SlideShare a Scribd company logo
1 of 1
Download to read offline
Average	
  	
  
difference	
  
Coefficient	
  	
  	
  
βi	
  	
  
Significance	
  
	
  (%)	
  
Conclusions	
  	
  
(Best	
  condi;ons	
  among	
  the	
  levels)	
  
Emulsificant	
  
concentra;on	
  
1	
  =	
  1%;	
  2	
  =	
  10%	
   2	
  -­‐	
  1	
   -­‐11,67	
   32,2	
  *	
   10%	
  of	
  emulsifier	
  
Type	
  of	
  
membrane	
  
1	
  =	
  Glass;	
  2	
  =	
  Nylon;	
  	
  
3	
  =	
  Cellulose	
  ester	
  
1	
  -­‐	
  3	
   2,44	
   85,6	
  *	
  
Glass	
  and	
  Nylon	
  membranes	
  	
  
are	
  beDer	
  than	
  Cellulose	
  ester	
  
2	
  -­‐	
  3	
   -­‐13,34	
   41,3	
  *	
  
Type	
  of	
  
emulsifier	
  	
  
1	
  =	
  Whey	
  Protein	
  Isolate;	
  
	
  2	
  =	
  Sodium	
  Caseinate;	
  	
  
3	
  =	
  Arabic	
  gum	
  
1	
  -­‐	
  3	
   -­‐13,44	
   34,8	
  *	
  
Sodium	
  Caseinate	
  
2	
  -­‐	
  3	
   3,53	
   82,1	
  *	
  
Ra;o	
  	
  
oil	
  :	
  wall	
  
material	
  
1	
  =	
  1:1;	
  2	
  =	
  1:2;	
  	
  
3	
  =	
  1:3;	
  4	
  =	
  1:4	
  
1	
  -­‐	
  4	
   -­‐4,30	
   78,4	
  *	
  
RaOo	
  1:1	
  2	
  -­‐	
  4	
   -­‐14,15	
   38,8	
  *	
  
3	
  -­‐	
  4	
   -­‐35,00	
   7,5	
  *	
  
Wall	
  material	
  
	
  
1	
  =	
  Maltodextrin;	
  2	
  =	
  Starch;	
  
3=	
  Sodium	
  Caseinate;	
  	
  
4	
  =	
  Arabic	
  gum	
  
1	
  -­‐	
  4	
   -­‐17,91	
   28,8	
  *	
  
Arabic	
  gum	
  2	
  -­‐	
  4	
   -­‐13,81	
   39,8	
  *	
  
3	
  -­‐	
  4	
   -­‐0,97	
   95,0	
  *	
  
[1]	
  V.	
  Paramita,	
  T.	
  Furuta,	
  and	
  H.	
  Yoshii.	
  High-­‐Oil-­‐Load	
  Encapsula;on	
  of	
  Medium-­‐Chain	
  Triglycerides	
  and	
  d-­‐Limonene	
  Mixture	
  in	
  Modified	
  Starch	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  by	
  	
  Spray	
  Drying.	
  J.	
  Food	
  Sci.,	
  77,	
  (2012)	
  E38-­‐44.	
  
[2]	
  A.	
  Nazir,	
  K.	
  Schroën,	
  R.	
  Boom,	
  Premix	
  emulsifica;on:	
  A	
  review,	
  J.	
  Membrane	
  Sci.,	
  362	
  (2010)	
  1.	
  
[3]	
  A.	
  Tren;n,	
  S.	
  De	
  Lamo,	
  C.	
  Güell,	
  F.	
  López,	
  M.	
  Ferrando,	
  Protein-­‐stabilized	
  emulsions	
  containing	
  beta-­‐carotene	
  produced	
  by	
  premix	
  membrane	
  	
  
	
  	
  	
  	
  	
  	
  emulsifica;on,	
  J.	
  Food	
  Eng.	
  106	
  (2011)	
  267–274	
  
[4]	
  S.	
  Ramakrishnan,	
  M.	
  Ferrando,	
  L.	
  Aceña-­‐Muñoz,	
  S.	
  De	
  Lamo-­‐Castellví,	
  C.	
  Güell,	
  Fish	
  Oil	
  Microcapsules	
  from	
  O/W	
  Emulsions	
  Produced	
  by	
  	
  
	
  	
  	
  	
  	
  	
  Premix	
  Membrane	
  Emulsifica;on,	
  Food	
  and	
  	
  Bioprocess	
  Technology	
  (2012)	
  in	
  press.	
  
	
  
Lemon	
  	
  
essen;al	
  oil	
  
	
  
	
  
Water	
  	
  
+	
  	
  
Emulsifier	
  
Spray	
  drying	
  
Microcapsule	
  
Wall	
  material	
  addi;on	
  
Membrane	
  
Fine	
  emulsion	
  
Coarse	
  emulsion	
  
Low	
  pressure	
  	
  
Ultraturrax	
  (15000	
  rpm,	
  3	
  min)	
  
	
  
	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
1	
   2	
   3	
  
Flux	
  (Kg/m2·∙s)	
  
