SlideShare a Scribd company logo
1 of 13
Download to read offline
APPM 2360 Fall 2015
AJ Lamsal - Section 241 - 102358646
Gabrielle Melli - Section 221 - 101890324
PROJECT 3
CARDIAC
MANIPULATIONS
2
Introduction
The	
  electrical	
  activity	
  of	
  an	
  animal’s	
  heart	
  helps	
  determine	
  its	
  heartbeat.	
  The	
  diffusion	
  of	
  charged	
  ions	
  
across	
  a	
  cardiomyocyte	
  membrane	
  allows	
  the	
  cell	
  to	
  contract,	
  in	
  turn	
  pumping	
  blood	
  through	
  the	
  body.	
  
When	
  this	
  electrical	
  behavior	
  becomes	
  disrupted,	
  the	
  heartbeat	
  becomes	
  irregular,	
  causing	
  a	
  myriad	
  of	
  
heart	
  conditions	
  defined	
  as	
  cardiac	
  arrhythmias.	
  To	
  analyze	
  the	
  various	
  component	
  interactions	
  that	
  
contribute	
  to	
  the	
  beating	
  of	
  the	
  heart,	
  such	
  as	
  the	
  voltage	
  level	
  of	
  the	
  cell	
  and	
  the	
  blocking	
  of	
  voltage-­‐
gated	
  channels	
  on	
  the	
  membrane	
  which	
  prevents	
  charged	
  ions	
  from	
  coming	
  in	
  and	
  out	
  of	
  the	
  cell,	
  the	
  
stability	
  of	
  equilibriums	
  of	
  the	
  ordinary	
  nonlinear	
  differential	
  equations	
  are	
  determined	
  to	
  understand	
  
the	
  pattern	
  of	
  depolarization	
  and	
  repolarization.	
  The	
  patterns	
  of	
  voltage	
  (v(t))	
  and	
  channel	
  blockage	
  
(h(t))	
  are	
  compared	
  to	
  each	
  other	
  to	
  analyze	
  their	
  patterns	
  as	
  the	
  heart	
  contracts	
  and	
  relaxes,	
  and	
  the	
  
Action	
  Potential	
  Duration,	
  the	
  time	
  that	
  the	
  voltage	
  is	
  high	
  enough	
  for	
  the	
  cells	
  to	
  contract,	
  is	
  measured	
  
for	
  different	
  heart	
  rates.	
  If	
  these	
  components	
  become	
  disrupted	
  or	
  irregular,	
  the	
  risk	
  of	
  succumbing	
  to	
  
cardiac	
  arrest	
  or	
  stroke	
  increase.	
  
3.1 Analytical Work
To	
  determine	
  equilibrium	
  points	
  of	
  the	
  system,	
  the	
  ODE’s	
  are	
  set	
  equal	
  to	
  zero	
  to	
  find	
  the	
  nullclines	
  of	
  
the	
  system.	
  The	
  ODE’s	
  are	
  defined	
  below,	
  with	
  predefined	
  variables	
  tabulated	
  in	
  Table	
  1.	
  The	
  
equilibrium	
  points	
  can	
  be	
  found	
  in	
  Table	
  1.2	
  
1         𝑣′(𝑡) = −𝑘𝑣 𝑣 − 𝑎 𝑣 − 1 − 𝑣ℎ + 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠
2             ℎ′(𝑡) = (𝜖! +
𝜇!ℎ
𝑣 + 𝜇!
)(−ℎ − 𝑘𝑣 𝑣 − 𝑎 − 1 )
Table	
  1
k 8
a 0.15
ϵ0 0.002
u1 0.2
u2 0.3
	
  
3
Table	
  1.2
v(t) h(t)
0 0
0.15 0
1 0
Equilibrium	
  points	
  are	
  located	
  where	
  vertical	
  nullclines	
  and	
  horizontal	
  nullclines	
  intersect.	
  Three	
  
nullclines	
  are	
  located	
  along	
  the	
  v-­‐axis,	
  as	
  seen	
  in	
  Table	
  1.2,	
  the	
  first	
  being	
  located	
  at	
  the	
  origin,	
  
(v,h)=(0,0).	
  This	
  resting	
  state	
  equilibrium	
  represents	
  when	
  the	
  heart	
  is	
  fully	
  relaxed	
  and	
  the	
  cells	
  are	
  
negatively	
  charged,	
  around	
  -­‐90	
  mV	
  in	
  humans.	
  Biologically,	
  this	
  resting	
  state	
  should	
  be	
  stable	
  because	
  
after	
  the	
  heart	
  contracts	
  fully,	
  it	
  should	
  relax	
  to	
  its	
  non-­‐contracted	
  state	
  in	
  order	
  to	
  pump	
  the	
  same	
  
amount	
  of	
  blood	
  again.	
  If	
  this	
  equilibrium	
  were	
  unstable,	
  the	
  cells	
  would	
  start	
  at	
  rest	
  but	
  after	
  
contracting	
  would	
  never	
  return	
  to	
  the	
  resting	
  state,	
  preventing	
  the	
  full	
  capacity	
  of	
  blood	
  to	
  be	
  pumped	
  
around	
  the	
  body,	
  making	
  the	
  oxygenation	
  of	
  blood	
  slower,	
  a	
  condition	
  called	
  diastolic	
  dysfunction.	
  
To	
  prove	
  that	
  the	
  resting	
  state	
  is	
  a	
  stable	
  equilibrium,	
  the	
  eigenvalues	
  of	
  the	
  Jacobian	
  matrix	
  would	
  both	
  
have	
  to	
  be	
  negative.	
  The	
  Jacobian	
  is	
  used	
  to	
  create	
  a	
  linear	
  approximation	
  of	
  the	
  nonlinear	
  system.	
  
Negative	
  eigenvalues	
  would	
  cause	
  the	
  general	
  solution	
  to	
  decay	
  to	
  the	
  origin.	
  The	
  eigenvalues	
  for	
  this	
  
system	
  are	
  found	
  to	
  be	
  (λ1,	
  λ2)=(-­‐1.2,-­‐0.002).	
  Both	
  of	
  these	
  values	
  are	
  negative,	
  proving	
  that	
  the	
  origin	
  is	
  
a	
  stable	
  equilibrium.	
  
