     4                       25
                                                    r       3.571 10
А.3. Моделирование в Mathcad переходного процесса заряда-разряда конденсатора через
сопротивление

                            3             1                Tg                    3
       Fg        0.25 10            Tg                              2       10               Umax    1.745
                                          Fg               2
                                                                                                             t1                          t2
                                4                                       4
         1        3.588 10                2      3.571 10                                                    1                           2
                                                                                 Uz ( t1)    Umax    1   e        Ur ( t2)   Umax    e


                        1
            dt
                   100               t1       0 dt     6        1            t2       0 dt   5   2




                   2




                  1.5


       Uz ( t1)
                   1
       Ur ( t2)



                  0.5




                        0                      0.001                              0.002                  0.003               0.004
                                                                             t1 6 1 t2




                                                                                 26

More Related Content

Viewers also liked

Философы античности об устройстве общества и государства
Философы античности об устройстве общества и государстваФилософы античности об устройстве общества и государства
Философы античности об устройстве общества и государстваAlex_Goryainov
 
Manchester. The city and the capital of football trophies.
Manchester. The city and the capital of football trophies.Manchester. The city and the capital of football trophies.
Manchester. The city and the capital of football trophies.Alex_Goryainov
 
Ювелирный центр "Золотая Жила"
Ювелирный центр "Золотая Жила"Ювелирный центр "Золотая Жила"
Ювелирный центр "Золотая Жила"stdyavol
 
Политическая власть и сми
Политическая власть и смиПолитическая власть и сми
Политическая власть и смиAlex_Goryainov
 
Макиавелли. Жесткий прагматизм.
Макиавелли. Жесткий прагматизм.Макиавелли. Жесткий прагматизм.
Макиавелли. Жесткий прагматизм.Alex_Goryainov
 
Языковая картина мира
Языковая картина мираЯзыковая картина мира
Языковая картина мираAlex_Goryainov
 
Предмет политологии, её научный статус и структура
Предмет политологии, её научный статус и структураПредмет политологии, её научный статус и структура
Предмет политологии, её научный статус и структураAlex_Goryainov
 
Gestió integral de l'empresa en temps d'insertesa
Gestió integral de l'empresa en temps d'insertesaGestió integral de l'empresa en temps d'insertesa
Gestió integral de l'empresa en temps d'insertesa@gafa't
 
El futur: els mercats electrònics i el posicionament web estratègic.
El futur: els mercats electrònics i el posicionament web estratègic.El futur: els mercats electrònics i el posicionament web estratègic.
El futur: els mercats electrònics i el posicionament web estratègic.@gafa't
 
Solucions de comunicació per vendre més
Solucions de comunicació per vendre mésSolucions de comunicació per vendre més
Solucions de comunicació per vendre més@gafa't
 
IMATGE PERSONAL 360º
IMATGE PERSONAL 360ºIMATGE PERSONAL 360º
IMATGE PERSONAL 360º@gafa't
 
Fiscalitat per autonoms.
Fiscalitat per autonoms.Fiscalitat per autonoms.
Fiscalitat per autonoms.@gafa't
 

Viewers also liked (14)

Философы античности об устройстве общества и государства
Философы античности об устройстве общества и государстваФилософы античности об устройстве общества и государства
Философы античности об устройстве общества и государства
 
Manchester. The city and the capital of football trophies.
Manchester. The city and the capital of football trophies.Manchester. The city and the capital of football trophies.
Manchester. The city and the capital of football trophies.
 
Vocabulary practice
Vocabulary practiceVocabulary practice
Vocabulary practice
 
Ювелирный центр "Золотая Жила"
Ювелирный центр "Золотая Жила"Ювелирный центр "Золотая Жила"
Ювелирный центр "Золотая Жила"
 
Политическая власть и сми
Политическая власть и смиПолитическая власть и сми
Политическая власть и сми
 
Aaa21
Aaa21Aaa21
Aaa21
 
Макиавелли. Жесткий прагматизм.
Макиавелли. Жесткий прагматизм.Макиавелли. Жесткий прагматизм.
Макиавелли. Жесткий прагматизм.
 
Языковая картина мира
Языковая картина мираЯзыковая картина мира
Языковая картина мира
 
Предмет политологии, её научный статус и структура
Предмет политологии, её научный статус и структураПредмет политологии, её научный статус и структура
Предмет политологии, её научный статус и структура
 
Gestió integral de l'empresa en temps d'insertesa
Gestió integral de l'empresa en temps d'insertesaGestió integral de l'empresa en temps d'insertesa
Gestió integral de l'empresa en temps d'insertesa
 
El futur: els mercats electrònics i el posicionament web estratègic.
El futur: els mercats electrònics i el posicionament web estratègic.El futur: els mercats electrònics i el posicionament web estratègic.
El futur: els mercats electrònics i el posicionament web estratègic.
 
Solucions de comunicació per vendre més
Solucions de comunicació per vendre mésSolucions de comunicació per vendre més
Solucions de comunicació per vendre més
 
IMATGE PERSONAL 360º
IMATGE PERSONAL 360ºIMATGE PERSONAL 360º
IMATGE PERSONAL 360º
 
Fiscalitat per autonoms.
Fiscalitat per autonoms.Fiscalitat per autonoms.
Fiscalitat per autonoms.
 