Premix	
  Cycle	
  
Cellulose	
  ester	
  membrane	
  
20%	
  oil	
  +	
  1%	
  Whey	
  Protein	
  Isolate	
  +	
  Metricel	
  
20%	
  oil	
  +	
  10%	
  Sodium	
  Caseinate	
  +	
  Metricel	
  
20%	
  oil	
  +	
  10%	
  Whey	
  Protein	
  Isolate	
  +	
  Metricel	
  
!
Produc;on	
  of	
  microcapsules	
  entrapping	
  lemon	
  essen;al	
  oil	
  	
  
by	
  Premix	
  Membrane	
  Emulsifica;on	
  and	
  Spray	
  Drying	
  
J.	
  Carmona,	
  S.	
  De	
  Lamo,	
  M.	
  Ferrando,	
  J.	
  Ferré*	
  and	
  C.	
  Güell	
  
Departament	
  d’Enginyeria	
  Química	
  
*	
  Departament	
  de	
  Química	
  AnalíOca	
  i	
  Química	
  Orgànica,	
  	
  
Universitat	
  Rovira	
  i	
  Virgili,	
  Spain	
  Avda.	
  Països	
  Catalans,	
  26,	
  43007	
  Tarragona	
  
Tel:	
  +34977558504;	
  email:	
  carme.guell@urv.cat	
  
	
  	
  
Produc;on	
  of	
  lemon	
  essen;al	
  oil	
  emulsion	
  
Materials	
  &	
  Methods	
  
Introduc;on	
  &	
  Aim	
  
Flavours	
  are	
  widely	
  used	
  in	
  the	
  food	
  industry	
  as	
  an	
  addiOve	
  to	
  many	
  types	
  of	
  food	
  and	
  drinks	
  for	
  its	
  
aromaOc	
  properOes.	
  Because	
  of	
  their	
  labile	
  nature	
  it	
  is	
  necessary	
  to	
  entrap	
  them	
  inside	
  microparOcles	
  
providing	
  protecOon	
  against	
  degradaOon	
  reacOons	
  and	
  loss	
  of	
  core	
  material.	
  Although	
  several	
  methods	
  
are	
   used	
   to	
   produce	
   microcapsules,	
   the	
   most	
   widely	
   used	
   involve	
   (oil-­‐in-­‐water,	
   O/W)	
   emulsificaOon	
  
followed	
   by	
   spray-­‐drying	
   [1].	
   Membrane	
   emulsificaOon	
   (ME),	
   and	
   parOcularly	
   Premix	
   ME,	
   is	
   an	
  
alternaOve	
  to	
  convenOonal	
  homogenizaOon	
  technologies	
  because	
  it	
  produces	
  mono-­‐disperse	
  emulsions	
  
with	
  a	
  low	
  energy	
  input,	
  and	
  enables	
  to	
  use	
  proteins	
  and	
  other	
  biopolymers	
  sensiOve	
  to	
  mechanical	
  
stress	
  as	
  emulsifiers	
  [2,	
  3,	
  4].	
  	
  
The	
  aim	
  of	
  this	
  study	
  was	
  to	
  determine	
  how	
  different	
  microfiltraOon	
  membranes,	
  organic	
  and	
  inorganic,	
  
affected	
  the	
  Premix	
  ME	
  process	
  and,	
  therefore,	
  the	
  final	
  properOes	
  of	
  the	
  microcapsules.	
  	
  
	
  
Membrane	
  	
  
Emulsifica;on	
  	
  	
  
(Three	
  cycles)	
  
Experimental	
  design	
  
Conclusions	
  
The	
  authors	
  acknowledge	
  funding	
  from	
  the	
  Spanish	
  Ministry	
  of	
  Economy	
  and	
  Compe;;veness	
  for	
  suppor;ng	
  this	
  research	
  work	
  (Project	
  funding	
  
CTQ2011-­‐22793)	
  and	
  Dallant	
  S.A	
  for	
  providing	
  the	
  essen;al	
  oil	
  and	
  technical	
  support.	
  Jaume	
  Carmona	
  thanks	
  Universitat	
  Rovira	
  i	
  Virgili	
  for	
  his	
  
scholarship.	
  
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Emulsifier
concentration
Type
of membrane
Wall material
Ratio
Lemon oil : Wall material
Type
of emulsifier
1% Glass Maltrodextrin	
   1:4	
   Whey	
  Protein	
  Isolate	
  
1% Nylon Starch	
   1:3	
   Sodium	
  Caseinate	
  
1% Cellulose	
  ester	
   Sodium	
  Caseinate	
   1:2	
   Arabic	
  gum	
  
1% Glass Arabic	
  gum	
   1:1	
   Whey	
  Protein	
  Isolate	
  
10%	
   Glass Sodium	
  Caseinate	
   1:1	
   Sodium	
  Caseinate	
  
10%	
   Nylon Arabic	
  gum	
   1:2	
   Whey	
  Protein	
  Isolate	
  
10%	
   Cellulose	
  ester	
   Maltrodextrin	
   1:3	
   Whey	
  Protein	
  Isolate	
  