Figure	
  1	
  shows	
  the	
  nullclines	
  of	
  the	
  system.	
  The	
  vertical	
  nullclines	
  correspond	
  to	
  v’(t)=0,	
  and	
  the	
  
horizontal	
  nullclines	
  correspond	
  to	
  h’(t)=0.
4
Figure	
  1
The	
  vector	
  plot	
  of	
  Figure	
  1	
  describes	
  the	
  movement	
  of	
  the	
  system	
  between	
  the	
  nullclines	
  as	
  time	
  
progresses.	
  It	
  is	
  evident	
  that	
  the	
  origin	
  is	
  a	
  stable	
  equilibrium	
  based	
  on	
  the	
  direction	
  progression	
  of	
  the	
  
vectors.	
  If	
  a	
  stimulus	
  larger	
  than	
  the	
  second	
  equilibrium	
  point,	
  which	
  is	
  around	
  (v,h)=(0.15,0),	
  then	
  the	
  
trajectory	
  would	
  move	
  towards	
  the	
  final	
  equilibrium	
  point	
  around	
  (v,h)=(1,0).	
  The	
  second	
  equilibrium	
  
point	
  represents	
  the	
  voltage	
  threshold	
  required	
  to	
  allow	
  the	
  cardiomyocytes	
  to	
  contract,	
  around	
  -­‐70	
  mV	
  
in	
  humans.	
  Naturally,	
  this	
  threshold	
  is	
  surpassed	
  as	
  positively	
  charged	
  sodium	
  and	
  calcium	
  ions	
  diffuse	
  
through	
  the	
  cell’s	
  permeable	
  membrane	
  from	
  a	
  neighboring	
  cell.	
  Once	
  the	
  cell	
  reaches	
  a	
  voltage	
  around	
  
-­‐70	
  mV,	
  the	
  sodium	
  voltage-­‐gated	
  channels	
  open	
  up,	
  allowing	
  for	
  an	
  abundance	
  of	
  sodium	
  to	
  diffuse	
  
into	
  the	
  cell.	
  Since	
  sodium	
  has	
  a	
  voltage	
  around	
  67	
  mV,	
  the	
  cell	
  depolarizes	
  dramatically	
  as	
  these	
  ion	
  
enter,	
  driving	
  the	
  voltage	
  to	
  about	
  20	
  mV.	
  Biologically,	
  the	
  final	
  equilibrium	
  point,	
  where	
  the	
  cell	
  is	
  fully	
  
depolarized	
  to	
  20	
  mV,	
  represents	
  the	
  voltage	
  at	
  which	
  the	
  heart	
  is	
  fully	
  contracted.	
  As	
  the	
  h	
  value	
  
increases,	
  as	
  is	
  natural	
  with	
  heart	
  compression,	
  the	
  trajectory	
  flows	
  counter-­‐clockwise	
  back	
  towards	
  the	
  
origin,	
  or	
  resting	
  state.	
  This	
  is	
  represented	
  by	
  the	
  following	
  repolarization	
  steps.	
  As	
  the	
  cell	
  depolarizes,	
  
the	
  voltage-­‐gated	
  sodium	
  channels	
  close,	
  and	
  the	
  voltage-­‐gated	
  potassium	
  channels	
  open,	
  allowing	
  
potassium	
  to	
  diffuse	
  to	
  the	
  outside	
  of	
  the	
  cell	
  more	
  quickly.	
  The	
  cell	
  reaches	
  a	
  voltage	
  of	
  about	
  5mV,	
  
5
and	
  the	
  calcium	
  voltage-­‐gated	
  channels	
  open,	
  allowing	
  calcium,	
  with	
  a	
  voltage	
  around	
  123	
  mV,	
  to	
  
diffuse	
  into	
  the	
  cell.	
  This	
  stabilizes	
  the	
  voltage	
  of	
  the	
  cell	
  until	
  the	
  calcium	
  channels	
  suddenly	
  close,	
  
blocking	
  calcium	
  from	
  entering	
  the	
  cell.	
  The	
  potassium	
  channels	
  remain	
  open,	
  however,	
  and	
  the	
  cell’s	
  
voltage	
  repolarizes	
  to	
  -­‐90	
  mV	
  again,	
  as	
  visualized	
  by	
  the	
  vector	
  plot	
  flowing	
  counterclockwise	
  back	
  
towards	
  the	
  initial	
  equilibrium	
  point,	
  or	
  the	
  steady	
  state.	
  Once	
  this	
  voltage	
  is	
  reached,	
  the	
  potassium	
  
channels	
  close	
  again,	
  and	
  potassium	
  seeps	
  through	
  the	
  semipermeable	
  membrane	
  just	
  like	
  at	
  the	
  
beginning	
  of	
  the	
  cycle.	
  This	
  flow	
  represents	
  the	
  depolarization	
  and	
  repolarization	
  of	
  the	
  cardiomyocytes.	
  
The	
  initial	
  movement	
  of	
  the	
  trajectory	
  with	
  a	
  stimulus	
  bigger	
  than	
  0.15,	
  shown	
  in	
  green,	
  can	
  be	
  seen	
  in	
  
