SlideShare a Scribd company logo
Homework2.nb                                                                                                           1




Time scales and definitions

Equations of motions and resonance conditions
Equations of motion

         EOM    q1 't   q1 t  c2 q1 t q2 t  c3 q1 t3    0,  q2 't  q2 t  bq1 t2  0;
         EOM  TableForm

            q1 t  c3 q1 t3  c2 q1 t q2 t  q1  t  0
         bq1 t2  q2 t  q2  t  0

         EOM    Subscriptq, 1t  c Subscriptq, 1t3 
                b1 Subscriptq, 1 't3  b0 Subscriptq, 2 't  Subscriptq, 1 't2 
                 Subscriptq, 1 't  Subscriptq, 1 ''t  0,
               2
              2 Subscriptq, 2t  c Subscriptq, 2t3  b2 Subscriptq, 2 't3 
                b0 Subscriptq, 2 't  Subscriptq, 1 't2 
                 Subscriptq, 2 't  Subscriptq, 2 ''t  0; EOM  TableForm

         2 q1 t  c q1 t3   q1  t  b1 q1  t3  b0  q1  t  q2  t2  q1  t  0
         2 q2 t  c q2 t3   q2  t  b2 q2  t3  b0  q1  t  q2  t2  q2  t  0
          1
          2



Ordering of the dampings

         smorzrule     ,    ;

Definition of 2 (introduction of the detuning)

         ombrule  2  2   

         2     2 

Definition of the expansion of qi

         solRule  qi_  Sumj1 qi,j1 1, 2, 3, j, 3 &;


  Some rules (don' t modify)


           multiScales  qi_ t  qi  timeScales,
                   Derivativen_q_t  dtnq  timeScales, t  T0 ;


This is the result of "multiScales" and "solRule":
Homework2.nb                                                                                                                       2



         q1 t . multiScales . solRule

         q1,0 T0 , T1 , T2    q1,1 T0 , T1 , T2   2 q1,2 T0 , T1 , T2 

Max order of the procedure

         maxOrder  2;

Scaling of the variables

         scaling  q1 t   q1 t, q2 t   q2 t, q1 't   q1 't,
           q2 't   q2 't, q1 ''t   q1 ''t, q2 ''t   q2 ''t

         q1 t   q1 t, q2 t   q2 t, q1  t   q1  t,
          q2  t   q2  t, q1  t   q1  t, q2  t   q2  t

Modification of the equations of motion: substitution of the rules.

         EOMa  EOM . scaling . multiScales . smorzrule . ombrule . solRule  TrigToExp 
                 ExpandAll . n_;n3  0;

Separation of the coefficients of the powers of 

         eqEps  RestThreadCoefficientListSubtract   ,   0 &  EOMa  Transpose;

Definition of the equations at orders of  and representation

         eqOrderi_ :  1 &  eqEps1 . q_k_,0  qk,i1  

               1 &  eqEps1 . q_k_,0  qk,i1    1 &  eqEpsi  Thread

         eqOrder1 . displayRule
         eqOrder2 . displayRule
         eqOrder3 . displayRule

         D2 q1,0  2 q1,0  0, D2 q2,0  2 q2,0  0
           0         1            0         2


         D2 q1,1  2 q1,1   D0 q1,0  2 D0 D1 q1,0  D0 q1,0 2 b0  2 D0 q1,0 D0 q2,0 b0  D0 q2,0 2 b0 ,
           D2 q2,1  2 q2,1   D0 q2,0  2 D0 D1 q2,0  D0 q1,0 2 b0  2 D0 q1,0 D0 q2,0 b0  D0 q2,0 2 b0  2  2 q2,0 
           0         1