Similar to Исследование переходных процессов при заряде и разряде конденсатора через сопротивление

Техническое описание счетчиков однофазных типа Np 06
Техническое описание счетчиков однофазных типа Np 06Техническое описание счетчиков однофазных типа Np 06
Техническое описание счетчиков однофазных типа Np 06metersite
 
Сакмарская СЭС и новые разработки Прософт-Системы
Сакмарская СЭС и новые разработки Прософт-СистемыСакмарская СЭС и новые разработки Прософт-Системы
Сакмарская СЭС и новые разработки Прософт-СистемыDigitalSubstation
 
637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикумefwd2ws2qws2qsdw
 
637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикумivanov1566353422
 
Полигон интеллектуальных энергосистем
Полигон интеллектуальных энергосистемПолигон интеллектуальных энергосистем
Полигон интеллектуальных энергосистемДмитрий Сорокин
 
мониторинг и диспетчеризация сол станции Инфоком
мониторинг и диспетчеризация сол станции Инфокоммониторинг и диспетчеризация сол станции Инфоком
мониторинг и диспетчеризация сол станции ИнфокомAPPAU_Ukraine
 
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...Alexey Telegin
 
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...Технические решения по моделированию СТАТКОМ в расчетной модели электрической...
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...DigitalSubstation
 
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...Helen Petukhova
 
7.14.7 Измерение и устранение гармоник
7.14.7 Измерение и устранение гармоник7.14.7 Измерение и устранение гармоник
7.14.7 Измерение и устранение гармоникIgor Golovin
 
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...НЭПК "СОЮЗ "АТАМЕКЕН"
 
Фиксация переключения на обходной выключатель по токам
Фиксация переключения на обходной выключатель по токамФиксация переключения на обходной выключатель по токам
Фиксация переключения на обходной выключатель по токамООО "Прософт-Системы"
 
Эталонные средства измерения для метрологического обеспечения измерительных к...
Эталонные средства измерения для метрологического обеспечения измерительных к...Эталонные средства измерения для метрологического обеспечения измерительных к...
Эталонные средства измерения для метрологического обеспечения измерительных к...DigitalSubstation
 
INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf
 INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf
INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdfSamuel Ou
 

Similar to Исследование переходных процессов при заряде и разряде конденсатора через сопротивление (20)

Техническое описание счетчиков однофазных типа Np 06
Техническое описание счетчиков однофазных типа Np 06Техническое описание счетчиков однофазных типа Np 06
Техническое описание счетчиков однофазных типа Np 06
 
544
544544
544
 
Сакмарская СЭС и новые разработки Прософт-Системы
Сакмарская СЭС и новые разработки Прософт-СистемыСакмарская СЭС и новые разработки Прософт-Системы
Сакмарская СЭС и новые разработки Прософт-Системы
 
637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум
 
637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум637.теоретические основы электротехники лабораторный практикум
637.теоретические основы электротехники лабораторный практикум
 
Полигон интеллектуальных энергосистем
Полигон интеллектуальных энергосистемПолигон интеллектуальных энергосистем
Полигон интеллектуальных энергосистем
 
6888
68886888
6888
 
мониторинг и диспетчеризация сол станции Инфоком
мониторинг и диспетчеризация сол станции Инфокоммониторинг и диспетчеризация сол станции Инфоком
мониторинг и диспетчеризация сол станции Инфоком
 
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...
Тестирование бортовых устройств, работающих от сети питания 27 В постоянного ...
 
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...Технические решения по моделированию СТАТКОМ в расчетной модели электрической...
Технические решения по моделированию СТАТКОМ в расчетной модели электрической...
 
6725
67256725
6725
 
566
566566
566
 
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...
Приборы и системы контроля, противоаварийной автоматики и мониторинга для эле...
 
Теплосчетчик АКВА-МВТ
Теплосчетчик АКВА-МВТТеплосчетчик АКВА-МВТ
Теплосчетчик АКВА-МВТ
 
Met_913.pdf
Met_913.pdfMet_913.pdf
Met_913.pdf
 
7.14.7 Измерение и устранение гармоник
7.14.7 Измерение и устранение гармоник7.14.7 Измерение и устранение гармоник
7.14.7 Измерение и устранение гармоник
 
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...
Презентация на тему: «Разработки кафедры АПП в области энергетики за последни...
 
Фиксация переключения на обходной выключатель по токам
Фиксация переключения на обходной выключатель по токамФиксация переключения на обходной выключатель по токам
Фиксация переключения на обходной выключатель по токам
 
Эталонные средства измерения для метрологического обеспечения измерительных к...
Эталонные средства измерения для метрологического обеспечения измерительных к...Эталонные средства измерения для метрологического обеспечения измерительных к...
Эталонные средства измерения для метрологического обеспечения измерительных к...
 
INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf
 INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf
INVT_КАТАЛОГ ИНВЕРТОРОВ ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ_2023.4.10.pdf
 

Исследование переходных процессов при заряде и разряде конденсатора через сопротивление

  • 1. Актуальность работы Методические указания к лабораторной работе для студентов 2 курса специальности 140610 — Электрооборудование и электрохозяйство предприятий, организаций и учреждений В армавирском механико-технологическом институте (АМТИ) изучение теоретических основ электротехники происходит с применением компьютерных технологий на основе программы Mathcad. Методические указания состоят из описания лабораторного эксперимента с применением автоматического осциллографа HPS 10 (40) и компьютерной обработки результатов эксперимента в программе Mathcad на основе разработок (know how) доцента Курочкина В.В. ([3],[4]). Методические указания внедряют в учебный процесс современные приемы и аппаратуру эксперимента по данной теме и дают студентам навыки применения компьютерных технологий обработки результатов эксперимента. Использованные приемы и технологии компьютерной обработки могут быть использованы и в других технических учебных дисциплинах.
  • 2. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФБГОУ ВПО «Кубанский государственный технологический университет» Армавирский механико-технологический институт Кафедра внутризаводского электрооборудования и автоматики ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ Исследование переходных процессов при заряде и разряде конденсатора через сопротивление Методические указания к лабораторной работе для студентов всех форм обучения специальности 140610 — Электрооборудование и электрохозяйство предприятий, организаций и учреждений Армавир – 2006 2
  • 3. УДК 681.3.01 Теоретические основы электротехники. Исследование переходных процессов при заряде и разряде конденсатора через сопротивление. Методические указания к лабораторной работе для студентов всех форм обучения специальности 140610 – Электрооборудование и электрохозяйство предприятий, организаций и учреждений/ Сост.: Курочкин В.В к.т.н., Горяинов А.А. студ. Армавирский механико-технологический институт (филиал) ФБГОУ ВПО «Кубанский государственный технологический университет». Каф. внутризаводского электрооборудования и автоматики. – Армавир: Изд. АМТИ, 2012, 20 с. Определено содержание работы и отчета по ней, сформулированы задания и технология их выполнения, даны вопросы для защиты, указаны главы и параграфы из литературы. По результатам расчетов моделируются с помощью программы Mathcad апериодический и периодический переходные процессы разряда конденсатора. В приложениях показаны образцы моделирования с помощью программы Mathcad. Предназначено для студентов всех форм обучения специальности 140610. Илл.: 5. Табл.: 2. Приложений: 3. Печатается по решению Методического совета Армавирского механико-технологического института. Рецензенты: Сковородников С.П., доцент кафедры ВЭА АМТИ. Орлов С.П., доцент кафедры ВЭА АМТИ, к. т. н. © Армавирский механико-технологический институт, 2006 © Курочкин В.В. 3
  • 4. Лабораторная работа «Исследование переходных процессов при заряде и разряде конденсатора через сопротивление» Цели работы 1 Исследование процессов заряда и апериодического и колебательного разряда конденсатора. 2 Изучение методов косвенного расчета параметров разряда по измерениям осциллограмм переходных процессов. 3 Приобретение навыков моделирования переходных процессов с помощью программы Mathcad. Предупреждения Установка подключена к электросети 220 вольт, напряжение в собираемой схеме – 10 В. Перед включением показать схему преподавателю для проверки. Особую внимательность необходимо соблюдать при работе с автоматическим осциллографом. Содержание работы 1. Ознакомление с лабораторной установкой и изучение органов управления и индикации автоматического осциллографа HPS10 (HPS40). 2. Изучение приемов работы с осциллографом на примере измерения параметров генератора прямоугольных импульсов. 3. Измерение и вычисление параметров заряда конденсатора через сопротивление. 4. Измерение и вычисление параметров разряда конденсатора через сопротивление. 5. Моделирование с помощью программы Mathcad зарядно- разрядного процесса конденсатора через сопротивление. Примечания: 1. Экспериментальные измерения выполняются на лабораторном стенде за первые два часа лабораторной работы. 4