10%	
   Glass Starch	
   1:4	
   Arabic	
  gum	
  
1% Glass Arabic	
  gum	
   1:3	
   Arabic	
  gum	
  
1% Nylon Sodium	
  Caseinate	
   1:4	
   Whey	
  Protein	
  Isolate	
  
1% Cellulose	
  ester	
   Starch	
   1:1	
   Whey	
  Protein	
  Isolate	
  
1% Glass Maltrodextrin	
   1:2	
   Sodium	
  Caseinate	
  
10%	
   Glass Starch	
   1:2	
   Whey	
  Protein	
  Isolate	
  
10%	
   Nylon Maltrodextrin	
   1:1	
   Arabic	
  gum	
  
10%	
   Cellulose	
  ester	
   Arabic	
  gum	
   1:4	
   Sodium	
  Caseinate	
  
10%	
   Glass Sodium	
  Caseinate	
   1:3	
   Whey	
  Protein	
  Isolate	
  
Fluxes	
  during	
  Premix	
  membrane	
  emulsifica;on	
  
References	
  
The	
  combina;on	
  of	
  a	
  low	
  energy	
  technique	
  (Premix	
  ME)	
  and	
  spray-­‐drying	
  was	
  successfully	
  used	
  to	
  encapsulate	
  essen;al	
  lemon	
  oil.	
  The	
  experimental	
  design	
  allowed	
  us	
  to	
  
screen	
  the	
  opera;ng	
  condi;ons	
  with	
  a	
  reduced	
  number	
  of	
  experiments.	
  	
  
As	
  a	
  result	
  of	
  the	
  factorial	
  screening	
  model,	
  the	
  best	
  opera;onal	
  condi;ons	
  to	
  obtain	
  a	
  small	
  droplet	
  size	
  distribu;on	
  of	
  the	
  essen;al	
  oil	
  emulsions	
  are:	
  10%	
  of	
  arabic	
  gum	
  
as	
  emulsifier.	
  Nylon	
  and	
  Glass	
  membranes	
  are	
  bexer	
  than	
  Cellulose	
  ester	
  but	
  we	
  could	
  not	
  dis;nguish	
  between	
  them.	
  
Regarding	
  the	
  essen;al	
  lemon	
  oil	
  encapsula;on	
  efficiency,	
  the	
  factorial	
  screening	
  model	
  concludes	
  that	
  the	
  best	
  opera;onal	
  condi;ons	
  are:	
  10%	
  of	
  sodium	
  caseinate	
  as	
  
emulsifier,	
  ra;o	
  1:1	
  of	
  oil:	
  wall	
  material	
  and	
  Arabic	
  gum	
  as	
  wall	
  material.	
  Nylon	
  and	
  Glass	
  membranes	
  are	
  also	
  bexer	
  than	
  Cellulose	
  ester	
  but	
  we	
  could	
  not	
  dis;nguish	
  
between	
  them.	
  
	
  
Results	
  
Droplet	
  size	
  (D3,2)	
  during	
  Premix	
  membrane	
  emulsifica;on	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
1	
   2	
   3	
  
Flux	
  (Kg/m2·∙s)	
  
Premix	
  Cycle	
  
Nylon	
  membrane	
  
20%	
  oil	
  +	
  1%	
  Whey	
  Protein	
  Isolate	
  +	
  Nylon	
  
20%	
  oil	
  +	
  1%	
  Sodium	
  Caseinate	
  +	
  Nylon	
  
20%	
  oil	
  +	
  10%	
  Whey	
  Protein	
  Isolate	
  +	
  Nylon	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
0	
   1	
   2	
   3	
  
D	
  3,2	
  	
  (μm)	
  	
  
Premix	
  Cycle	
  
Cellulose	
  ester	
  membrane	
  
20%	
  oil	
  +	
  1%	
  Whey	
  Protein	
  Isolate	
  
20%	
  oil	
  +	
  1%	
  Arabic	
  gum	
  
20%	
  oil	
  +	
  10%	
  Sodium	
  Caseinate	
  
20%	
  oil	
  +	
  10%	
  Whey	
  Protein	
  Isolate	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
0	
   1	
   2	
   3	
  
D	
  3,2	
  	
  (μm)	
  	
  
Premix	
  Cycle	
  
Glass	
  membrane	
  
20%	
  oil	
  +	
  1%	
  Whey	
  Protein	
  Isolate	
  
20%	
  oil	
  +	
  10%	
  Sodium	
  Caseinate	
  
20%	
  oil	
  +	
  1%	
  Sodium	
  Caseinate	
  
20%	
  oil	
  +	
  10%	
  Whey	
  Protein	
  Isolate	
  
20%	
  oil	
  +	
  1%	
  Arabic	
  gum	
  
20%	
  oil	
  +	
  10%	
  Arabic	
  gum	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
0	
   1	
   2	
   3	
  
D	
  3,2	
  	
  (μm)	
  	
  
Premix	
  Cycle	
  
Nylon	
  membrane	
  
20%	
  oil	
  +	
  1%	
  Whey	
  Protein	
  Isolate	
  
20%	
  oil	
  +	
  1%	
  Sodium	
  Caseinate	
  
20%	
  oil	
  +	
  10%	
  Arabic	
  gum	
  
20%	
  oil	
  +	
  10%	
  Whey	
  Protein	
  Isolate	
  
Cellulose	
  ester	
  
Figure	
  3.	
  	
  ESEM	
  images	
  of	
  external	
  and	
  internal	
  morphology	
  of	
  lemon	
  oil	
  microcapsules:	
  a)	
  1%	
  of	
  whey	
  protein	
  Isolate,	
  raOo	
  1:4,	
  maltodextrin	
  and	
  glass	
  membrane;	
  	
  
b)	
  1%	
  of	
  sodium	
  caseinate,	
  raOo	
  1:3,	
  starch	
  and	
  nylon	
  membrane;	
  	
  	
  c)	
  1%	
  of	
  arabic	
  gum,	
  raOo	
  1:2,	
  sodium	
  caseinate	
  and	
  cellulose	
  ester	
  membrane.	
  