Figure	
  2.
Figure	
  2
Evident	
  in	
  these	
  nullcline	
  plots,	
  once	
  the	
  voltage	
  of	
  the	
  cell	
  passes	
  the	
  threshold,	
  as	
  
time	
  continues,	
  the	
  voltage	
  and	
  channel	
  blocking	
  return	
  to	
  the	
  steady	
  state	
  at	
  which	
  
the	
  heart	
  is	
  relaxed.
6
3.2 Numerical Simulations
Plotting	
  v(t)	
  and	
  h(t)	
  versus	
  time	
  provides	
  a	
  visual	
  representation	
  of	
  the	
  voltage	
  change	
  and	
  voltage-­‐
gated	
  channel	
  blockage	
  as	
  the	
  heart	
  beats	
  over	
  a	
  time	
  period.	
  The	
  duration	
  of	
  the	
  plot	
  in	
  Figure	
  3	
  is	
  a	
  
time	
  of	
  500	
  and	
  a	
  stimulation	
  period	
  of	
  100.	
  The	
  stimulation	
  period	
  represents	
  the	
  time	
  the	
  heart	
  
requires	
  to	
  undergo	
  a	
  full	
  cycle	
  of	
  stimulation,	
  contraction,	
  and	
  relaxation,	
  or	
  a	
  full	
  heart	
  beat.	
  The	
  
voltage	
  reaches	
  a	
  maximum	
  of	
  1,	
  which	
  aligns	
  with	
  the	
  nullcline	
  plot	
  analysis.
Figure	
  3
Figure	
  4,	
  the	
  plot	
  of	
  v(t)	
  versus	
  h(t),	
  establishes	
  the	
  relationship	
  between	
  the	
  voltage	
  of	
  the	
  cell	
  and	
  the	
  
voltage-­‐gated	
  channels	
  opening	
  and	
  closing.	
  When	
  the	
  cell	
  is	
  initially	
  stimulated,	
  the	
  closure	
  of	
  the	
  
channels	
  grows	
  exponentially,	
  and	
  maximizes	
  at	
  a	
  value	
  of	
  2.	
  As	
  the	
  voltage	
  reaches	
  1,	
  and	
  the	
  cells	
  are	
  
fully	
  contracted,	
  more	
  channels	
  gradually	
  open.	
  These	
  points	
  align	
  with	
  the	
  sodium,	
  potassium,	
  and	
  
calcium	
  voltage-­‐gated	
  channels	
  described	
  in	
  3.1.	
  The	
  maximum	
  values	
  of	
  h	
  and	
  t	
  in	
  Figure	
  4	
  align	
  with	
  
the	
  maximum	
  values	
  of	
  Figure	
  1.
	
  
	
  
7
Figure	
  4
The	
  Action	
  Potential	
  Duration	
  represents	
  the	
  amount	
  of	
  time	
  between	
  when	
  the	
  voltage	
  passes	
  the	
  
stimulus	
  threshold	
  initially	
  and	
  when	
  it	
  gets	
  passed	
  again	
  on	
  the	
  way	
  back	
  to	
  the	
  steady	
  state.	
  The	
  
equation	
  for	
  APD	
  can	
  be	
  found	
  below.	
  
𝐴𝑃𝐷 = 𝑡!"##  !!!"#!!"#  !"#$!  !"#$ − 𝑡!"##  !!!"#!!"#  !"#$!  !"
	
  These	
  values	
  were	
  calculated	
  and	
  tabulated	
  in	
  Table	
  2	
  below.
Table	
  2
t	
  =	
  duration T	
  =	
  stimulation	
  period APD
1000 50 16.8000
1000 60 17.8000
1000 70 18.6000
1000 80 19.4000
1000 90 19.8000
1000 100 20.4000
As	
  expected,	
  the	
  general	
  trend	
  is	
  that	
  APD	
  values	
  increase	
  as	
  the	
  period	
  of	
  the	
  heart	
  rate	
  increases.	
  
Essentially,	
  as	
  the	
  heart	
  rate	
  slows,	
  the	
  time	
  it	
  takes	
  the	
  voltage	
  to	
  return	
  to	
  the	
  threshold	
  value	
  
increases.	
  APD	
  and	
  T	
  are	
  positively	
  correlated,	
  as	
  seen	
  in	
  Figure	
  5.
	
  
8
Figure	
  5
Biologically,	
  larger	
  animals,	
  such	
  as	
  humans,	
  require	
  a	
  high	
  enough	
  APD	
  in	
  order	
  to	
  survive.	
  This	
  means	
  
that	
  if	
  the	
  human’s	
  heart	
  rate	
  is	
  too	
  fast,	
  there	
  are	
  many	
  risks	
  that	
  could	
  put	
  their	
  life	
  in	
  danger.	
  This	
  
condition	
  is	
  called	
  Atrial	
  Flutter,	
  and	
  symptoms	
  include	
  heart	
  palpitations,	
  shortness	
  of	
  breath,	
  chest	
  
pain,	
  dizziness,	
  and	
  fainting.	
  Without	
  treatment,	
  Atrial	
  Flutter	
  can	
  cause	
  the	
  heart	
  to	
  be	
  significantly	
  
inefficient	
  at	
  pumping	
  blood	
  around	
  the	
  body,	
  leading	
  to	
  risks	
  like	
  blood	
  clots,	
  which	
  has	
  high	
  risks	
  of	
  
heart	
  attack	
  or	
  stroke.	
  
The	
  inefficiency	
  on	
  the	
  heart	
  to	
  pump	
  blood	
  around	
  the	
  body	
  can	
  be	
  explained	
  through	
  the	
  pattern	
  of	
  
voltage-­‐gated	
  channel	
  blocking	
  as	
  the	
  heart	
  beats.	
  With	
  a	
  time	
  duration	
  of	
  t=1000,	
  various	
  stimulation	
  
periods	
  are	
  evaluated	
  to	
  determine	
  the	
  heart’s	
  ability	
  to	
  return	
  to	
  steady	
  state	
  before	
  the	
  next	
  
stimulation	
  period	
  begins.	
  These	
  values	
  are	
  calculated	
  and	
  tabulated	
  in	
  Table	
  3	
  below.
	
  
	
  
9
Table	
  3
t=duration T=stimulation	
  period Steady	
  State	
  h
1000 50 0.0439
1000 60 0.0342
1000 70 0.0278
1000 80 0.0233
1000 90 0.0200
1000 100 0.0174
As	
  T	
  increases,	
  the	
  steady	
  state	
  value	
  decreases,	
  meaning	
  that	
  as	
  the	
  heart	
  rate	
  slows,	
  it	
  has	
  an	
  easier	
  
time	
  returning	
  to	
  its	
  steady	
  state.	
  Stimulation	
  period	
  and	
  steady	
  state	
  are	
  negatively	
  correlated	
  and	
  are	
  
visually	
  represented	
  in	
  Figure	
  6	
  below.	
  