            0         2


         D2 q1,2  2 q1,2   D0 q1,1   D1 q1,0  2 D0 D1 q1,1  D2 q1,0  2 D0 D2 q1,0  2 D0 q1,0 D0 q1,1 b0 
           0         1                                                1
              2 D0 q1,1 D0 q2,0 b0  2 D0 q1,0 D0 q2,1 b0  2 D0 q2,0 D0 q2,1 b0  2 D0 q1,0 D1 q1,0 b0 
              2 D0 q2,0 D1 q1,0 b0  2 D0 q1,0 D1 q2,0 b0  2 D0 q2,0 D1 q2,0 b0  D0 q1,0 3 b1  c q3 ,
                                                                                                     1,0
           D2 q2,2  2 q2,2   D0 q2,1   D1 q2,0  2 D0 D1 q2,1  D2 q2,0  2 D0 D2 q2,0  2 D0 q1,0 D0 q1,1 b0 
            0         2                                                 1
              2 D0 q1,1 D0 q2,0 b0  2 D0 q1,0 D0 q2,1 b0  2 D0 q2,0 D0 q2,1 b0  2 D0 q1,0 D1 q1,0 b0  2 D0 q2,0 D1 q1,0 b0 
              2 D0 q1,0 D1 q2,0 b0  2 D0 q2,0 D1 q2,0 b0  D0 q2,0 3 b2  2 q2,0  c q3  2  2 q2,1 
                                                                                        2,0


Resonance condition


         ResonanceCond  1              2 ;
                                        1
                                        2

Involved frequencies
Homework2.nb                                                                                                                    3



         omgList  1 , 2 ;


  Utility (don't modify)


             omgRule  SolveResonanceCond,  ,    Flatten1 &  omgList  Reverse



             2  2 1 , 1          
                                     2
                                      2




First-Order Problem

Second-Order Problem

Third-Order Problem
Substitution in the Third-Order Equations

         order3Eq  eqOrder3 . sol1 . sol2  ExpandAll;

Simplifications

         order3Eqpr1, 2  Simplifyorder3Eq1, 2;

         order3Eqpr2, 2  Simplifyorder3Eq2, 2;

Terms of type ei 1 T0 in the first equation of the Third-Order Problem and representation

         ST311  Coefficientorder3Eqpr , 2 . expRule1 , ExpI 1 T0  &  1;
         ST311 . displayRule

                    60  D1 A1 1  60 D2 A1 1  120  D2 A1 2  120  D1 A1 A2 b0 1 2  180 c A2 1 A1 
              1
                                          1                      1                                    1
             60 1
                  120  D1 A2 b0 2 A1  80 A2 b2 3 A1  180  A2 b1 4 A1  448 A1 A2 b2 2 2 A2  90 A1 A2 b2 1 2 A2 
                                  1          1 0 1               1     1                 0 1                    0     2


Terms of type ei 2 T0 in the first equation of the Third-Order Problem and representation

         ST312  Coefficientorder3Eqpr , 2 . expRule1 , ExpI 2 T0  &  1;
         ST312 . displayRule

         0

Terms of type ei 1 T0 in the second equation of the Third-Order Problem and representation
Homework2.nb                                                                                                                          4



         ST321  Coefficientorder3Eqpr , 2 . expRule11, ExpI 1 T0  &  2;
         ST321 . displayRule


                             80  D1 A1 A2 b0 2 2  60  D1 A1 A2 b0 1 2  140  D1 A2 b0 2 2 A1  40   A2 b0 2 2 A1 
                   1
                                                  1                           2                   1                       1
             30 1 2
                   160  A2 b0 2 2 A1  40 A2 b2 3 2 A1  224 A1 A2 b2 2 2 A2  45 A1 A2 b2 1 3 A2 
                                1             1 0 1                      0 1 2                  0     2


Terms of type ei 2 T0 in the second equation of the Third-Order Problem and representation

         ST322  Coefficientorder3Eqpr , 2 . expRule12, ExpI 2 T0  &  2;
         ST322 . displayRule

                            30  D1 A2 1 2  30 D2 A2 1 2  30 2 A2 1 2 
                   1
                                                     1
             30 1 2
                   60  D1 A1 A1 b0 2 2  60  D2 A2 1 2  64 A1 A2 b2 3 2 A1  45 A1 A2 b2 2 2 A1 
                   90 c A2 1 2 A2  40 A2 b2 1 3 A2  16 A2 b2 4 A2  90  A2 b2 1 4 A2 
                                     1                     2             0 1                    0 1 2

                         2                2 0      2          2 0 2              2        2


Scalar product with the left eigenvectors: Second-Order AME; representation

         SCond2  1, 0.ST311, ST321  0, 0, 1.ST312, ST322  0;
         SCond2 . displayRule