  • 5. 2. Расчеты, моделирование и оформление отчета выполняются в компьютерном классе в последующие 4 часа лабораторной работы. Описание лабораторной установки Лабораторная работа выполнена на учебном лабораторном комплексе ЭД1 «Теория электрических цепей и основы электроники». На настольной раме укреплены следующие модули комплекса: блок генераторов напряжений БГН2; наборная панель НП2 с группами по 4 гнезда для сборки схем; три измерительных прибора–мультиметра БМ6. Выносная часть комплекса включает в себя: набор элементов схем в виде миниблоков; набор соединительных проводов и перемычек. Модульная конструкция лабораторного комплекса обеспечивает возможность сборки электрической цепи требуемой конфигурации с необходимыми параметрами еѐ элементов и изменения параметров режима этой цепи. Исследуемые в лабораторной работе электрические цепи собираются из элементов миниблоков: активное сопротивление 470 Ом; конденсаторы с емкостью 0,1 мкФ, ,0.22 мкФ, 1 мкФ,; катушка индуктивности 40 мГн с собственным сопротивлением 74 Ом; катушка индуктивности 10 мГн с собственным сопротивлением 17 Ом. В лабораторной работе используется генератор с выходным прямоугольным однополярным стабилизированным напряжением. Генератор имеет следующие технические характеристики: регулирование выходного напряжения – от 0 до 10 В; 5
  • 6. регулирование частоты – от 200 до 20000 Гц; скважность (отношение периода повторений к длительности импульса) – 2; встроенная защита от перегрузки по току – не более 0,2 А. Генератор имеет три выхода: потенциальный выход; выход синхронизации; выход на общий провод (0). Исследуемую цепь подключают к потенциальному выходу и к выходу генератора на общий провод. Автоматический осциллограф HPS10 (40) обеспечивает наблюдение и измерение параметров процесса: выделенного маркерами интервала по вертикали в вольтах; выделенного маркерами интервала по горизонтали в секундах. Органы управления и индикации автоматического осциллографа Рисунок 1 – Органы управления осциллографом HPS10 (40) 6
  • 7. В автоматическом осциллографе можно выделить две зоны: жидкокристаллический дисплей, на котором отображается осциллограмма изучаемого процесса, таблица параметров, текущий режим и трассеры (горизонтальные и вертикальные линии) двух маркеров: макера-1 и маркера-2; пульт управления с кнопками и клавишами. 1. Кнопка включения и выключения питания. После включения питания идет автоматическая установка режимов и, если осциллограф подключен к измеряемой цепи, произойдет автоматическая настройка отображения этого процесса. 2. Кнопка Display/Setup включения и выключения режима выбора вариантов индикации. Включение режима Display/Setup отображается на индикаторе в виде надписи Display. После включения режима выбор вариантов индикации выполняется клавишей  на пульте управления осциллографа. Имеется четыре варианта индикации: Вариант 1 – с минимальной информацией. На экране отображается только исследуемый процесс. Вариант 2 – в нижней части экрана отображается измеренное действующее значение переменного напряжения. Эта информация занимает часть экрана, поэтому сам процесс отображается в маленьком масштабе. Вариант 3 – в нижней части экрана отображаются две измеренные величины: действующее значение переменного напряжения и размах между максимальным и минимальным значением переменного напряжения. Эта информация занимает часть экрана, поэтому сам процесс отображается в маленьком масштабе. Вариант 4 (основной) – в правой части экрана отображается таблица параметров (описана ниже) Выключают режим Display/Setup нажатием любой другой кнопки. 7
  • 8. 3. Кнопка t-V/div включения режима ручного изменения масштаба времени t (по горизонтали) и ручного изменения масштаба напряжения V (по вертикали). Включение режима отображается надписью t-V/div (в нижней части экрана при втором и третьем варианте индикации или в нижней строке таблицы параметров при четвертом варианте индикации). Режим позволяет менять размер процесса по вертикали (напряжение V) клавишами  или  на пульте управления осциллографом и менять размер процесса по горизонтали (время развертки t) клавишами  или  на пульте управления осциллографом. При этих регулировках возможен выход регулируемых величин за допустимые границы. Такая ситуация отображается в строке индикации (в таблице параметров или внизу экрана) вопросительными знаками в позициях измеряемых величин (напряжения – mV, времени – ms, или того и другого вместе). Выключают режим t-V/div кнопкой Auto включения режима автоматических измерений. После этого исчезает индикация t-V/div и в строке таблицы параметров появляется индикация run dc (режим автоматических измерений на постоянном токе) или run ac (режим автоматических измерений на переменном токе). В данной работе используется режим run ac, что переключается соответствующей кнопкой на пульте управления осциллографом. 4. Кнопка X/Y-pos включения режима ручной настройки положения (position) по горизонтали X и по вертикали Y. Включение режима отображается надписью X/Y-pos (в нижней части экрана при втором и третьем варианте индикации или в нижней строке таблицы параметров при четвертом варианте индикации). Режим позволяет менять положение процесса по вертикали (координата Y) клавишами  или  на пульте управления осциллографом и менять положение процесса по горизонтали (координата X) клавишами  или  на пульте управления осциллографом. Выключают режим X/Y-pos кнопкой Auto включения 8