Figure	
  6
The	
  trend	
  of	
  correlation	
  between	
  stimulation	
  period	
  and	
  voltage-­‐gated	
  channel	
  blocking	
  suggests	
  that	
  as	
  
the	
  heart-­‐rate	
  increases,	
  not	
  all	
  of	
  the	
  channels	
  return	
  to	
  steady	
  state	
  by	
  the	
  time	
  the	
  next	
  heart	
  beat	
  
begins.	
  Based	
  on	
  this	
  data,	
  the	
  conclusion	
  is	
  that	
  the	
  cardiomyocytes	
  don’t	
  fully	
  repolarize	
  before	
  
depolarizing	
  again.	
  Biologically,	
  the	
  inability	
  of	
  the	
  heart	
  to	
  return	
  to	
  the	
  steady	
  state	
  value	
  means	
  that	
  
10
the	
  heart	
  does	
  not	
  fully	
  relax	
  to	
  -­‐90	
  mV	
  before	
  contracting	
  again.	
  As	
  mentioned	
  earlier,	
  when	
  the	
  heart	
  
does	
  not	
  fully	
  contract,	
  less	
  blood	
  enters	
  the	
  heart	
  atria	
  and	
  less	
  blood	
  is	
  pumped	
  around	
  the	
  body,	
  
characteristic	
  of	
  diastolic	
  dysfunction.	
  A	
  high	
  resting	
  heart	
  rate	
  could	
  easily	
  increase	
  the	
  risk	
  of	
  heart	
  
attack	
  and	
  stroke	
  in	
  humans.
Conclusion
Cardiac	
  arrhythmias	
  categorize	
  numerous	
  heart	
  conditions	
  that	
  concern	
  electrical	
  malfunctions	
  within	
  
cardiomyocytes.	
  The	
  mathematical	
  model	
  of	
  the	
  nonlinear	
  system	
  describes	
  the	
  heart’s	
  relaxed	
  steady	
  
state	
  as	
  a	
  stable	
  fixed	
  point,	
  so	
  as	
  time	
  progresses,	
  the	
  heart	
  typically	
  returns	
  to	
  this	
  state	
  between	
  
contractions	
  if	
  performing	
  correctly,	
  confirmed	
  in	
  the	
  nullcline	
  and	
  Jacobian	
  analyses	
  in	
  3.1.	
  The	
  balance	
  
of	
  cardiomyocyte	
  voltage	
  and	
  heart	
  rate	
  is	
  disrupted,	
  however,	
  as	
  the	
  heart	
  rate	
  increases,	
  which	
  can	
  be	
  
seen	
  in	
  the	
  analysis	
  of	
  APD	
  and	
  voltage-­‐gated	
  channel	
  blocking	
  in	
  3.2.	
  If	
  the	
  heart	
  beats	
  too	
  quickly	
  too	
  
often,	
  less	
  blood	
  can	
  be	
  pumped	
  around	
  the	
  body	
  at	
  a	
  time,	
  increasing	
  risk	
  for	
  blood	
  clots,	
  and	
  
decreasing	
  the	
  speed	
  at	
  which	
  the	
  blood	
  becomes	
  oxygenated.	
  	
  The	
  data	
  collected	
  representing	
  the	
  
electrical	
  activity	
  of	
  the	
  heart	
  mathematically	
  attributes	
  dysfunction	
  of	
  this	
  activity	
  to	
  heart	
  
complications.
11
Appendix
system_template.m
function [vprime] = system_template(t,v)
% Import global parameters
global e_0 k a mu1 mu2 T;
% Set stimulation by periodicity
if (mod (t,T) >= 10.0) && (mod (t,T) <= 13.0)
stim = 0.25;
else
stim = 0.0;
end
% ODEs
vprime(1,1) = stim +(- k.*v(1).*(v(1)-a)).*(v(1)-1)-v(1).*v(2);
vprime(2,1) = (e_0+((mu1.*v(2)./(v(1)+mu2)))).*(-v(2) - k.*v(1).*(v(1) - a -1));
scrpit_template.m
% Set Parameters
close all
global e_0 k a mu1 mu2 T;
% Set parameter values %
e_0 = 0.002;
k = 8;
a = 0.15;
mu1 = 0.2;
mu2 = 0.3;
% Set period T and simulation duration dur
12
T = 50;
dur = 1000;
% Run the simulation and plot the data
[t,v] = ode45 ('system_template',0:0.2:dur,[0,0]); % This runs the simulation
%3.2.1
figure
plot(t,v)
title('v and h vs. t');
xlabel('t');
ylabel('v(t),h(t)')
legend('v(t)','h(t)');
figure
plot(v(:,1),v(:,2))
title('h vs. v');
xlabel('v');
ylabel('h')
% Calculate APDs and minimum h values for each beat
grt=find(v(:,1)>0.1)
%3.2.2
t(4656)-t(4554) %T=100
%3.2.3
t(4653)-t(4554) %T=90
t(4951)-t(4854) %T=80
t(4697)-t(4604) %T=70
t(4943)-t(4854) %T=60
t(4888)-t(4804) %T=50
% Plot APDs and minimum h's vs beat and each other
13
array1=[(t(4656)-t(4554)),(t(4653)-t(4554)),(t(4951)-t(4854)),(t(4697)-t(4604)),(t(4943)-
t(4854)),(t(4888)-t(4804))];
array2=[100,90,80,70,60,50];
figure
plot(array1,array2)
title('APD vs. T');
xlabel('APD');
ylabel('T');
%3.2.5
h=v(:,2);
min(h(4000:4250))
min(h(4350:4750)
%3.2.6
arrayh=[0.0174,0.0200,0.0233,0.0278,0.0342,0.0439];
figure
plot(arrayh,array2)
title('steady state h vs. T');
xlabel('steady state h');
ylabel('T');
%3.2.7
figure
plot(array1,arrayh)
title('Steady state APD vs. Steady state h');
xlabel('Steady state APD');
ylabel('Steady State h');

More Related Content

Viewers also liked

pedagogichni inovaciyi
pedagogichni inovaciyipedagogichni inovaciyi
pedagogichni inovaciyiviktoriay
 