Figure	
  1.	
  	
  Emulsion	
  flux	
  for	
  each	
  emulsificaOon	
  cycle	
  using	
  Nylon	
  	
  (a)	
  and	
  the	
  Cellulose	
  ester	
  membrane	
  (b)	
  and	
  different	
  emulsifiers	
  
Membrane
Porous
size
(μm)
Membrane
configuration
Diameter/ length
(mm)
Type
of membrane
Wettability
Working
pressure
(MPa)
Nylon 0.8	
   Flat	
   47	
   Organic	
   Hydrophillic	
   0.7	
  
Cellulose
ester
0.8	
   Flat	
   47	
   Organic	
   Hydrophillic	
   0.7	
  
Glass 1.0	
   Tubular	
   100	
   Inorganic	
   Hydrophillic	
   0.2	
  
Table	
  1.	
  	
  Factors	
  and	
  levels	
  defined	
  to	
  each	
  experiment.	
  	
  
Experimental	
  condi;ons	
  during	
  Premix	
  ME	
  
Model:	
  PlackeD-­‐Burman	
  screening	
  factorial	
  model	
  
	
  	
  
	
  	
  	
  	
  Responses	
  of	
  interest:	
  droplet	
  size	
  (D3,2)	
  of	
  the	
  end	
  of	
  Premix	
  ME	
  and	
  oil	
  encapsulaOon	
  efficiency	
  (EE)	
  	
  
	
  	
  	
  	
  Number	
  of	
  experiments:	
  16	
  plus	
  4	
  replicates	
  	
  
	
  	
  	
  	
  Number	
  of	
  factors:	
  5	
  	
  
	
  	
  	
  	
  Factor	
  levels:	
  Factor	
  1:	
  2	
  levels;	
  Factor	
  2:	
  3	
  levels;	
  Factor	
  3:	
  4	
  levels;	
  Factor	
  4:	
  4	
  levels;	
  Factor	
  5:	
  3	
  levels	
  	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  
	
  
	
  
	
  
This	
  model	
  enables	
  to	
  opOmize	
  among	
  the	
  several	
  levels	
  of	
  each	
  factor	
  by	
  comparing	
  the	
  averages	
  of	
  the	
  responses,	
  using	
  equaOons	
  1	
  	
  	
  
and	
  2.	
  	
  	
  	
  xvx	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eq.	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  xi	
  =	
  (X	
  –	
  X)/ΔX	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Where	
  xi	
  is	
  the	
  dimensionless	
  coded	
  value	
  of	
  the	
  variable	
  xi;	
  x0	
  is	
  the	
  value	
  at	
  the	
  central	
  point;	
  ΔX	
  is	
  the	
  change	
  in	
  the	
  magnitude	
  of	
  the	
  
variable	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eq.	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  =	
  β0	
  +	
  Σβi	
  +	
  Σβij·∙xi
2	
  +	
  Σβij	
  ·∙	
  xi	
  ·∙	
  xj	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
Where	
  Y	
  is	
  the	
  predicted	
  response;	
  the	
  subscripts	
  i	
  and	
  j	
  range	
  from	
  1	
  to	
  the	
  number	
  of	
  variables;	
  β0	
  is	
  the	
  intercept	
  term;	
  βi	
  is	
  the	
  linear	
  
coefficients;	
  βij	
  is	
  the	
  quadraOc	
  coefficients.	
  
Experiments	
  
Figure	
  2.	
  	
  Progress	
  of	
  mean	
  droplet	
  size	
  during	
  Premix	
  membrane	
  emulsificaOon	
  using	
  (a)	
  Nylon,	
  (b)	
  Cellulose	
  ester	
  and	
  (c)	
  Glass	
  
membranes	
  and	
  different	
  emulsifiers.	
  Droplet	
  size	
  of	
  the	
  coarse	
  emulsion	
  corresponds	
  to	
  Cycle	
  0.	
  
(a)	
   (b)	
  
Results	
  of	
  the	
  screening	
  factorial	
  model	
  
External	
  and	
  internal	
  morphology	
  of	
  lemon	
  oil	
  microcapsules	
  
b	
   c	
  a	
  
Acknowledgment	
  
	
  
(c)	
  
(b)	
  (a)	
  
Factor	
   Levels	
  
Average	
  	
  
difference	
  
Coefficient	
  	
  	
  
βi	
  	
  
Significance	
  
	
  (%)	
  
Conclusions	
  	
  
(Best	
  condi;ons	
  among	
  the	
  levels)	
  
Emulsificant	
  
concentra;on	
  
1	
  =	
  1%	
  
2	
  =	
  10%	
  
2	
  -­‐	
  1	
   1,43	
   7,8	
  *	
   10%	
  of	
  emulsifier	
  
Type	
  	
  
of	
  membrane	
  
1	
  =	
  Glass;	
  	
  
2	
  =	
  Nylon;	
  	
  
3	
  =	
  Cellulose	
  ester	
  
1	
  -­‐	
  3	
   2,35	
   3,5	
  
Glass	
  and	
  Nylon	
  membranes	
  	
  
are	
  beDer	
  than	
  Cellulose	
  ester	
  
2	
  -­‐	
  3	
   0,04	
   96,6	
  *	
  
Type	
  
of	
  emulsifier	
  	
  
1	
  =	
  Whey	
  Protein	
  Isolate;	
  
	
  2	
  =	
  Sodium	
  Caseinate;	
  	
  
3	
  =	
  Arabic	
  gum	
  
1	
  -­‐	
  3	
   -­‐0,11	
   89,0	
  *	
  
Arabic	
  gum	
  
2	
  -­‐	
  3	
   -­‐1,30	
   20,5	
  *	
  
Encapsula;on	
  
Efficiency	
  
Droplet	
  size	
  (D3,2)	
  of	
  	
  
the	
  end	
  of	
  Premix	
  ME	
  
*	
  Significance	
  values	
  above	
  than	
  5%	
  are	
  not	
  significant.	
  	