  • 9. режима автоматических измерений. После этого исчезает индикация X/Y- pos и в строке таблицы параметров появляется индикация run ac (режим автоматических измерений на переменном токе). 5. Кнопка Marker1-2 включения и выключения режима управления маркерами (первое нажатие – маркер-1, второе нажатие – маркер-2, третье нажатие – отключение режима). Включение режима отображается надписью Marker1 или Marker2 в нижней строке таблицы параметров при четвертом варианте индикации. Режим позволяет перемещать трассеры (горизонтальные и вертикальные линии на экране) с помощью горизонтальных (,) и вертикальных (,) клавиш на пульте управления осциллографом. Осциллограф автоматически измеряет и отображает в строках таблицы параметров расстояние между горизонтальными трассерами как напряжение (mV), а расстояние между вертикальными трассерами как время (ms). В режиме Marker1 вертикальный трассер до начала его перемещения находится слева, а горизонтальный трассер – вверху. В режиме Marker2 вертикальный трассер до начала его перемещения находится справа, а горизонтальный трассер – внизу. При этом до начала перемещений трассеров в строках таблицы параметров отображается максимальное расстояние между горизонтальными трассерами как наибольшее напряжение (mV) и максимальное расстояние между вертикальными трассерами как наибольшее время (ms). 6. Кнопка Memory включения и выключения режима сохранения изображения в памяти. Включение режима отображается надписью Hold («замораживания») в строке таблицы параметров вместо надписи run ac. Режим применяется при неустойчивом изображении в режиме реального времени, когда трудно выделить маркерами нужные точки на измеряемом процессе. В режиме действуют способы измерений с помощью маркеров. Выключается режим повторным нажатием кнопки Memory. 9
  • 10. 7. Кнопку включения и выключения режима регулировки яркости и контрастности дисплея использовать не рекомендуется, так как эти параметры не зависят от измерений и уже установлены. 8. Кнопку внутренних настроек осциллографа использовать запрещается! 9. Таблица параметров измерений выводится в четвертом варианте индикации (см. пункт 2), располагается в правой части экрана и имеет строки: ms/div – масштаб развертки мс/дел; ms (или μs) – интервал в мс (или в мкс) между вертикальными трассерами Marker1 и Marker2. Это – одна из двух основных строк, используемых при измерениях в данной работе. В начале измерений (до перемещения вертикальных трассеров) в строке отображается длительность всей развертки; Hz – частота развертки (в данной работе не используется); mV – строка отображения измерения напряжения между горизонтальными трассерами. Это – вторая из двух основных строк, используемых при измерениях в данной работе. В начале измерений (до перемещения горизонтальных трассеров) в строке отображается максимальное напряжение; mV~ действующее значение переменного напряжения (в данной работе не используется); mV~Ø – размах между максимальным и минимальным значениями переменного напряжения (в данной работе не используется); run ac или Hold – режим автоматических измерений на переменном токе или режим сохранения изображения в памяти; нижняя строка таблицы параметров отображает режимы: Display, или t-V/div, или X/Y-pos , или Marker1 (Marker2); 10
  • 11. несколько строк таблицы параметров узкоспецифичны и в данной работе не используется. Выполнение работы Задание 1: Изучение приемов работы с осциллографом на примере измерения параметров генератора прямоугольных импульсов Рисунок 2 – Установка опорной точки и точки привязки Изображение исследуемого с помощью осциллографа процесса, где: ОТ — опорная точка (маркер 1); ТП — точка привязки (маркер 2); Ti — длительность импульса генератора, мс; Umax — размах импульса генератора, В. 1. На наборной панели создайте потенциальный вывод генератора прямоугольных импульсов и нулевой вывод генератора (используйте группы по 4 гнезда на наборной панели). 2. Подключите к выходным потенциальному и нулевому выводам генератора импульсов мультиметр, переключите его на измерение переменного напряжения на шкале 20 В. 11
  • 12. 3. Подключите к выходным потенциальному и нулевому выводам генератора входные штекеры автоматического осциллографа. 4. Покажите схему преподавателю. 5. Включите генератор прямоугольных импульсов, включите мультиметр и установите напряжение генератора 1 В по мультиметру, частоту импульсов 0.25 кГц по индикатору на генераторе. 6. Включите питание осциллографа и нажмите кнопку Auto. После прохождения заставки осциллограф автоматически настроит режим синхронизации и покажет вид исследуемого процесса (прямоугольные импульсы). 7. Выведите в правую часть дисплея таблицу параметров. Для этого нажмите кнопку DISPLAY/SETUP и нажимайте клавишу  на пульте управления осциллографом до тех пор, пока не появиться таблица. Ознакомьтесь с содержанием строк таблицы. 8. Измените положение изображенного процесса, установив его в средней части дисплея. Для этого нажмите кнопку X/Y-pos. Четыре управляющие клавиши позволяют перемещать по дисплею изображение. 9. Переключитесь в режим автоматического измерения кнопкой Auto. Обратите внимание на изменение отображения режима. 10. Измените размеры изображенного процесса, установив его максимальным по вертикали и на величину одного – двух периодов повторения генератора по горизонтали. Для этого нажмите кнопку t-V/div. Управляющие клавиши , позволяют изменять масштаб амплитуды исследуемого процесса, управляющие клавиши , позволяют изменять масштаб длительности исследуемого процесса. Горизонтальные клавиши влияют также на синхронизацию изображения. Если изображение выходит за пределы дисплея, то осциллограф не определяет параметры, проставляя знак «?». Устраните такую ситуацию управляющими клавишами. 12