                         60  D1 A1 1  60 D2 A1 1  120  D2 A1 2  120  D1 A1 A2 b0 1 2  180 c A2 1 A1  120  D1 A2
                  1
                                                1                      1                                    1
                 60 1
                            b0 2 A1  80 A2 b2 3 A1  180  A2 b1 4 A1  448 A1 A2 b2 2 2 A2  90 A1 A2 b2 1 2 A2   0,
                                1          1 0 1               1     1                 0 1                    0     2


                              30  D1 A2 1 2  30 D2 A2 1 2  30 2 A2 1 2  60  D1 A1 A1 b0 2 2 
                       1
                                                       1                                               1
                 30 1 2
                           60  D2 A2 1 2  64 A1 A2 b2 3 2 A1  45 A1 A2 b2 2 2 A1  90 c A2 1 2 A2 
                           40 A2 b2 1 3 A2  16 A2 b2 4 A2  90  A2 b2 1 4 A2   0
                                          2             0 1                    0 1 2              2

                               2 0      2          2 0 2              2        2


Algebraic manipulation to obtain D2 A1 and D2 A2
Homework2.nb                                                                                                                                                         5



         SCond2Rule1 
           SolveSCond2, A1                       T1 , T2 , A2              T1 , T2 1 . A1 2,0 T1 , T2   T1 SCond1Rule1
                                           0,1                       0,1


                                   1, 2 . A2 2,0 T1 , T2   T1 SCond1Rule12, 2 . SCond1Rule1 .
                SCond1Rule1 . conjugateRule  ExpandAll  Simplify  Expand;
         SCond2Rule1 . displayRule

         D2 A1 

                2 A1        1                                              3  c A2 A1
                                                                                    1             5                          3                    A2 b2 2 A1
                                                                                                                                                    1 0 1
                                 A2 b0 A1    A2 b0 A1                                           A2 b2 1 A1 
                                                                                                          1 0                    A2 b1 2 A1 
                                                                                                                                  1     1                        
                8 1          2                                                   2 1            12                         2                        2 2

                A2 b0 2 A1            A2 b0 2 A1                A2 b0 2 A1            56                             3  A1 A2 b2 2 A2
                                                                                                                                       0 2
                                                                                                A1 A2 b2 2 A2 
                                                                                                           0                                      ,
                    2 1                        4 1                       2 1              15                                     4 1
                     A2 b0 2
                       1     1              A2 b0 2
                                              1     1           A2 b0 2
                                                                   1     1               2 A2         A2 b0 1
                                                                                                          1             7
          D2 A2                                                                                                        A1 A2 b2 1 A1 
                                                                                                                                     0
                          4 2
                             2                  8 2
                                                   2                4 2
                                                                       2
                                                                                         8 2             2 2          4


                                                                                                                                           
               17  A1 A2 b2 2 A1
                           0 1                   3  c A2 A2
                                                        2              2                          3                     4  A2 b2 2 A2
                                                                                                                             2 0 2
                                                                          A2 b2 2 A2 
                                                                              2 0                      A2 b2 2 A2 
                                                                                                        2     2
                         30 2                         2 2            3                          2                              15 1




Reconstitution of the AME and of the solution

Polar form of the AME

Numerical integrations
Numerical values


         1  1, 2  2, b0 
                                            1
                                                , b1  1, b2  1, c  1,   0.05,   0.05,   0, 2  2 1  
                                            2

         1, 2,
                    1
                        , 1, 1, 1, 0.05, 0.05, 0, 2
                    2

Time of integration

         ti  200;

Numerical Intergations of the RAME

         solrame1  NDSolverame1  0, rame2  0, rame3  0,
            a10  0.1, a20  0.1, 0  0.1, a1t, a2t, t, t, 0, ti

         NDSolve::ndode : Input is not an ordinary differential equation. 

          a1t, a2t, t, t, 0, ti
         NDSolverame1  0, rame2  0, rame3  0, a10  0.1, a20  0.1, 0  0.1,
Homework2.nb                                                                                                                   6



         GraphicsArrayPlota1t . solrame1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "a1 t",
           Plota2t . solrame1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "a2 t",
           Plott . solrame1, t, 0, ti, PlotStyle  Thick, Frame  True,
            AxesOrigin  0, 0, FrameLabel  "t", "t"

                                              0.4
             0.5                                                                      2.0
                                              0.2
      a1 t




