Microsoft Fabric Architecture &
Use Cases
PRESENTED BY Pavan Kalyan
Muniganti
Data Engineer
Agenda
• Overview of Microsoft Fabric
• Why Microsoft Fabric?
• Architecture
• Key Components
• Use Cases
• Real-World Scenarios
• Setup/Integration
• Q&A
• Thank You
Overview of Microsoft Fabric
• Microsoft Fabric is an end-to-end SaaS data
platform.
• Combines Data Engineering, Warehousing, BI,
Real-time Analytics, and Data Science.
• Unifies collaboration across data professionals
and business users.
Why Microsoft Fabric?
• Unified analytics platform (Data Factory +
Synapse + Power BI)
• Built-in data governance and security
• Lake-centric and open by design
• Integrated with Microsoft 365
• Low-code and pro-code environments
• No infrastructure management
Architecture
• Data Integration: Data Factory, Event Streams
• Data Engineering: Notebooks, Pipelines
• Data Warehousing: Lakehouse, SQL Endpoint
• Real-Time Analytics: KQL DB, Event Hub
Integration
• Data Science: ML Notebooks, AutoML
• Visualization: Power BI
• Storage: OneLake (centralized data lake)
Key Components
• OneLake
• Fabric Workspaces
• Notebooks & Pipelines
• Lakehouse
• Data Warehouse
• KQL Database
• Power BI Integration
Use Case – Retail Analytics
• Integrate POS data using Dataflows
• Transform and model data in Lakehouse
• Use Power BI for dashboards
• Anomaly detection on sales data using ML
• Real-time alerts via Event Streams
Real-World Scenarios
• Customer Churn Prediction
• Real-time Inventory Management
• Financial Reporting Automation
• IoT Sensor Data Analytics
• Marketing Campaign Analysis
Setup/Integration
• Create Microsoft Fabric workspace
• Link with OneLake
• Add Data Pipeline or Lakehouse
• Use Dataflow Gen2 for ingestion
• Enable Power BI for visualization
Q&A
Thank You

MicrosoftFabric-PavanKsdfdefdfdfedfedfedfedfdfalyanddfdfddf

  • 1.
    Microsoft Fabric Architecture& Use Cases PRESENTED BY Pavan Kalyan Muniganti Data Engineer
  • 2.
    Agenda • Overview ofMicrosoft Fabric • Why Microsoft Fabric? • Architecture • Key Components • Use Cases • Real-World Scenarios • Setup/Integration • Q&A • Thank You
  • 3.
    Overview of MicrosoftFabric • Microsoft Fabric is an end-to-end SaaS data platform. • Combines Data Engineering, Warehousing, BI, Real-time Analytics, and Data Science. • Unifies collaboration across data professionals and business users.
  • 4.
    Why Microsoft Fabric? •Unified analytics platform (Data Factory + Synapse + Power BI) • Built-in data governance and security • Lake-centric and open by design • Integrated with Microsoft 365 • Low-code and pro-code environments • No infrastructure management
  • 5.
    Architecture • Data Integration:Data Factory, Event Streams • Data Engineering: Notebooks, Pipelines • Data Warehousing: Lakehouse, SQL Endpoint • Real-Time Analytics: KQL DB, Event Hub Integration • Data Science: ML Notebooks, AutoML • Visualization: Power BI • Storage: OneLake (centralized data lake)
  • 6.
    Key Components • OneLake •Fabric Workspaces • Notebooks & Pipelines • Lakehouse • Data Warehouse • KQL Database • Power BI Integration
  • 7.
    Use Case –Retail Analytics • Integrate POS data using Dataflows • Transform and model data in Lakehouse • Use Power BI for dashboards • Anomaly detection on sales data using ML • Real-time alerts via Event Streams
  • 8.
    Real-World Scenarios • CustomerChurn Prediction • Real-time Inventory Management • Financial Reporting Automation • IoT Sensor Data Analytics • Marketing Campaign Analysis
  • 9.
    Setup/Integration • Create MicrosoftFabric workspace • Link with OneLake • Add Data Pipeline or Lakehouse • Use Dataflow Gen2 for ingestion • Enable Power BI for visualization
  • 10.
  • 11.