Analysing pedestrian dynamics with computer vision techniques - examples
Analysing pedestrian dynamics with computer vision techniques - examplesAnalysing pedestrian dynamics with computer vision techniques - examples
Analysing pedestrian dynamics with computer vision techniques - examplesGiuseppe Vizzari
 
Challenges of Globalisation: Leading yourself, your team and organisation to ...
Challenges of Globalisation: Leading yourself, your team and organisation to ...Challenges of Globalisation: Leading yourself, your team and organisation to ...
Challenges of Globalisation: Leading yourself, your team and organisation to ...Centre for Executive Education
 
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017Centre for Executive Education
 
Rajapintailmiöistä - Jouko Peltonen
Rajapintailmiöistä - Jouko PeltonenRajapintailmiöistä - Jouko Peltonen
Rajapintailmiöistä - Jouko PeltonenBusiness Turku
 
Cassandra + Spark (You’ve got the lighter, let’s start a fire)
Cassandra + Spark (You’ve got the lighter, let’s start a fire)Cassandra + Spark (You’ve got the lighter, let’s start a fire)
Cassandra + Spark (You’ve got the lighter, let’s start a fire)Robert Stupp
 
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....Michael Urgilés
 
Psiquiatría infanto juvenil
Psiquiatría infanto juvenilPsiquiatría infanto juvenil
Psiquiatría infanto juvenilIsabella Savarese
 
Granger causality testing
Granger causality testingGranger causality testing
Granger causality testingThomasReader
 
CopyofJOhnsharp
CopyofJOhnsharpCopyofJOhnsharp
CopyofJOhnsharpJohn Sharp
 

Viewers also liked (11)

pedagogichni inovaciyi
pedagogichni inovaciyipedagogichni inovaciyi
pedagogichni inovaciyi
 
Analysing pedestrian dynamics with computer vision techniques - examples
Analysing pedestrian dynamics with computer vision techniques - examplesAnalysing pedestrian dynamics with computer vision techniques - examples
Analysing pedestrian dynamics with computer vision techniques - examples
 
Challenges of Globalisation: Leading yourself, your team and organisation to ...
Challenges of Globalisation: Leading yourself, your team and organisation to ...Challenges of Globalisation: Leading yourself, your team and organisation to ...
Challenges of Globalisation: Leading yourself, your team and organisation to ...
 
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017
CEE - Thomvell Leadership Engagement 2017 Brochure - 16 & 17 Jan 2017
 
Rajapintailmiöistä - Jouko Peltonen
Rajapintailmiöistä - Jouko PeltonenRajapintailmiöistä - Jouko Peltonen
Rajapintailmiöistä - Jouko Peltonen
 
Cassandra + Spark (You’ve got the lighter, let’s start a fire)
Cassandra + Spark (You’ve got the lighter, let’s start a fire)Cassandra + Spark (You’ve got the lighter, let’s start a fire)
Cassandra + Spark (You’ve got the lighter, let’s start a fire)
 
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....
Portafolio - Técnicas de Exploración de la Personalidad (III Semestre - Psic....
 
Makalah ekonometrika -ECM
Makalah ekonometrika -ECMMakalah ekonometrika -ECM
Makalah ekonometrika -ECM
 
Psiquiatría infanto juvenil
Psiquiatría infanto juvenilPsiquiatría infanto juvenil
Psiquiatría infanto juvenil
 
Granger causality testing
Granger causality testingGranger causality testing
Granger causality testing
 
CopyofJOhnsharp
CopyofJOhnsharpCopyofJOhnsharp
CopyofJOhnsharp
 

Similar to REPORTFINAL

Cardiovascular phsiology
Cardiovascular phsiologyCardiovascular phsiology
Cardiovascular phsiologyKern Rocke
 
4. cardiovascular system
4. cardiovascular system4. cardiovascular system
4. cardiovascular systemArosek Padhi
 
Anesthesia related presentation very helpful
Anesthesia related presentation very helpfulAnesthesia related presentation very helpful
Anesthesia related presentation very helpfulMalikArifUllah
 
The cardiac cycle new
The cardiac cycle newThe cardiac cycle new
The cardiac cycle newaratimohan
 
30. cardiovascular 2-07-08
30. cardiovascular 2-07-0830. cardiovascular 2-07-08
30. cardiovascular 2-07-08Nasir Koko
 
ECG analysis part (1) \ Mohammad Al-me`ani. , MSN, RN.
ECG analysis part (1) \ Mohammad  Al-me`ani. , MSN, RN. ECG analysis part (1) \ Mohammad  Al-me`ani. , MSN, RN.
ECG analysis part (1) \ Mohammad Al-me`ani. , MSN, RN. almaani
 
ELECTROCARDIOGRAM .ECG.pptx
ELECTROCARDIOGRAM .ECG.pptxELECTROCARDIOGRAM .ECG.pptx
ELECTROCARDIOGRAM .ECG.pptxUsha Esther
 
Ppt cvs phsiology a small review for anaesthetist
Ppt cvs phsiology a small review for anaesthetistPpt cvs phsiology a small review for anaesthetist
Ppt cvs phsiology a small review for anaesthetistdrriyas03
 
Heart physiology, blood physiology
Heart physiology, blood physiologyHeart physiology, blood physiology
Heart physiology, blood physiologyMaruMengeshaWorku18B
 
Ecg, ELECTROCARDIOGRAM
Ecg, ELECTROCARDIOGRAMEcg, ELECTROCARDIOGRAM
Ecg, ELECTROCARDIOGRAMJack Frost
 
Arrhythmia: Mechanism, Classification, ECG features
Arrhythmia: Mechanism, Classification, ECG featuresArrhythmia: Mechanism, Classification, ECG features
Arrhythmia: Mechanism, Classification, ECG featuresFarheen Ansari
 
UNIT-1.pdf
UNIT-1.pdfUNIT-1.pdf
UNIT-1.pdfSimamSk
 
Cardiovasular lec.3
Cardiovasular lec.3Cardiovasular lec.3
Cardiovasular lec.3Ahmed Abbas
 
