This document provides an overview of popular Python libraries for data science, including NumPy, SciPy, Pandas, Scikit-Learn, matplotlib and Seaborn. It describes the main functions of each library, such as NumPy for multidimensional arrays and mathematical operations, Pandas for data structures and data manipulation, Scikit-Learn for machine learning algorithms, and matplotlib and Seaborn for data visualization. The document also covers reading and exploring data frames, selecting and filtering data, aggregating and grouping data, handling missing values, and basic statistical analysis and graphics.