VLSI Technology
(EC 325)
Dr. Vivek Garg
Department of Electronics Engineering
S. V. National Institute of Technology (SVNIT)
Surat
email: vivekg@eced.svnit.ac.in; vivekgarg0101@gmail.com
11/2/2023 2
Course Outline
11/2/2023 3
Course Text and Materials
Additional:
• Relevant Journals and Conferences
• Materials and Sources shared in the lectures
11/2/2023 Vivek Garg 4
FESEM/ESEM
Optical Microscope
11/2/2023 Vivek Garg 5
FESEM/ESEM
11/2/2023 Vivek Garg 6
FESEM/ESEM
11/2/2023 Vivek Garg 7
FESEM/ESEM
11/2/2023 Vivek Garg 8
FESEM/ESEM
11/2/2023 Vivek Garg 9
FESEM/ESEM
Secondary Electrons Back Scattered Electrons
11/2/2023 Vivek Garg 10
FESEM/ESEM
11/2/2023 Vivek Garg 11
FESEM/ESEM
11/2/2023 Vivek Garg 12
FESEM/ESEM
11/2/2023 Vivek Garg 13
Energy Dispersive X-Ray Spectroscopy
Element Weight% Atomic%
Cu K 4.02 26.01
Ga K 1.41 8.33
Se L 8.28 43.17
In L 6.27 22.48
Totals 19.98
Provides Elemental and Chemical Information
11/2/2023 Vivek Garg 14
X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS)
Inverse Photoelectron Spectroscopy (IPES)
KE = hv – BE - Ø
XPS/UPS/IPS
11/2/2023 Vivek Garg 15
X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS)
Inverse Photoelectron Spectroscopy (IPES)
11/2/2023 Vivek Garg 16
X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS)
Inverse Photoelectron Spectroscopy (IPES)
17
XPS/UPS
0.0 1.5 3.0 4.5 6.0
0
2
4
6
8
CIGSe
Ef
VBOn
Intensity
(a.u.)
Energy (eV)
0 2 4
0
10
20
30
GZO
Ef
VBOn
Intensity
(a.u.)
Energy (eV)
∆𝐸𝐶 = 𝐸𝑔
𝐺𝑍𝑂
− 𝐸𝑔
𝐶𝐼𝐺𝑆𝑒
− ∆𝐸v
0 10 20 30 40 50 60
0.2
0.4
0.6
0.8
1.0
(Ga3d -Se3d)
Valence
Band
Zn
3d
Se
3d
Ga
3d
Intensity
(a.u.)
Energy (eV)
GZO/CIGSe
∆𝐸𝑉 = 𝐸𝑆𝑒 3𝑑
𝐶𝐼𝐺𝑆𝑒
− 𝐸𝑉𝐵𝑂𝑛
𝐶𝐼𝐺𝑆𝑒
− 𝐸𝐺𝑎 3𝑑
𝐺𝑍𝑂
− 𝐸𝑉𝐵𝑂𝑛
𝐺𝑍𝑂
+ ∆𝐸𝐶𝐿
0 10 20 30 40 50 60
0
2
4
6
8
10
12
Se
3d
CIGSe
VBOn
Intensity
(a.u.)
Energy (eV)
(Se3d - VBOn)
0 10 20 30 40
0
50
100
150
200
Ga
3d
(Ga3d - VBOn)
GZO
VBOn
Intensity
(a.u.)
Energy (eV)
Band Alignment
11/2/2023 Vivek Garg 18
Inverse Photoelectron Spectroscopy (IPES)
-4 -2 0 2 4
0
20
40
60
80
100
E
f
(eV)
CBM 0.82 eV
IPES
Normalized
intensity
Energy (eV)
UPS He I
VBM 0.63 eV
Band
gap
=
1.45
eV
-------------------------------
------
Ec
Ev
Ef
Eg = 1.45 eV
0.82 eV using IPES
0.63 eV using UPS
-1 0 1 2 3 4 5 6
0.0
0.3
0.7
1.0
Energy (eV)
Ef
VBon
GMZO
Intensity
(a.u.)
0 10 20 30 40 50 60
0
2
4
6
8
10
12
14
16
18
20
22
24
Mg
2p
Ga
3d
Zn
3d
Valence
Band
Intensity
(a.u.)

1000
Energy (eV)
GMZO
0 200 400 600 800 1000 1200
0
50
100
150
200
250
Zn
2p
Zn
3s
Zn
3p
O
1s
Ga
3s
Zn
3d
Ga
2p
3/2
Intensity
(a.u.)