                                                                                      1.5




                                                                               t
                                          a2 t
             0.0                              0.0
                                             0.2                                     1.0
           0.5                              0.4                                     0.5
                                             0.6                                     0.0
                   0   50   100 150 200               0   50   100 150 200                  0   50   100 150 200
                             t                                  t                                     t


Numerical Intergations of the AME

         solramep1  NDSolveamep1  0, amep2  0, amep3  0, amep4  0, a10  0.1,
            a20  0.1, 10  0.1, 20  0.1, a1t, a2t, 1t, 2t, t, 0, ti

         a1t  InterpolatingFunction0., 200., t,
           a2t  InterpolatingFunction0., 200., t,
           1t  InterpolatingFunction0., 200., t,
           2t  InterpolatingFunction0., 200., t

         GraphicsArrayPlota1t . solramep1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "a1 t",
           Plota2t . solramep1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "a2 t",
           Plot1t . solramep1, t, 0, ti, PlotStyle  Thick,
            Frame  True, AxesOrigin  0, 0, FrameLabel  "t", "1 t",
           Plot2t . solramep1, t, 0, ti, PlotStyle  Thick, Frame  True,
            AxesOrigin  0, 0, FrameLabel  "t", "2 t"

                                            0.4                              2.0                              2.0
             0.5                            0.2
     a1 t




                                                                       1 t




                                                                                                          2 t


                                                                             1.5                              1.5
                                         a2 t




             0.0                            0.0
                                                                             1.0                              1.0
                                           0.2
                                                                             0.5                              0.5
           0.5                            0.4
                                           0.6                              0.0                              0.0
                   0   50 100 150 200             0   50 100 150 200               0    50 100 150 200              0   50 100 150
                           t                              t                                 t                               t


Graphics of the reconstituted solution
Homework2.nb                                                                                               7



         GraphicsArrayPlotqr1 t . solramep1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "q1 t",
           Plotqr2 t . solramep1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "q2 t"

                                                             0.4
             0.5
                                                             0.2
      q1 t




                                                             0.0




                                                          q2 t
             0.0
                                                            0.2

           0.5                                             0.4

                                                            0.6
                   0      50       100       150    200            0   50   100    150     200
                                    t                                        t


Numerical Intergations of the original equations

         solorig1  NDSolveJoinEOM, q1 0  0.1, q2 0  0.1, q1 '0  0.1, q2 '0  0.1,
           q1 t, q2 t, t, 0, ti, MaxSteps  1 000 000

         q1 t  InterpolatingFunction0., 200., t,
           q2 t  InterpolatingFunction0., 200., t

         GraphicsArrayPlotq1 t . solorig1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "q1 t",
           Plotq2 t . solorig1, t, 0, ti, PlotStyle  Thick,
            PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "q2 t"

                                                             0.4
             0.5
                                                             0.2
      q1 t




                                                             0.0
                                                          q2 t




             0.0
                                                            0.2

           0.5                                             0.4

                                                            0.6
                   0      50        100       150   200            0   50    100    150     200
                                     t                                        t

More Related Content

Featured

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
Pixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
marketingartwork
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
Skeleton Technologies
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
SpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Lily Ray
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
Rajiv Jayarajah, MAppComm, ACC
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
Christy Abraham Joy
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
Vit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
MindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
GetSmarter
 

Featured (20)