Ecg supplimental material
Ecg supplimental material Ecg supplimental material
Ecg supplimental material Burhan Umer
 

Similar to REPORTFINAL (20)

Cardiovascular system
Cardiovascular systemCardiovascular system
Cardiovascular system
 
Cardiovascular phsiology
Cardiovascular phsiologyCardiovascular phsiology
Cardiovascular phsiology
 
4. cardiovascular system
4. cardiovascular system4. cardiovascular system
4. cardiovascular system
 
Anesthesia related presentation very helpful
Anesthesia related presentation very helpfulAnesthesia related presentation very helpful
Anesthesia related presentation very helpful
 
The cardiac cycle new
The cardiac cycle newThe cardiac cycle new
The cardiac cycle new
 
C18 heart
C18   heartC18   heart
C18 heart
 
30. cardiovascular 2-07-08
30. cardiovascular 2-07-0830. cardiovascular 2-07-08
30. cardiovascular 2-07-08
 
8101222.ppt
8101222.ppt8101222.ppt
8101222.ppt
 
ECG analysis part (1) \ Mohammad Al-me`ani. , MSN, RN.
ECG analysis part (1) \ Mohammad  Al-me`ani. , MSN, RN. ECG analysis part (1) \ Mohammad  Al-me`ani. , MSN, RN.
ECG analysis part (1) \ Mohammad Al-me`ani. , MSN, RN.
 
ELECTROCARDIOGRAM .ECG.pptx
ELECTROCARDIOGRAM .ECG.pptxELECTROCARDIOGRAM .ECG.pptx
ELECTROCARDIOGRAM .ECG.pptx
 
Ppt cvs phsiology a small review for anaesthetist
Ppt cvs phsiology a small review for anaesthetistPpt cvs phsiology a small review for anaesthetist
Ppt cvs phsiology a small review for anaesthetist
 
Heart physiology, blood physiology
Heart physiology, blood physiologyHeart physiology, blood physiology
Heart physiology, blood physiology
 
Ecg
EcgEcg
Ecg
 
Ecg, ELECTROCARDIOGRAM
Ecg, ELECTROCARDIOGRAMEcg, ELECTROCARDIOGRAM
Ecg, ELECTROCARDIOGRAM
 
Arrhythmia: Mechanism, Classification, ECG features
Arrhythmia: Mechanism, Classification, ECG featuresArrhythmia: Mechanism, Classification, ECG features
Arrhythmia: Mechanism, Classification, ECG features
 
UNIT-1.pdf
UNIT-1.pdfUNIT-1.pdf
UNIT-1.pdf
 
Cardiovasular lec.3
Cardiovasular lec.3Cardiovasular lec.3
Cardiovasular lec.3
 
Ecg supplimental material
Ecg supplimental materialEcg supplimental material
Ecg supplimental material
 
Ecg supplimental material
Ecg supplimental material Ecg supplimental material
Ecg supplimental material
 
Ecg supplimental material
Ecg supplimental materialEcg supplimental material
Ecg supplimental material
 