1000
Binding Energy (eV)
11/2/2023 Vivek Garg 19

Microscopes Characterisations(6) .pdf

  • 1.
    VLSI Technology (EC 325) Dr.Vivek Garg Department of Electronics Engineering S. V. National Institute of Technology (SVNIT) Surat email: vivekg@eced.svnit.ac.in; vivekgarg0101@gmail.com
  • 2.
  • 3.
    11/2/2023 3 Course Textand Materials Additional: • Relevant Journals and Conferences • Materials and Sources shared in the lectures
  • 4.
    11/2/2023 Vivek Garg4 FESEM/ESEM Optical Microscope
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
    11/2/2023 Vivek Garg9 FESEM/ESEM Secondary Electrons Back Scattered Electrons
  • 10.
    11/2/2023 Vivek Garg10 FESEM/ESEM
  • 11.
    11/2/2023 Vivek Garg11 FESEM/ESEM
  • 12.
    11/2/2023 Vivek Garg12 FESEM/ESEM
  • 13.
    11/2/2023 Vivek Garg13 Energy Dispersive X-Ray Spectroscopy Element Weight% Atomic% Cu K 4.02 26.01 Ga K 1.41 8.33 Se L 8.28 43.17 In L 6.27 22.48 Totals 19.98 Provides Elemental and Chemical Information
  • 14.
    11/2/2023 Vivek Garg14 X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS) Inverse Photoelectron Spectroscopy (IPES) KE = hv – BE - Ø XPS/UPS/IPS
  • 15.
    11/2/2023 Vivek Garg15 X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS) Inverse Photoelectron Spectroscopy (IPES)
  • 16.
    11/2/2023 Vivek Garg16 X-ray Photoelectron Spectroscopy (XPS), Ultra-violet Photoelectron Spectroscopy (UPS) Inverse Photoelectron Spectroscopy (IPES)
  • 17.
    17 XPS/UPS 0.0 1.5 3.04.5 6.0 0 2 4 6 8 CIGSe Ef VBOn Intensity (a.u.) Energy (eV) 0 2 4 0 10 20 30 GZO Ef VBOn Intensity (a.u.) Energy (eV) ∆𝐸𝐶 = 𝐸𝑔 𝐺𝑍𝑂 − 𝐸𝑔 𝐶𝐼𝐺𝑆𝑒 − ∆𝐸v 0 10 20 30 40 50 60 0.2 0.4 0.6 0.8 1.0 (Ga3d -Se3d) Valence Band Zn 3d Se 3d Ga 3d Intensity (a.u.) Energy (eV) GZO/CIGSe ∆𝐸𝑉 = 𝐸𝑆𝑒 3𝑑 𝐶𝐼𝐺𝑆𝑒 − 𝐸𝑉𝐵𝑂𝑛 𝐶𝐼𝐺𝑆𝑒 − 𝐸𝐺𝑎 3𝑑 𝐺𝑍𝑂 − 𝐸𝑉𝐵𝑂𝑛 𝐺𝑍𝑂 + ∆𝐸𝐶𝐿 0 10 20 30 40 50 60 0 2 4 6 8 10 12 Se 3d CIGSe VBOn Intensity (a.u.) Energy (eV) (Se3d - VBOn) 0 10 20 30 40 0 50 100 150 200 Ga 3d (Ga3d - VBOn) GZO VBOn Intensity (a.u.) Energy (eV) Band Alignment
  • 18.
    11/2/2023 Vivek Garg18 Inverse Photoelectron Spectroscopy (IPES) -4 -2 0 2 4 0 20 40 60 80 100 E f (eV) CBM 0.82 eV IPES Normalized intensity Energy (eV) UPS He I VBM 0.63 eV Band gap = 1.45 eV ------------------------------- ------ Ec Ev Ef Eg = 1.45 eV 0.82 eV using IPES 0.63 eV using UPS -1 0 1 2 3 4 5 6 0.0 0.3 0.7 1.0 Energy (eV) Ef VBon GMZO Intensity (a.u.) 0 10 20 30 40 50 60 0 2 4 6 8 10 12 14 16 18 20 22 24 Mg 2p Ga 3d Zn 3d Valence Band Intensity (a.u.)  1000 Energy (eV) GMZO 0 200 400 600 800 1000 1200 0 50 100 150 200 250 Zn 2p Zn 3s Zn 3p O 1s Ga 3s Zn 3d Ga 2p 3/2 Intensity (a.u.)  1000 Binding Energy (eV)
  • 19.