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 

Home work: Multiple Bifurcations of Sample Dynamical Systems

  • 1. Homework2.nb 1 Time scales and definitions Equations of motions and resonance conditions Equations of motion EOM    q1 't   q1 t  c2 q1 t q2 t  c3 q1 t3    0,  q2 't  q2 t  bq1 t2  0; EOM  TableForm    q1 t  c3 q1 t3  c2 q1 t q2 t  q1  t  0 bq1 t2  q2 t  q2  t  0 EOM    Subscriptq, 1t  c Subscriptq, 1t3  b1 Subscriptq, 1 't3  b0 Subscriptq, 2 't  Subscriptq, 1 't2   Subscriptq, 1 't  Subscriptq, 1 ''t  0, 2 2 Subscriptq, 2t  c Subscriptq, 2t3  b2 Subscriptq, 2 't3  b0 Subscriptq, 2 't  Subscriptq, 1 't2   Subscriptq, 2 't  Subscriptq, 2 ''t  0; EOM  TableForm 2 q1 t  c q1 t3   q1  t  b1 q1  t3  b0  q1  t  q2  t2  q1  t  0 2 q2 t  c q2 t3   q2  t  b2 q2  t3  b0  q1  t  q2  t2  q2  t  0 1 2 Ordering of the dampings smorzrule     ,    ; Definition of 2 (introduction of the detuning) ombrule  2  2    2     2  Definition of the expansion of qi solRule  qi_  Sumj1 qi,j1 1, 2, 3, j, 3 &; Some rules (don' t modify) multiScales  qi_ t  qi  timeScales, Derivativen_q_t  dtnq  timeScales, t  T0 ; This is the result of "multiScales" and "solRule":
  • 2. Homework2.nb 2 q1 t . multiScales . solRule q1,0 T0 , T1 , T2    q1,1 T0 , T1 , T2   2 q1,2 T0 , T1 , T2  Max order of the procedure maxOrder  2; Scaling of the variables scaling  q1 t   q1 t, q2 t   q2 t, q1 't   q1 't, q2 't   q2 't, q1 ''t   q1 ''t, q2 ''t   q2 ''t q1 t   q1 t, q2 t   q2 t, q1  t   q1  t, q2  t   q2  t, q1  t   q1  t, q2  t   q2  t Modification of the equations of motion: substitution of the rules. EOMa  EOM . scaling . multiScales . smorzrule . ombrule . solRule  TrigToExp  ExpandAll . n_;n3  0; Separation of the coefficients of the powers of  eqEps  RestThreadCoefficientListSubtract   ,   0 &  EOMa  Transpose; Definition of the equations at orders of  and representation eqOrderi_ :  1 &  eqEps1 . q_k_,0  qk,i1    1 &  eqEps1 . q_k_,0  qk,i1    1 &  eqEpsi  Thread eqOrder1 . displayRule eqOrder2 . displayRule eqOrder3 . displayRule D2 q1,0  2 q1,0  0, D2 q2,0  2 q2,0  0 0 1 0 2 D2 q1,1  2 q1,1   D0 q1,0  2 D0 D1 q1,0  D0 q1,0 2 b0  2 D0 q1,0 D0 q2,0 b0  D0 q2,0 2 b0 , D2 q2,1  2 q2,1   D0 q2,0  2 D0 D1 q2,0  D0 q1,0 2 b0  2 D0 q1,0 D0 q2,0 b0  D0 q2,0 2 b0  2  2 q2,0  0 1 0 2 D2 q1,2  2 q1,2   D0 q1,1   D1 q1,0  2 D0 D1 q1,1  D2 q1,0  2 D0 D2 q1,0  2 D0 q1,0 D0 q1,1 b0  0 1 1 2 D0 q1,1 D0 q2,0 b0  2 D0 q1,0 D0 q2,1 b0  2 D0 q2,0 D0 q2,1 b0  2 D0 q1,0 D1 q1,0 b0  2 D0 q2,0 D1 q1,0 b0  2 D0 q1,0 D1 q2,0 b0  2 D0 q2,0 D1 q2,0 b0  D0 q1,0 3 b1  c q3 , 1,0 D2 q2,2  2 q2,2   D0 q2,1   D1 q2,0  2 D0 D1 q2,1  D2 q2,0  2 D0 D2 q2,0  2 D0 q1,0 D0 q1,1 b0  0 2 1 2 D0 q1,1 D0 q2,0 b0  2 D0 q1,0 D0 q2,1 b0  2 D0 q2,0 D0 q2,1 b0  2 D0 q1,0 D1 q1,0 b0  2 D0 q2,0 D1 q1,0 b0  2 D0 q1,0 D1 q2,0 b0  2 D0 q2,0 D1 q2,0 b0  D0 q2,0 3 b2  2 q2,0  c q3  2  2 q2,1  2,0 Resonance condition ResonanceCond  1  2 ; 1 2 Involved frequencies