REPORTFINAL

  • 1. APPM 2360 Fall 2015 AJ Lamsal - Section 241 - 102358646 Gabrielle Melli - Section 221 - 101890324 PROJECT 3 CARDIAC MANIPULATIONS
  • 2. 2 Introduction The  electrical  activity  of  an  animal’s  heart  helps  determine  its  heartbeat.  The  diffusion  of  charged  ions   across  a  cardiomyocyte  membrane  allows  the  cell  to  contract,  in  turn  pumping  blood  through  the  body.   When  this  electrical  behavior  becomes  disrupted,  the  heartbeat  becomes  irregular,  causing  a  myriad  of   heart  conditions  defined  as  cardiac  arrhythmias.  To  analyze  the  various  component  interactions  that   contribute  to  the  beating  of  the  heart,  such  as  the  voltage  level  of  the  cell  and  the  blocking  of  voltage-­‐ gated  channels  on  the  membrane  which  prevents  charged  ions  from  coming  in  and  out  of  the  cell,  the   stability  of  equilibriums  of  the  ordinary  nonlinear  differential  equations  are  determined  to  understand   the  pattern  of  depolarization  and  repolarization.  The  patterns  of  voltage  (v(t))  and  channel  blockage   (h(t))  are  compared  to  each  other  to  analyze  their  patterns  as  the  heart  contracts  and  relaxes,  and  the   Action  Potential  Duration,  the  time  that  the  voltage  is  high  enough  for  the  cells  to  contract,  is  measured   for  different  heart  rates.  If  these  components  become  disrupted  or  irregular,  the  risk  of  succumbing  to   cardiac  arrest  or  stroke  increase.   3.1 Analytical Work To  determine  equilibrium  points  of  the  system,  the  ODE’s  are  set  equal  to  zero  to  find  the  nullclines  of   the  system.  The  ODE’s  are  defined  below,  with  predefined  variables  tabulated  in  Table  1.  The   equilibrium  points  can  be  found  in  Table  1.2   1        𝑣′(𝑡) = −𝑘𝑣 𝑣 − 𝑎 𝑣 − 1 − 𝑣ℎ + 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 2            ℎ′(𝑡) = (𝜖! + 𝜇!ℎ 𝑣 + 𝜇! )(−ℎ − 𝑘𝑣 𝑣 − 𝑎 − 1 ) Table  1 k 8 a 0.15 ϵ0 0.002 u1 0.2 u2 0.3  
  • 3. 3 Table  1.2 v(t) h(t) 0 0 0.15 0 1 0 Equilibrium  points  are  located  where  vertical  nullclines  and  horizontal  nullclines  intersect.  Three   nullclines  are  located  along  the  v-­‐axis,  as  seen  in  Table  1.2,  the  first  being  located  at  the  origin,   (v,h)=(0,0).  This  resting  state  equilibrium  represents  when  the  heart  is  fully  relaxed  and  the  cells  are   negatively  charged,  around  -­‐90  mV  in  humans.  Biologically,  this  resting  state  should  be  stable  because   after  the  heart  contracts  fully,  it  should  relax  to  its  non-­‐contracted  state  in  order  to  pump  the  same   amount  of  blood  again.  If  this  equilibrium  were  unstable,  the  cells  would  start  at  rest  but  after   contracting  would  never  return  to  the  resting  state,  preventing  the  full  capacity  of  blood  to  be  pumped   around  the  body,  making  the  oxygenation  of  blood  slower,  a  condition  called  diastolic  dysfunction.   To  prove  that  the  resting  state  is  a  stable  equilibrium,  the  eigenvalues  of  the  Jacobian  matrix  would  both   have  to  be  negative.  The  Jacobian  is  used  to  create  a  linear  approximation  of  the  nonlinear  system.   Negative  eigenvalues  would  cause  the  general  solution  to  decay  to  the  origin.  The  eigenvalues  for  this   system  are  found  to  be  (λ1,  λ2)=(-­‐1.2,-­‐0.002).  Both  of  these  values  are  negative,  proving  that  the  origin  is   a  stable  equilibrium.   Figure  1  shows  the  nullclines  of  the  system.  The  vertical  nullclines  correspond  to  v’(t)=0,  and  the   horizontal  nullclines  correspond  to  h’(t)=0.
  • 4. 4 Figure  1 The  vector  plot  of  Figure  1  describes  the  movement  of  the  system  between  the  nullclines  as  time   progresses.  It  is  evident  that  the  origin  is  a  stable  equilibrium  based  on  the  direction  progression  of  the   vectors.  If  a  stimulus  larger  than  the  second  equilibrium  point,  which  is  around  (v,h)=(0.15,0),  then  the   trajectory  would  move  towards  the  final  equilibrium  point  around  (v,h)=(1,0).  The  second  equilibrium   point  represents  the  voltage  threshold  required  to  allow  the  cardiomyocytes  to  contract,  around  -­‐70  mV   in  humans.  Naturally,  this  threshold  is  surpassed  as  positively  charged  sodium  and  calcium  ions  diffuse   through  the  cell’s  permeable  membrane  from  a  neighboring  cell.  Once  the  cell  reaches  a  voltage  around   -­‐70  mV,  the  sodium  voltage-­‐gated  channels  open  up,  allowing  for  an  abundance  of  sodium  to  diffuse   into  the  cell.  Since  sodium  has  a  voltage  around  67  mV,  the  cell  depolarizes  dramatically  as  these  ion   enter,  driving  the  voltage  to  about  20  mV.  Biologically,  the  final  equilibrium  point,  where  the  cell  is  fully   depolarized  to  20  mV,  represents  the  voltage  at  which  the  heart  is  fully  contracted.  As  the  h  value   increases,  as  is  natural  with  heart  compression,  the  trajectory  flows  counter-­‐clockwise  back  towards  the   origin,  or  resting  state.  This  is  represented  by  the  following  repolarization  steps.  As  the  cell  depolarizes,   the  voltage-­‐gated  sodium  channels  close,  and  the  voltage-­‐gated  potassium  channels  open,  allowing   potassium  to  diffuse  to  the  outside  of  the  cell  more  quickly.  The  cell  reaches  a  voltage  of  about  5mV,  
  • 5. 5 and  the  calcium  voltage-­‐gated  channels  open,  allowing  calcium,  with  a  voltage  around  123  mV,  to   diffuse  into  the  cell.  This  stabilizes  the  voltage  of  the  cell  until  the  calcium  channels  suddenly  close,   blocking  calcium  from  entering  the  cell.  The  potassium  channels  remain  open,  however,  and  the  cell’s   voltage  repolarizes  to  -­‐90  mV  again,  as  visualized  by  the  vector  plot  flowing  counterclockwise  back   towards  the  initial  equilibrium  point,  or  the  steady  state.  Once  this  voltage  is  reached,  the  potassium   channels  close  again,  and  potassium  seeps  through  the  semipermeable  membrane  just  like  at  the   beginning  of  the  cycle.  This  flow  represents  the  depolarization  and  repolarization  of  the  cardiomyocytes.   The  initial  movement  of  the  trajectory  with  a  stimulus  bigger  than  0.15,  shown  in  green,  can  be  seen  in   Figure  2. Figure  2 Evident  in  these  nullcline  plots,  once  the  voltage  of  the  cell  passes  the  threshold,  as   time  continues,  the  voltage  and  channel  blocking  return  to  the  steady  state  at  which   the  heart  is  relaxed.