  	
  

More Related Content

What's hot

Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
Nanomedicine Journal (NMJ)
 

What's hot (17)

A04810106
A04810106A04810106
A04810106
 
IRJET - Reconstitution Properties of Spray Dried Yoghurt Powder
IRJET - Reconstitution Properties of Spray Dried Yoghurt PowderIRJET - Reconstitution Properties of Spray Dried Yoghurt Powder
IRJET - Reconstitution Properties of Spray Dried Yoghurt Powder
 
Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
Synthesis of new dental nanocomposite with glass nanoparticles Article 7, Vol...
 
Calcium alginate beads
Calcium alginate beadsCalcium alginate beads
Calcium alginate beads
 
Development and characterization of porous starch curcumin solid dispertion...
Development and characterization of  porous starch  curcumin solid dispertion...Development and characterization of  porous starch  curcumin solid dispertion...
Development and characterization of porous starch curcumin solid dispertion...
 
Plasticizer Presentation Final
Plasticizer Presentation FinalPlasticizer Presentation Final
Plasticizer Presentation Final
 
Latex ingredients (powerpoint)
Latex ingredients (powerpoint)Latex ingredients (powerpoint)
Latex ingredients (powerpoint)
 
An Evaluation of the Effect of Epoxidized Thevetia Nerrifolia Seed Oil Modifi...
An Evaluation of the Effect of Epoxidized Thevetia Nerrifolia Seed Oil Modifi...An Evaluation of the Effect of Epoxidized Thevetia Nerrifolia Seed Oil Modifi...
An Evaluation of the Effect of Epoxidized Thevetia Nerrifolia Seed Oil Modifi...
 
SUSTAINED RELEASE BEADS
SUSTAINED RELEASE BEADS SUSTAINED RELEASE BEADS
SUSTAINED RELEASE BEADS
 
Development and Evaluation of Diclofenac Sodium Loaded Alginate Cross-Linking...
Development and Evaluation of Diclofenac Sodium Loaded Alginate Cross-Linking...Development and Evaluation of Diclofenac Sodium Loaded Alginate Cross-Linking...
Development and Evaluation of Diclofenac Sodium Loaded Alginate Cross-Linking...
 
formulation and evaluation of microbeads
formulation and evaluation of microbeadsformulation and evaluation of microbeads
formulation and evaluation of microbeads
 
Removal of organosulfur from Jordanian Oil Shale
Removal of organosulfur from Jordanian Oil ShaleRemoval of organosulfur from Jordanian Oil Shale
Removal of organosulfur from Jordanian Oil Shale
 
Formulation and invitro evaluation of amiodarone orodispersable tablets.
Formulation and invitro evaluation of amiodarone orodispersable tablets.Formulation and invitro evaluation of amiodarone orodispersable tablets.
Formulation and invitro evaluation of amiodarone orodispersable tablets.
 
Formulation and Evaluation of Topical Proniosomal Gel of an Antifungal Drug- ...
Formulation and Evaluation of Topical Proniosomal Gel of an Antifungal Drug- ...Formulation and Evaluation of Topical Proniosomal Gel of an Antifungal Drug- ...
Formulation and Evaluation of Topical Proniosomal Gel of an Antifungal Drug- ...
 
Cucurbita pepo oil as a drug microemulsion formulation: study of phase diagram
Cucurbita pepo oil as a drug microemulsion formulation: study of phase diagramCucurbita pepo oil as a drug microemulsion formulation: study of phase diagram
Cucurbita pepo oil as a drug microemulsion formulation: study of phase diagram
 
Floating emulsion gel beads on gelucire for the sustained release of hydrophi...
Floating emulsion gel beads on gelucire for the sustained release of hydrophi...Floating emulsion gel beads on gelucire for the sustained release of hydrophi...
Floating emulsion gel beads on gelucire for the sustained release of hydrophi...
 
Varsha Gajanan Gharge
Varsha Gajanan GhargeVarsha Gajanan Gharge
Varsha Gajanan Gharge
 

Similar to Póster Eng. Membranes

Microencapsulation by manoj
Microencapsulation by manojMicroencapsulation by manoj
Microencapsulation by manoj
Manoj Solanki
 
Development and method validation for determination of Deltamethrin residue i...
Development and method validation for determination of Deltamethrin residue i...Development and method validation for determination of Deltamethrin residue i...
Development and method validation for determination of Deltamethrin residue i...
IOSR Journals
 

Similar to Póster Eng. Membranes (20)

Encapsulation_LEO
Encapsulation_LEOEncapsulation_LEO
Encapsulation_LEO
 
crosslinked chitosan
crosslinked chitosancrosslinked chitosan
crosslinked chitosan
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Influence of Wall Material Composition on Microencapsulation Efficiency of Co...
Influence of Wall Material Composition on Microencapsulation Efficiency of Co...Influence of Wall Material Composition on Microencapsulation Efficiency of Co...
Influence of Wall Material Composition on Microencapsulation Efficiency of Co...
 