  • 13. 11. Переключитесь в режим автоматического измерения кнопкой Auto. Обратите внимание на изменение отображения режима. 12. Сохраните изображение в памяти, нажав кнопку Memory. Обратите внимание на изменение отображения режима. Выключите режим Memory, повторно нажав кнопку Memory. 13. Нажмите кнопку Marker1-2. В нижней строке таблицы параметров должна появиться надпись Marker1. Вертикальный трассер маркера-1 будет находиться по левой границе рабочего поля, горизонтальный трассер маркера-1 будет находиться по верхней границе рабочего поля. 14. Управляющими клавишами установите перекрестие трассеров маркера-1 внизу начала положительного импульса генератора. Это положение принимается «опорной точкой» при измерении, его больше не меняют и называют «жесткий» маркер. 15. Нажмите повторно кнопку Marker1-2. В нижней строке таблицы параметров должна появиться надпись Marker2. Вертикальный трассер маркера-2 будет находиться по правой границе рабочего поля, горизонтальный трассер маркера-2 будет находиться по нижней границе рабочего поля. 16. Управляющими клавишами установите перекрестие трассеров маркера-2 вверху конца положительного импульса генератора. Это положение трассеров маркера-2 называют «точкой привязки». 17. В таблице параметров на дисплее будут показаны интервалы между маркерами по вертикали в вольтах и по горизонтали в миллисекундах или в микросекундах. Результат запишите как размах импульса генератора Umax и длительность импульса генератора Ti для расчетов в задании 6. 13
  • 14. Задание 2: Измерение параметров осциллограммы заряда конденсатора через сопротивление и вычисление постоянной времени заряда 1. Соберите схему эксперимента в соответствии с рисунком 1. Покажите схему преподавателю. 2. Включите генератор напряжений и установите напряжение 1 В, частоту 0.25 кГц. 3. Включите питание осциллографа и нажмите кнопку Auto. После прохождения заставки осциллограф автоматически настроит режим синхронизации и покажет вид зарядно-разрядный импульс переходного процесса. R1 470 Ом G1 вых 0,2 А PS1 C1 PV1 1 мкФ синхр Рисунок 3 – Схема эксперимента для исследования переходного процесса заряда – разряда конденсатора через сопротивление 4. Выведите в правую часть дисплея таблицу параметров. 5. Измените положение изображенного процесса, установив его в средней части дисплея. 6. Измените размеры изображенного процесса, установив его максимально по вертикали и по горизонтали на величину одного-двух периодов повторения. 14
  • 15. 7. Необходимо измерить максимальную высоту зарядного импульса в вольтах и временной интервал первой точки привязки. Для этого: установите горизонтальный и вертикальный трассеры маркера-1 в вершину зарядного импульса. Это будет опорная точка для измерений зарядного процесса. Во всех последующих измерениях зарядного процесса не трогайте этот маркер, который будем называть «жестким» маркером. В дальнейшем от опорной точки будут выполняться отсчеты интервалов по высоте (напряжение) и по горизонтали (время); установите маркер-2 в первую точку привязки (начало зарядного процесса) и выполните отсчет интервала напряжения ΔU1z между горизонтальной линией «жесткого» маркера и горизонтальной линией маркера-2 и отсчет интервала времени ΔT1z между вертикальной линией «жесткого» маркера и вертикальной линией маркера-2. Результаты запишите в первой строке таблицы 1. 8. Два измерения на кривой заряда позволяют вычислить по формуле (1) постоянную времени цепи заряда. T1z T 2z z , мс; (1) U 1z ln( ) U 2z где: T1z - интервал времени заряда конденсатора при первом измерении; T 2z - интервал времени заряда конденсатора при втором измерении; U1z - интервала напряжения заряда конденсатора при первом измерении; U 2z - интервала напряжения заряда конденсатора при втором измерении. 15
  • 16. Для этих измерений: установите маркер-2 во вторую точку привязки. Выполните отсчет интервала напряжения ΔU2z между опорной точкой «жесткого» маркера и точкой привязки маркера-2 и отсчет интервала времени ΔT2z между опорной точкой «жесткого» маркера и точкой привязки маркера-2. Результаты запишите в таблицу 1 во второю строку. 9. Для лучшей достоверности измерений и вычислений выполните несколько таких пар измерений. Для экспоненциального зарядного процесса можно использовать любые пары измерений, но с обязательным условием: в каждой паре измерений вторая точка привязки должна находиться правее первой точки привязки (иначе логарифм отношения ΔU1z/ΔU2z в формуле (1) будет отрицательным числом!). Рисунок 4 – Пример измерения интервалов времени и напряжения заряда конденсатора через сопротивление 16