  • 6. 6 3.2 Numerical Simulations Plotting  v(t)  and  h(t)  versus  time  provides  a  visual  representation  of  the  voltage  change  and  voltage-­‐ gated  channel  blockage  as  the  heart  beats  over  a  time  period.  The  duration  of  the  plot  in  Figure  3  is  a   time  of  500  and  a  stimulation  period  of  100.  The  stimulation  period  represents  the  time  the  heart   requires  to  undergo  a  full  cycle  of  stimulation,  contraction,  and  relaxation,  or  a  full  heart  beat.  The   voltage  reaches  a  maximum  of  1,  which  aligns  with  the  nullcline  plot  analysis. Figure  3 Figure  4,  the  plot  of  v(t)  versus  h(t),  establishes  the  relationship  between  the  voltage  of  the  cell  and  the   voltage-­‐gated  channels  opening  and  closing.  When  the  cell  is  initially  stimulated,  the  closure  of  the   channels  grows  exponentially,  and  maximizes  at  a  value  of  2.  As  the  voltage  reaches  1,  and  the  cells  are   fully  contracted,  more  channels  gradually  open.  These  points  align  with  the  sodium,  potassium,  and   calcium  voltage-­‐gated  channels  described  in  3.1.  The  maximum  values  of  h  and  t  in  Figure  4  align  with   the  maximum  values  of  Figure  1.    
  • 7. 7 Figure  4 The  Action  Potential  Duration  represents  the  amount  of  time  between  when  the  voltage  passes  the   stimulus  threshold  initially  and  when  it  gets  passed  again  on  the  way  back  to  the  steady  state.  The   equation  for  APD  can  be  found  below.   𝐴𝑃𝐷 = 𝑡!"##  !!!"#!!"#  !"#$!  !"#$ − 𝑡!"##  !!!"#!!"#  !"#$!  !"  These  values  were  calculated  and  tabulated  in  Table  2  below. Table  2 t  =  duration T  =  stimulation  period APD 1000 50 16.8000 1000 60 17.8000 1000 70 18.6000 1000 80 19.4000 1000 90 19.8000 1000 100 20.4000 As  expected,  the  general  trend  is  that  APD  values  increase  as  the  period  of  the  heart  rate  increases.   Essentially,  as  the  heart  rate  slows,  the  time  it  takes  the  voltage  to  return  to  the  threshold  value   increases.  APD  and  T  are  positively  correlated,  as  seen  in  Figure  5.  
  • 8. 8 Figure  5 Biologically,  larger  animals,  such  as  humans,  require  a  high  enough  APD  in  order  to  survive.  This  means   that  if  the  human’s  heart  rate  is  too  fast,  there  are  many  risks  that  could  put  their  life  in  danger.  This   condition  is  called  Atrial  Flutter,  and  symptoms  include  heart  palpitations,  shortness  of  breath,  chest   pain,  dizziness,  and  fainting.  Without  treatment,  Atrial  Flutter  can  cause  the  heart  to  be  significantly   inefficient  at  pumping  blood  around  the  body,  leading  to  risks  like  blood  clots,  which  has  high  risks  of   heart  attack  or  stroke.   The  inefficiency  on  the  heart  to  pump  blood  around  the  body  can  be  explained  through  the  pattern  of   voltage-­‐gated  channel  blocking  as  the  heart  beats.  With  a  time  duration  of  t=1000,  various  stimulation   periods  are  evaluated  to  determine  the  heart’s  ability  to  return  to  steady  state  before  the  next   stimulation  period  begins.  These  values  are  calculated  and  tabulated  in  Table  3  below.    
  • 9. 9 Table  3 t=duration T=stimulation  period Steady  State  h 1000 50 0.0439 1000 60 0.0342 1000 70 0.0278 1000 80 0.0233 1000 90 0.0200 1000 100 0.0174 As  T  increases,  the  steady  state  value  decreases,  meaning  that  as  the  heart  rate  slows,  it  has  an  easier   time  returning  to  its  steady  state.  Stimulation  period  and  steady  state  are  negatively  correlated  and  are   visually  represented  in  Figure  6  below.   Figure  6 The  trend  of  correlation  between  stimulation  period  and  voltage-­‐gated  channel  blocking  suggests  that  as   the  heart-­‐rate  increases,  not  all  of  the  channels  return  to  steady  state  by  the  time  the  next  heart  beat   begins.  Based  on  this  data,  the  conclusion  is  that  the  cardiomyocytes  don’t  fully  repolarize  before   depolarizing  again.  Biologically,  the  inability  of  the  heart  to  return  to  the  steady  state  value  means  that  
  • 10. 10 the  heart  does  not  fully  relax  to  -­‐90  mV  before  contracting  again.  As  mentioned  earlier,  when  the  heart   does  not  fully  contract,  less  blood  enters  the  heart  atria  and  less  blood  is  pumped  around  the  body,   characteristic  of  diastolic  dysfunction.  A  high  resting  heart  rate  could  easily  increase  the  risk  of  heart   attack  and  stroke  in  humans. Conclusion Cardiac  arrhythmias  categorize  numerous  heart  conditions  that  concern  electrical  malfunctions  within   cardiomyocytes.  The  mathematical  model  of  the  nonlinear  system  describes  the  heart’s  relaxed  steady   state  as  a  stable  fixed  point,  so  as  time  progresses,  the  heart  typically  returns  to  this  state  between   contractions  if  performing  correctly,  confirmed  in  the  nullcline  and  Jacobian  analyses  in  3.1.  The  balance   of  cardiomyocyte  voltage  and  heart  rate  is  disrupted,  however,  as  the  heart  rate  increases,  which  can  be   seen  in  the  analysis  of  APD  and  voltage-­‐gated  channel  blocking  in  3.2.  If  the  heart  beats  too  quickly  too   often,  less  blood  can  be  pumped  around  the  body  at  a  time,  increasing  risk  for  blood  clots,  and   decreasing  the  speed  at  which  the  blood  becomes  oxygenated.    The  data  collected  representing  the   electrical  activity  of  the  heart  mathematically  attributes  dysfunction  of  this  activity  to  heart   complications.
  • 11. 11 Appendix system_template.m function [vprime] = system_template(t,v) % Import global parameters global e_0 k a mu1 mu2 T; % Set stimulation by periodicity if (mod (t,T) >= 10.0) && (mod (t,T) <= 13.0) stim = 0.25; else stim = 0.0; end % ODEs vprime(1,1) = stim +(- k.*v(1).*(v(1)-a)).*(v(1)-1)-v(1).*v(2); vprime(2,1) = (e_0+((mu1.*v(2)./(v(1)+mu2)))).*(-v(2) - k.*v(1).*(v(1) - a -1)); scrpit_template.m % Set Parameters close all global e_0 k a mu1 mu2 T; % Set parameter values % e_0 = 0.002; k = 8; a = 0.15; mu1 = 0.2; mu2 = 0.3; % Set period T and simulation duration dur
  • 12. 12 T = 50; dur = 1000; % Run the simulation and plot the data [t,v] = ode45 ('system_template',0:0.2:dur,[0,0]); % This runs the simulation %3.2.1 figure plot(t,v) title('v and h vs. t'); xlabel('t'); ylabel('v(t),h(t)') legend('v(t)','h(t)'); figure plot(v(:,1),v(:,2)) title('h vs. v'); xlabel('v'); ylabel('h') % Calculate APDs and minimum h values for each beat grt=find(v(:,1)>0.1) %3.2.2 t(4656)-t(4554) %T=100 %3.2.3 t(4653)-t(4554) %T=90 t(4951)-t(4854) %T=80 t(4697)-t(4604) %T=70 t(4943)-t(4854) %T=60 t(4888)-t(4804) %T=50 % Plot APDs and minimum h's vs beat and each other