Evaluation of microencapsulation
Evaluation of microencapsulationEvaluation of microencapsulation
Evaluation of microencapsulation
 
Nanoencapsulating of Kaffir Lime Oil with Coacervation Method using Arabic Gu...
Nanoencapsulating of Kaffir Lime Oil with Coacervation Method using Arabic Gu...Nanoencapsulating of Kaffir Lime Oil with Coacervation Method using Arabic Gu...
Nanoencapsulating of Kaffir Lime Oil with Coacervation Method using Arabic Gu...
 
Microencapsulation by manoj
Microencapsulation by manojMicroencapsulation by manoj
Microencapsulation by manoj
 
Reviewed journal
 Reviewed journal Reviewed journal
Reviewed journal
 
Aade 07-ntce-18 LIFUBRWIBV
Aade 07-ntce-18 LIFUBRWIBVAade 07-ntce-18 LIFUBRWIBV
Aade 07-ntce-18 LIFUBRWIBV
 
F0443041
F0443041F0443041
F0443041
 
F0443041
F0443041F0443041
F0443041
 
Development and method validation for determination of Deltamethrin residue i...
Development and method validation for determination of Deltamethrin residue i...Development and method validation for determination of Deltamethrin residue i...
Development and method validation for determination of Deltamethrin residue i...
 
Microencapsulation
MicroencapsulationMicroencapsulation
Microencapsulation
 
Microencapsulation
MicroencapsulationMicroencapsulation
Microencapsulation
 
Membrane emulsification in food industry
Membrane emulsification in food industryMembrane emulsification in food industry
Membrane emulsification in food industry
 
Algaloilextractionfrommacroalgae
AlgaloilextractionfrommacroalgaeAlgaloilextractionfrommacroalgae
Algaloilextractionfrommacroalgae
 
Coacervation Phase Separation Techniques
Coacervation Phase Separation TechniquesCoacervation Phase Separation Techniques
Coacervation Phase Separation Techniques
 
E1073340
E1073340E1073340
E1073340
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
1-s2.0-S2238785422007591-main.pdf
1-s2.0-S2238785422007591-main.pdf1-s2.0-S2238785422007591-main.pdf
1-s2.0-S2238785422007591-main.pdf
 