  • 17. 10. Вычисления выполняются по компьютерной технологии в программе Mathcad в следующем порядке: По таблице 1 ввести в Mathcad матрицу; Выделить из матрицы вектор напряжения Uz и вектора времени Tz ; Сформировать функцию пользователя по формуле (1); На основе функции пользователя сформировать элементы массива постоянных времени заряда z. При этом значение интервала времени T1z должно быть больше интервала времени T 2z , а значение интервала напряжения U1z должно быть больше интервала напряжения U 2z . Вывести эти элементы как вектор постоянных времени заряда z. Вычислить среднее значение постоянных времени заряда z с помощью функции Mathcad - mean( ) № Интервал напряжения Интервал времени измерения ΔUz, В ΔTz, мс 1 2 3 4 5 Таблица 1 – Результаты измерений параметров заряда конденсатора через сопротивление 17
  • 18. Задание 3: Измерение параметров осциллограммы разряда конденсатора через сопротивление и вычисление постоянной времени разряда 1. Два измерения на кривой разряда позволяют вычислить по формуле (2) значение постоянной времени цепи разряда. T 1r T 2r r , мс; (2) U 1r ln( ) U 2r где: T1r - интервал времени разряда конденсатора при первом измерении; T 2r - интервал времени разряда конденсатора при втором измерении; U1r - интервала напряжения разряда конденсатора при первом измерении; U 2r - интервала напряжения разряда конденсатора при втором измерении. Для этих измерений: установите опорную точку маркера-1 в правую нижнюю часть кривой разряда. В последующих измерениях разрядного процесса не трогайте этот маркер, который будем называть «жестким маркером»; установите точку привязки маркера-2 в вершину импульса. Выполните отсчет интервала напряжения ΔU1r между опорной точкой и точкой привязки маркера-2. Выполните отсчет интервала времени ΔT1r между опорной точкой и точкой привязки маркера-2. Результаты запишите в первой строке таблицы 2; установите маркер-2 во вторую точку привязки разрядного процесса (правее и ниже первой точки привязки). Выполните отсчет интервала напряжения ΔU2r между опорной точкой и второй точкой 18
  • 19. привязки маркера-2. Выполните отсчет интервала времени ΔT2r между опорной точкой и второй точкой привязки маркера-2. Результаты запишите во вторую строку таблицы 2. 2. Для лучшей достоверности измерений и вычислений выполните несколько таких пар измерений. Для экспоненциального разрядного процесса можно использовать любые пары измерений, но с обязательным условием: в каждой паре измерений вторая точка привязки должна находиться правее первой точки привязки. Рисунок 5 – Пример измерения интервалов времени и напряжения разряда конденсатора через сопротивление 19
  • 20. 3. Вычисления выполняются по компьютерной технологии в программе Mathcad в следующем порядке: По таблице 2 ввести в Mathcad матрицу; Выделить из матрицы вектор напряжения Ur и вектора времени Tr ; Сформировать функцию пользователя по формуле (2); На основе функции пользователя сформировать элементы массива постоянных времени разряда r. При этом значение интервала времени T1r должно быть больше интервала времени T 2r , а значение интервала напряжения U1r должно быть больше интервала напряжения U 2r . Вывести эти элементы как вектор постоянных времени разряда r. Вычислить среднее значение постоянных времени разряда r с помощью функции Mathcad - mean( ) Таблица 1 – Результаты измерений параметров разряда конденсатора через сопротивление № Интервал напряжения Интервал времени измерения ΔUr, В ΔTr, мс 1 2 3 4 5 20
  • 21. Задание 4: По результатам вычислений в заданиях 2 и 3 смоделировать с помощью программы Mathcad процесс заряда-разряда конденсатора через сопротивление и построить его график. Для этого необходимо: В программе Mathcad присвоить частоте значение 250 Гц; Вычислить период и полупериод функции; Задать переменной Umax значение максимального интервала напряжения исходя из измеренных параметров; Создать постоянные времени заряда и разряда конденсатора 1 и 2 вычисленные в 1 и 2 заданиях, как среднее значение постоянных времени; Сформировать функцию пользователя интервала напряжений заряда конденсатора по формуле: t1 Uz U max (1 e 1 ) , В; Сформировать функцию пользователя, интервала напряжений разряда конденсатора по формуле: t2 Ur U max e 2 , В; Создать интервалы времени с помощью ранжированных переменных t1 - для заряда (от 0 до 6· 1 с шагом 1/100) и t2 – для разряда (от 0 до 5· 2 с шагом 1/100) конденсатора; Смоделировать график переходного процесса. 21
  • 22. Содержание отчета по лабораторной работе 1. Титульный лист с наименованием учебного заведения, кафедры и учебной дисциплины, номером и названием работы, фамилией исполнителя и преподавателя, датой выполнения и защиты. 2. Цели работы. 3. Измерение параметров осциллограммы заряда конденсатора через сопротивление и вычисление постоянной времени заряда 4. Измерение параметров осциллограммы разряда конденсатора через сопротивление и вычисление постоянной времени разряда 5. Результаты моделирования в программе Mathcad процесса заряда и разряда конденсатора C1 через сопротивление R1 (приложение A.3). Вопросы к защите лабораторной работы 1. По каким законам происходит заряд и разряд конденсатора через сопротивление? Поясните формулы (1), (2) 2. Какие параметры осциллограммы заряда конденсатора через сопротивление необходимы для вычисления постоянной времени цепи заряда и как они определяются на экране автоматического осциллографа? 3. Какие параметры осциллограммы разряда конденсатора через сопротивление необходимы для вычисления постоянной времени цепи разряда и как они определяются на экране автоматического осциллографа? 4. Как вычисляется с помощью программы Mathcad постоянные времени цепи заряда и разряда? 5. Как смоделировать в Mathcad процесс заряда-разряда конденсатора через сопротивление, соответствующий экспериментальным данным? 22