  • 3. Homework2.nb 3 omgList  1 , 2 ; Utility (don't modify) omgRule  SolveResonanceCond,  ,    Flatten1 &  omgList  Reverse 2  2 1 , 1   2 2 First-Order Problem Second-Order Problem Third-Order Problem Substitution in the Third-Order Equations order3Eq  eqOrder3 . sol1 . sol2  ExpandAll; Simplifications order3Eqpr1, 2  Simplifyorder3Eq1, 2; order3Eqpr2, 2  Simplifyorder3Eq2, 2; Terms of type ei 1 T0 in the first equation of the Third-Order Problem and representation ST311  Coefficientorder3Eqpr , 2 . expRule1 , ExpI 1 T0  &  1; ST311 . displayRule  60  D1 A1 1  60 D2 A1 1  120  D2 A1 2  120  D1 A1 A2 b0 1 2  180 c A2 1 A1  1 1 1 1 60 1 120  D1 A2 b0 2 A1  80 A2 b2 3 A1  180  A2 b1 4 A1  448 A1 A2 b2 2 2 A2  90 A1 A2 b2 1 2 A2  1 1 0 1 1 1 0 1 0 2 Terms of type ei 2 T0 in the first equation of the Third-Order Problem and representation ST312  Coefficientorder3Eqpr , 2 . expRule1 , ExpI 2 T0  &  1; ST312 . displayRule 0 Terms of type ei 1 T0 in the second equation of the Third-Order Problem and representation
  • 4. Homework2.nb 4 ST321  Coefficientorder3Eqpr , 2 . expRule11, ExpI 1 T0  &  2; ST321 . displayRule   80  D1 A1 A2 b0 2 2  60  D1 A1 A2 b0 1 2  140  D1 A2 b0 2 2 A1  40   A2 b0 2 2 A1  1 1 2 1 1 30 1 2 160  A2 b0 2 2 A1  40 A2 b2 3 2 A1  224 A1 A2 b2 2 2 A2  45 A1 A2 b2 1 3 A2  1 1 0 1 0 1 2 0 2 Terms of type ei 2 T0 in the second equation of the Third-Order Problem and representation ST322  Coefficientorder3Eqpr , 2 . expRule12, ExpI 2 T0  &  2; ST322 . displayRule  30  D1 A2 1 2  30 D2 A2 1 2  30 2 A2 1 2  1 1 30 1 2 60  D1 A1 A1 b0 2 2  60  D2 A2 1 2  64 A1 A2 b2 3 2 A1  45 A1 A2 b2 2 2 A1  90 c A2 1 2 A2  40 A2 b2 1 3 A2  16 A2 b2 4 A2  90  A2 b2 1 4 A2  1 2 0 1 0 1 2 2 2 0 2 2 0 2 2 2 Scalar product with the left eigenvectors: Second-Order AME; representation SCond2  1, 0.ST311, ST321  0, 0, 1.ST312, ST322  0; SCond2 . displayRule  60  D1 A1 1  60 D2 A1 1  120  D2 A1 2  120  D1 A1 A2 b0 1 2  180 c A2 1 A1  120  D1 A2 1 1 1 1 60 1 b0 2 A1  80 A2 b2 3 A1  180  A2 b1 4 A1  448 A1 A2 b2 2 2 A2  90 A1 A2 b2 1 2 A2   0, 1 1 0 1 1 1 0 1 0 2  30  D1 A2 1 2  30 D2 A2 1 2  30 2 A2 1 2  60  D1 A1 A1 b0 2 2  1 1 1 30 1 2 60  D2 A2 1 2  64 A1 A2 b2 3 2 A1  45 A1 A2 b2 2 2 A1  90 c A2 1 2 A2  40 A2 b2 1 3 A2  16 A2 b2 4 A2  90  A2 b2 1 4 A2   0 2 0 1 0 1 2 2 2 0 2 2 0 2 2 2 Algebraic manipulation to obtain D2 A1 and D2 A2
  • 5. Homework2.nb 5 SCond2Rule1  SolveSCond2, A1 T1 , T2 , A2 T1 , T2 1 . A1 2,0 T1 , T2   T1 SCond1Rule1 0,1 0,1 1, 2 . A2 2,0 T1 , T2   T1 SCond1Rule12, 2 . SCond1Rule1 . SCond1Rule1 . conjugateRule  ExpandAll  Simplify  Expand; SCond2Rule1 . displayRule D2 A1   2 A1 1 3  c A2 A1 1 5 3  A2 b2 2 A1 1 0 1    A2 b0 A1    A2 b0 A1    A2 b2 1 A1  1 0 A2 b1 2 A1  1 1  8 1 2 2 1 12 2 2 2  A2 b0 2 A1  A2 b0 2 A1   A2 b0 2 A1 56 3  A1 A2 b2 2 A2 0 2     A1 A2 b2 2 A2  0 , 2 1 4 1 2 1 15 4 1  A2 b0 2 1 1  