Póster Eng. Membranes

  • 1. Average     difference   Coefficient       βi     Significance    (%)   Conclusions     (Best  condi;ons  among  the  levels)   Emulsificant   concentra;on   1  =  1%;  2  =  10%   2  -­‐  1   -­‐11,67   32,2  *   10%  of  emulsifier   Type  of   membrane   1  =  Glass;  2  =  Nylon;     3  =  Cellulose  ester   1  -­‐  3   2,44   85,6  *   Glass  and  Nylon  membranes     are  beDer  than  Cellulose  ester   2  -­‐  3   -­‐13,34   41,3  *   Type  of   emulsifier     1  =  Whey  Protein  Isolate;    2  =  Sodium  Caseinate;     3  =  Arabic  gum   1  -­‐  3   -­‐13,44   34,8  *   Sodium  Caseinate   2  -­‐  3   3,53   82,1  *   Ra;o     oil  :  wall   material   1  =  1:1;  2  =  1:2;     3  =  1:3;  4  =  1:4   1  -­‐  4   -­‐4,30   78,4  *   RaOo  1:1  2  -­‐  4   -­‐14,15   38,8  *   3  -­‐  4   -­‐35,00   7,5  *   Wall  material     1  =  Maltodextrin;  2  =  Starch;   3=  Sodium  Caseinate;     4  =  Arabic  gum   1  -­‐  4   -­‐17,91   28,8  *   Arabic  gum  2  -­‐  4   -­‐13,81   39,8  *   3  -­‐  4   -­‐0,97   95,0  *   [1]  V.  Paramita,  T.  Furuta,  and  H.  Yoshii.  High-­‐Oil-­‐Load  Encapsula;on  of  Medium-­‐Chain  Triglycerides  and  d-­‐Limonene  Mixture  in  Modified  Starch                      by    Spray  Drying.  J.  Food  Sci.,  77,  (2012)  E38-­‐44.   [2]  A.  Nazir,  K.  Schroën,  R.  Boom,  Premix  emulsifica;on:  A  review,  J.  Membrane  Sci.,  362  (2010)  1.   [3]  A.  Tren;n,  S.  De  Lamo,  C.  Güell,  F.  López,  M.  Ferrando,  Protein-­‐stabilized  emulsions  containing  beta-­‐carotene  produced  by  premix  membrane                emulsifica;on,  J.  Food  Eng.  106  (2011)  267–274   [4]  S.  Ramakrishnan,  M.  Ferrando,  L.  Aceña-­‐Muñoz,  S.  De  Lamo-­‐Castellví,  C.  Güell,  Fish  Oil  Microcapsules  from  O/W  Emulsions  Produced  by                Premix  Membrane  Emulsifica;on,  Food  and    Bioprocess  Technology  (2012)  in  press.     Lemon     essen;al  oil       Water     +     Emulsifier   Spray  drying   Microcapsule   Wall  material  addi;on   Membrane   Fine  emulsion   Coarse  emulsion   Low  pressure     Ultraturrax  (15000  rpm,  3  min)       0   1   2   3   4   5   6   1   2   3   Flux  (Kg/m2·∙s)   Premix  Cycle   Cellulose  ester  membrane   20%  oil  +  1%  Whey  Protein  Isolate  +  Metricel   20%  oil  +  10%  Sodium  Caseinate  +  Metricel   20%  oil  +  10%  Whey  Protein  Isolate  +  Metricel   ! Produc;on  of  microcapsules  entrapping  lemon  essen;al  oil     by  Premix  Membrane  Emulsifica;on  and  Spray  Drying   J.  Carmona,  S.  De  Lamo,  M.  Ferrando,  J.  Ferré*  and  C.  Güell   Departament  d’Enginyeria  Química   *  Departament  de  Química  AnalíOca  i  Química  Orgànica,     Universitat  Rovira  i  Virgili,  Spain  Avda.  Països  Catalans,  26,  43007  Tarragona   Tel:  +34977558504;  email:  carme.guell@urv.cat       Produc;on  of  lemon  essen;al  oil  emulsion   Materials  &  Methods   Introduc;on  &  Aim   Flavours  are  widely  used  in  the  food  industry  as  an  addiOve  to  many  types  of  food  and  drinks  for  its   aromaOc  properOes.  Because  of  their  labile  nature  it  is  necessary  to  entrap  them  inside  microparOcles   providing  protecOon  against  degradaOon  reacOons  and  loss  of  core  material.  Although  several  methods   are   used   to   produce   microcapsules,   the   most   widely   used   involve   (oil-­‐in-­‐water,   O/W)   emulsificaOon   followed   by   spray-­‐drying   [1].   Membrane   emulsificaOon   (ME),   and   parOcularly   Premix   ME,   is   an   alternaOve  to  convenOonal  homogenizaOon  technologies  because  it  produces  mono-­‐disperse  emulsions   with  a  low  energy  input,  and  enables  to  use  proteins  and  other  biopolymers  sensiOve  to  mechanical   stress  as  emulsifiers  [2,  3,  4].     The  aim  of  this  study  was  to  determine  how  different  microfiltraOon  membranes,  organic  and  inorganic,   affected  the  Premix  ME  process  and,  therefore,  the  final  properOes  of  the  microcapsules.       Membrane     Emulsifica;on       (Three  cycles)   Experimental  design   Conclusions   The  authors  acknowledge  funding  from  the  Spanish  Ministry  of  Economy  and  Compe;;veness  for  suppor;ng  this  research  work  (Project  funding   CTQ2011-­‐22793)  and  Dallant  S.A  for  providing  the  essen;al  oil  and  technical  support.  Jaume  Carmona  thanks  Universitat  Rovira  i  Virgili  for  his   scholarship.   Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Emulsifier concentration Type of membrane Wall material Ratio Lemon oil : Wall material Type of emulsifier 1% Glass Maltrodextrin   1:4   Whey  Protein  Isolate   1% Nylon Starch   1:3   Sodium  Caseinate   1% Cellulose  ester   Sodium  Caseinate   1:2   Arabic  gum   1% Glass Arabic  gum   1:1   Whey  Protein  Isolate   10%   Glass Sodium  Caseinate   1:1   Sodium  Caseinate   10%   Nylon Arabic  gum   1:2   Whey  Protein  Isolate   10%   Cellulose  ester   Maltrodextrin   1:3   Whey  Protein  Isolate   10%   Glass Starch   1:4   Arabic  gum   1% Glass Arabic  gum   1:3   Arabic  gum   1% Nylon Sodium  Caseinate   1:4   Whey  Protein  Isolate   1% Cellulose  ester   Starch   1:1   Whey  Protein  Isolate   1% Glass Maltrodextrin   1:2   Sodium  Caseinate   10%   Glass Starch   1:2   Whey  Protein  Isolate   10%   Nylon Maltrodextrin   1:1   Arabic  gum   10%   Cellulose  ester   Arabic  gum   1:4   Sodium  Caseinate   10%   Glass Sodium  Caseinate   1:3   Whey  Protein  Isolate   Fluxes  during  Premix  membrane  emulsifica;on   References   The  combina;on  of  a  low  energy  technique  (Premix  ME)  and  spray-­‐drying  was  successfully  used  to  encapsulate  essen;al  lemon  oil.  