  • 23. Список литературы к лабораторной работе 1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи: Учебник.–10-е изд. – М.: Гардарики, 2002. – 638 с., гл. 8. 2. Теоретические основы электротехники: В 3-х т. Учебник для вузов. Том 2. – 4-е изд./К.С. Демирчан, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чепурин. – СПб.: Питер, 2003. – 576 с., гл. 9, §§ 9.1, 9.6, 9.7, 9.8. 3. Курочкин В.В. Расчеты в Mathcad электрических и магнитных цепей электрооборудования: Учеб. пособие/ Кубан. гос. технол. ун-т, Армавир: Изд. АМТИ, – 2006. 272 с. Занятие 14. 4. Курочкин В.В. Лабораторный практикум с компьютерной обработкой результатов эксперимента: Учеб. пособие/ Кубан. гос. технол. ун-т, Армавир: Изд. АМТИ, – 2004. 116 с. Гл. 1, Лаб. работа 6. 23
  • 24. Приложение А. Образцы компьютерных расчетов по результатам экспериментов А.1. Статическая обработка в Mathcad результатов измерений заряда конденсатора через сопротивление 1. Матрица результатов измерений интервалов напряжений и времени от опорной точки до точки привязки по осциллограмме заряда на автоматическом осциллографе HPS10(40) 3 3 1.745 1.7 10 1.7 10 3 1.745 3 1.105 1.5510 1.55 10 3 1.105 3 ORIGIN 1 0.814 1.4510 1.45 10 0.814 3 3 0.581 1.3510 1 0.581 2 1.35 10 UT U UT U T UT T 3 0.407 3 0.407 1.25810 1.258 10 0.349 3 3 0.349 1.1510 0.232 1.15 10 3 3 0.232 1.0510 0.174 1.05 10 3 4 0.174 0.9 10 9 10 2. Функция пользователя для вычисления постоянной времени цепи заряда t1 t2 fz( t 1 t 2 u1 u2 ) u1 ln u2 3. Формирование массива результатов вычислений по отдельным реализациям эксперимента 4 4 fz T T U U 3.283 10 fz T T U U 2.77 10 1 1 2 1 2 1 15 3 5 3 5 15 4 4 fz T T U U 3.278 10 fz T T U U 5.886 10 2 1 3 1 3 2 16 3 6 4 6 16 4 4 fz T T U U 3.183 10 fz T T U U 3.187 10 3 1 4 1 4 3 17 3 7 3 7 17 4 4 fz T T U U 3.036 10 fz T T U U 3.565 10 4 1 5 1 5 4 18 3 8 3 8 18 4 4 fz T T U U 3.417 10 fz T T U U 2.585 10 5 1 6 1 6 5 19 4 5 4 5 19 4 4 fz T T U U 3.221 10 fz T T U U 3.924 10 6 1 7 1 7 6 20 4 6 4 6 20 4 4 fz T T U U 3.47 10 fz T T U U 3.268 10 7 1 8 1 8 7 21 4 7 4 7 21 4 4 fz T T U U 3.272 10 fz T T U U 3.732 10 8 2 3 2 3 8 22 4 8 4 8 22 4 4 fz T T U U 3.111 10 fz T T U U 7.025 10 9 2 4 2 4 9 23 5 6 5 6 23 4 4 fz T T U U 2.924 10 fz T T U U 3.701 10 10 2 5 2 5 10 24 5 7 5 7 24 4 4 fz T T U U 3.471 10 fz T T U U 4.213 10 11 2 6 2 6 11 25 5 8 5 8 25 4 4 fz T T U U 3.203 10 fz T T U U 2.449 10 12 2 7 2 7 12 26 6 7 6 7 26 4 4 fz T T U U 3.516 10 fz T T U U 3.592 10 13 2 8 2 8 13 27 6 8 6 8 27 4 4 fz T T U U 2.966 10 fz T T U U 5.214 10 14 3 4 3 4 14 28 7 8 7 8 28 4. Среднее значение постоянной времени заряда 24 4 z mean( ) z 3.588 10
  • 25. А.2. Статическая обработка в Mathcad результатов измерений разряда конденсатора через сопротивление 1. Матрица результатов измерений интервалов напряжений и времени от опорной точки до точки привязки по осциллограмме разряда на автоматическом осциллографе HPS10(40) 3 ORIGIN 1 1.745 1.7 10 3 1.221 1.6 10 1.745 3 1.221 0.989 1.5 10 0.989 3 0.756 1.4 10 UT 1 0.756 3 U UT U 0.523 1.3 10 0.523 3 0.407 0.407 1.2 10 0.29 3 0.290 1.1 10 0.174 3 0.174 1 10 2. Функция пользователя для вычисления постоянной времени цепи разряда t1 t2 fr ( t 1 t 2 u1 u2 ) u1 ln u2 3. Формирование массива результатов вычислений по отдельным реализациям эксперимента 4 4 fr T T U U 4.201 10 fr T T U U 3.014 10 1 1 2 1 2 1 15 3 5 3 5 15 4 4 fr T T U U 4.403 10 fr T T U U 4.845 10 2 1 3 1 3 2 16 3 6 4 6 16 4 4 fr T T U U 4.184 10 fr T T U U 3.26 10 3 1 4 1 4 3 17 3 7 3 7 17 4 4 fr T T U U 3.668 10 fr T T U U 3.165 10 4 1 5 1 5 4 18 3 8 3 8 18 4 4 fr T T U U 3.778 10 fr T T U U 2.497 10 5 1 6 1 6 5 19 4 5 4 5 19 4 4 fr T T U U 3.622 10 fr T T U U 3.23 10 6 1 7 1 7 6 20 4 6 4 6 20 4 fr T T U U 4 fr T T U U 3.47 10 21 4 7 4 7 3.131 10 7 1 8 1 8 7 21 4 4 fr T T U U 4.745 10 fr T T U U 3.063 10 8 2 3 2 3 8 22 4 8 4 8 22 4 4 fr T T U U 4.172 10 fr T T U U 4.307 10 9 2 4 2 4 9 23 5 6 5 6 23 4 4 fr T T U U 3.444 10 fr T T U U 3.527 10 10 2 5 2 5 10 24 5 7 5 7 24 4 4 fr T T U U 3.641 10 fr T T U U 3.253 10 11 2 6 2 6 11 25 5 8 5 8 25 4 4 fr T T U U 3.478 10 fr T T U U 2.95 10 12 2 7 2 7 12 26 6 7 6 7 26 4 4 fr T T U U 3.336 10 fr T T U U 2.942 10 13 2 8 2 8 13 27 6 8 6 8 27 4 4 fr T T U U 3.722 10 fr T T U U 2.936 10 14 3 4 3 4 14 28 7 8 7 8 28 4. Среднее значение постоянной времени разряда r mean( ) 4 25 r 3.571 10
  • 26. А.3. Моделирование в Mathcad переходного процесса заряда-разряда конденсатора через сопротивление 3 1 Tg 3 Fg 0.25 10 Tg 2 10 Umax 1.745 Fg 2 t1 t2 4 4 1 3.588 10 2 3.571 10 1 2 Uz ( t1) Umax 1 e Ur ( t2) Umax e 1 dt 100 t1 0 dt 6 1 t2 0 dt 5 2 2 1.5 Uz ( t1) 1 Ur ( t2) 0.5 0 0.001 0.002 0.003 0.004 t1 6 1 t2 26