A2 b0 2 1 1   A2 b0 2 1 1   2 A2  A2 b0 1 1 7 D2 A2        A1 A2 b2 1 A1  0 4 2 2 8 2 2 4 2 2 8 2 2 2 4  17  A1 A2 b2 2 A1 0 1 3  c A2 A2 2 2 3 4  A2 b2 2 A2 2 0 2    A2 b2 2 A2  2 0 A2 b2 2 A2  2 2 30 2 2 2 3 2 15 1 Reconstitution of the AME and of the solution Polar form of the AME Numerical integrations Numerical values 1  1, 2  2, b0  1 , b1  1, b2  1, c  1,   0.05,   0.05,   0, 2  2 1   2 1, 2, 1 , 1, 1, 1, 0.05, 0.05, 0, 2 2 Time of integration ti  200; Numerical Intergations of the RAME solrame1  NDSolverame1  0, rame2  0, rame3  0, a10  0.1, a20  0.1, 0  0.1, a1t, a2t, t, t, 0, ti NDSolve::ndode : Input is not an ordinary differential equation.  a1t, a2t, t, t, 0, ti NDSolverame1  0, rame2  0, rame3  0, a10  0.1, a20  0.1, 0  0.1,
  • 6. Homework2.nb 6 GraphicsArrayPlota1t . solrame1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "a1 t", Plota2t . solrame1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "a2 t", Plott . solrame1, t, 0, ti, PlotStyle  Thick, Frame  True, AxesOrigin  0, 0, FrameLabel  "t", "t" 0.4 0.5 2.0 0.2 a1 t 1.5 t a2 t 0.0 0.0 0.2 1.0 0.5 0.4 0.5 0.6 0.0 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 t t t Numerical Intergations of the AME solramep1  NDSolveamep1  0, amep2  0, amep3  0, amep4  0, a10  0.1, a20  0.1, 10  0.1, 20  0.1, a1t, a2t, 1t, 2t, t, 0, ti a1t  InterpolatingFunction0., 200., t, a2t  InterpolatingFunction0., 200., t, 1t  InterpolatingFunction0., 200., t, 2t  InterpolatingFunction0., 200., t GraphicsArrayPlota1t . solramep1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "a1 t", Plota2t . solramep1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "a2 t", Plot1t . solramep1, t, 0, ti, PlotStyle  Thick, Frame  True, AxesOrigin  0, 0, FrameLabel  "t", "1 t", Plot2t . solramep1, t, 0, ti, PlotStyle  Thick, Frame  True, AxesOrigin  0, 0, FrameLabel  "t", "2 t" 0.4 2.0 2.0 0.5 0.2 a1 t 1 t 2 t 1.5 1.5 a2 t 0.0 0.0 1.0 1.0 0.2 0.5 0.5 0.5 0.4 0.6 0.0 0.0 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 t t t t Graphics of the reconstituted solution
  • 7. Homework2.nb 7 GraphicsArrayPlotqr1 t . solramep1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "q1 t", Plotqr2 t . solramep1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "q2 t" 0.4 0.5 0.2 q1 t 0.0 q2 t 0.0 0.2 0.5 0.4 0.6 0 50 100 150 200 0 50 100 150 200 t t Numerical Intergations of the original equations solorig1  NDSolveJoinEOM, q1 0  0.1, q2 0  0.1, q1 '0  0.1, q2 '0  0.1, q1 t, q2 t, t, 0, ti, MaxSteps  1 000 000 q1 t  InterpolatingFunction0., 200., t, q2 t  InterpolatingFunction0., 200., t GraphicsArrayPlotq1 t . solorig1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.8, 0.8, Frame  True, FrameLabel  "t", "q1 t", Plotq2 t . solorig1, t, 0, ti, PlotStyle  Thick, PlotRange  Automatic,  0.6, 0.4, Frame  True, FrameLabel  "t", "q2 t" 0.4 0.5 0.2 q1 t 0.0 q2 t 0.0 0.2 0.5 0.4 0.6 0 50 100 150 200 0 50 100 150 200 t t