The  experimental  design  allowed  us  to   screen  the  opera;ng  condi;ons  with  a  reduced  number  of  experiments.     As  a  result  of  the  factorial  screening  model,  the  best  opera;onal  condi;ons  to  obtain  a  small  droplet  size  distribu;on  of  the  essen;al  oil  emulsions  are:  10%  of  arabic  gum   as  emulsifier.  Nylon  and  Glass  membranes  are  bexer  than  Cellulose  ester  but  we  could  not  dis;nguish  between  them.   Regarding  the  essen;al  lemon  oil  encapsula;on  efficiency,  the  factorial  screening  model  concludes  that  the  best  opera;onal  condi;ons  are:  10%  of  sodium  caseinate  as   emulsifier,  ra;o  1:1  of  oil:  wall  material  and  Arabic  gum  as  wall  material.  Nylon  and  Glass  membranes  are  also  bexer  than  Cellulose  ester  but  we  could  not  dis;nguish   between  them.     Results   Droplet  size  (D3,2)  during  Premix  membrane  emulsifica;on   0   1   2   3   4   5   6   7   1   2   3   Flux  (Kg/m2·∙s)   Premix  Cycle   Nylon  membrane   20%  oil  +  1%  Whey  Protein  Isolate  +  Nylon   20%  oil  +  1%  Sodium  Caseinate  +  Nylon   20%  oil  +  10%  Whey  Protein  Isolate  +  Nylon   0   2   4   6   8   10   12   14   0   1   2   3   D  3,2    (μm)     Premix  Cycle   Cellulose  ester  membrane   20%  oil  +  1%  Whey  Protein  Isolate   20%  oil  +  1%  Arabic  gum   20%  oil  +  10%  Sodium  Caseinate   20%  oil  +  10%  Whey  Protein  Isolate   0   2   4   6   8   10   12   14   0   1   2   3   D  3,2    (μm)     Premix  Cycle   Glass  membrane   20%  oil  +  1%  Whey  Protein  Isolate   20%  oil  +  10%  Sodium  Caseinate   20%  oil  +  1%  Sodium  Caseinate   20%  oil  +  10%  Whey  Protein  Isolate   20%  oil  +  1%  Arabic  gum   20%  oil  +  10%  Arabic  gum   0   2   4   6   8   10   12   0   1   2   3   D  3,2    (μm)     Premix  Cycle   Nylon  membrane   20%  oil  +  1%  Whey  Protein  Isolate   20%  oil  +  1%  Sodium  Caseinate   20%  oil  +  10%  Arabic  gum   20%  oil  +  10%  Whey  Protein  Isolate   Cellulose  ester   Figure  3.    ESEM  images  of  external  and  internal  morphology  of  lemon  oil  microcapsules:  a)  1%  of  whey  protein  Isolate,  raOo  1:4,  maltodextrin  and  glass  membrane;     b)  1%  of  sodium  caseinate,  raOo  1:3,  starch  and  nylon  membrane;      c)  1%  of  arabic  gum,  raOo  1:2,  sodium  caseinate  and  cellulose  ester  membrane.   Figure  1.    Emulsion  flux  for  each  emulsificaOon  cycle  using  Nylon    (a)  and  the  Cellulose  ester  membrane  (b)  and  different  emulsifiers   Membrane Porous size (μm) Membrane configuration Diameter/ length (mm) Type of membrane Wettability Working pressure (MPa) Nylon 0.8   Flat   47   Organic   Hydrophillic   0.7   Cellulose ester 0.8   Flat   47   Organic   Hydrophillic   0.7   Glass 1.0   Tubular   100   Inorganic   Hydrophillic   0.2   Table  1.    Factors  and  levels  defined  to  each  experiment.     Experimental  condi;ons  during  Premix  ME   Model:  PlackeD-­‐Burman  screening  factorial  model              Responses  of  interest:  droplet  size  (D3,2)  of  the  end  of  Premix  ME  and  oil  encapsulaOon  efficiency  (EE)            Number  of  experiments:  16  plus  4  replicates            Number  of  factors:  5            Factor  levels:  Factor  1:  2  levels;  Factor  2:  3  levels;  Factor  3:  4  levels;  Factor  4:  4  levels;  Factor  5:  3  levels                             This  model  enables  to  opOmize  among  the  several  levels  of  each  factor  by  comparing  the  averages  of  the  responses,  using  equaOons  1       and  2.        xvx                                              Eq.  1                                                                      xi  =  (X  –  X)/ΔX                             Where  xi  is  the  dimensionless  coded  value  of  the  variable  xi;  x0  is  the  value  at  the  central  point;  ΔX  is  the  change  in  the  magnitude  of  the   variable                                                                                                                                        Eq.  2                                      Y  =  β0  +  Σβi  +  Σβij·∙xi 2  +  Σβij  ·∙  xi  ·∙  xj                                             Where  Y  is  the  predicted  response;  the  subscripts  i  and  j  range  from  1  to  the  number  of  variables;  β0  is  the  intercept  term;  βi  is  the  linear   coefficients;  βij  is  the  quadraOc  coefficients.   Experiments   Figure  2.    Progress  of  mean  droplet  size  during  Premix  membrane  emulsificaOon  using  (a)  Nylon,  (b)  Cellulose  ester  and  (c)  Glass   membranes  and  different  emulsifiers.  Droplet  size  of  the  coarse  emulsion  corresponds  to  Cycle  0.   (a)   (b)   Results  of  the  screening  factorial  model   External  and  internal  morphology  of  lemon  oil  microcapsules   b   c  a   Acknowledgment     (c)   (b)  (a)   Factor   Levels   Average     difference   Coefficient       βi     Significance    (%)   Conclusions     (Best  condi;ons  among  the  levels)   Emulsificant   concentra;on   1  =  1%   2  =  10%   2  -­‐  1   1,43   7,8  *   10%  of  emulsifier   Type     of  membrane   1  =  Glass;     2  =  Nylon;     3  =  Cellulose  ester   1  -­‐  3   2,35   3,5   Glass  and  Nylon  membranes     are  beDer  than  Cellulose  ester   2  -­‐  3   0,04   96,6  *   Type   of  emulsifier     1  =  Whey  Protein  Isolate;    2  =  Sodium  Caseinate;     3  =  Arabic  gum   1  -­‐  3   -­‐0,11   89,0  *   Arabic  gum   2  -­‐  3   -­‐1,30   20,5  *   Encapsula;on   Efficiency   Droplet  size  (D3,2)  of     the  end  of  Premix  ME   *  Significance  values  above  than  5%  are  not  significant.