HLM FINAL PROJECT

      By ์ž„ํ˜„์ˆ™, ์‹ ์ฒ ๊ท , ๊ณ ์€ํฌ




    Class: Multivariate Analyses
    Instructor: Park, Hyun Jung
   Semester: Fall Semester 2007




                                   1
HLM Question 1

1. ๋ฐ์ดํ„ฐ์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์„ค๋ช…


   Variable Name                                           Description
Student level (Level 1)

MATH ACHIEVEMENT          A measure of mathematics achievement (mean=12.75, sd=6.88)

                          A standardized scale constructed from variables measuring parental
SES
                          education, occupation, and income

MINORITY                  An indicator for student ethnicity (1=minority, 0 =others)

FEMALE                    An indicator for student gender (1=female, 0=male)

School level (Level 2)

SIZE                      School enrollment

SECTOR                    1= Catholic, 2=Public

PRACAD                    Proportion of students in the academic track

DISCLIM                   A scale measuring disciplinary climate

HIMNTY                    1=More than 40% minority enrollment, 0=less than 40%

                          Mean of the SES values for the students in this school who are included in
MEANSES
                          the level-1 file



2. ๊ธฐ์ˆ ํ†ต๊ณ„
(1) Level 1
(i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰
Minority์— ๋”ฐ๋ฅธ Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ
๊ฐ™๋‹ค.




                     [ํ‘œ 1] Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„


                    minority                                                       Statistic    Std. Error

 mathach            0                    Mean                                      13.88239       .092219

                                         Variance                                      44.316

                                         Std. Deviation                            6.657021

                                         Skewness                                       -.331         .034

                                         Kurtosis                                       -.789         .068




                                                                                                         2
1                          Mean                                           9.75288       .147363

                                                Variance                                        42.867

                                                Std. Deviation                                6.547308

                                                Skewness                                             .190       .055

                                                Kurtosis                                             -.825      .110



(ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ


                          3
                                            5,321


                          2




                          1




                          0




                         -1




                         -2
                                            4,599
                                            5,009
                                            4,899
                         -3



                                            6,033
                         -4


                                          ses               minority           female




์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€, ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ๋ณ€์ˆ˜๋“ค์—
๋Œ€ํ•œ box-plot ๋„ํ‘œ์™€ ์ž”์ฐจ ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 3 ๊ฐœ์˜ outlier๊ฐ’๋“ค (case ๋ฒˆํ˜ธ 4899, 5321,
6033)์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์‚ฌ๋ก€์ˆ˜ ๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ
์ถ”์ •์„ ์œ„ํ•ด ์ด 3 ๊ฐœ์˜ outlier ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค.


(โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ

                    [ํ‘œ 2] Minority์— ๋”ฐ๋ฅธ Math Acheivement์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ


                                    Kolmogorov-Smirnov(a)                                  Shapiro-Wilk

             minority         Statistic             df             Sig.       Statistic         df           Sig.

 mathach     0                     .058              5211              .000

             1                     .054              1974              .000         .980         1974           .000

a Lilliefors Significance Correction




                                                                                                                    3
[ํ‘œ 3] Female์— ๋”ฐ๋ฅธ Math Achievement์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ


                                Kolmogorov-Smirnov(a)                           Shapiro-Wilk

              female       Statistic      df       Sig.             Statistic        df          Sig.

    mathach   0                 .059       3390         .000             .965         3390         .000

              1                 .047       3795         .000             .980         3795         .000

a Lilliefors Significance Correction




[ํ‘œ 2]์™€ [ํ‘œ 3] ๊ฒฐ๊ณผ ์ •๊ทœ์„ฑ ์˜๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋˜์–ด ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ
๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ์˜ ์ˆ˜๊ฐ€ ์–ด๋А ์ •๋„ ๋งŽ์€ ๊ฒฝ์šฐ, ์ž”์ฐจ์— ๋Œ€ํ•œ ๋ถ„ํฌ๊ฐ€
์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋”๋ผ๋„, ์ข…๋ชจ์–‘์˜ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ๋งŒ ํ•œ๋‹ค๋ฉด ์ •๊ทœ์„ฑ ๊ฐ€์ •์ด
                                                               1
๋งŒ์กฑ๋˜์ง€ ๋ชปํ•˜๋”๋ผ๋„ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค                                        . ์‹ค์ œ, ๋นˆ๋„๋ถ„์„ ๊ฒฐ๊ณผ, ์ „๋ฐ˜์ ์œผ๋กœ
์ข…๋ชจ์–‘์˜ ํ˜•ํƒœ๋ฅผ ๋ ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฏ€๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์— ๋ฌธ์ œ๊ฐ€ ์—†๋‹ค๊ณ  ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๊ณ 
๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.


(iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ



                  [ํ‘œ 4] Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ


                                                        Levene

                                                        Statistic         df1        df2          Sig.

    mathach             Based on Mean                          1.034            1         7183          .309

                        Based on Median                         .765            1         7183          .382

                        Based on Median and with
                                                                .765            1   7178.133            .382
                        adjusted df

                        Based on trimmed mean                   .875            1         7183          .350



[ํ‘œ 4] ๊ฒฐ๊ณผ, Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ์— ๋Œ€ํ•œ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์—ˆ์œผ๋ฏ€๋กœ
๋“ฑ๋ถ„์‚ฐ์„ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค.




1
    ์ด๊ตฐํฌ (2000). ์‚ฌํšŒ๊ณผํ•™ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก , ๋ฒ•๋ฌธ์‚ฌ




                                                                                                           4
[ํ‘œ 5] Female์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ


                                                      Levene

                                                      Statistic         df1         df2         Sig.

mathach               Based on Mean                         13.411            1       7183        .000

                      Based on Median                       11.710            1       7183        .001

                      Based on Median and with
                                                            11.710            1   7150.795        .001
                      adjusted df

                      Based on trimmed mean                 12.547            1       7183        .000



๋ฐ˜๋ฉด, Female์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ์€ ์˜๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋˜์–ด ๋“ฑ๋ถ„์‚ฐ์„ฑ
์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜์˜€์œผ๋ฏ€๋กœ ์ฐจํ›„ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜•์—์„œ Female ๋ณ€์ˆ˜์˜ ๋ถ„์‚ฐ์„
์ด์งˆ์ ์œผ๋กœ ์„ค์ •ํ•˜๊ณ  ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค.

Var (rij ) = ฯƒ ij and log(ฯƒ ij ) = ฮฑ 0 + ฮฑ 1 ( FEMALEij )
                2            2



  [ํ‘œ 6] Comparison of Homogeneous and Heterogeneous Level-1 Variance Models for
                                     Mathematics Achievement
(i) Results for Homogeneous Variance Model Standard                               Approx.
      Fixed Effect              Coefficient       Error            T-ratio         d.f.      P-value


For         INTRCPT1, B0
      INTRCPT2, G00                 12.629710    0.135239          93.388            155     0.000
        SECTOR, G01                  0.618126    0.372608            1.659          155       0.099
        PRACAD, G02                  3.184714    0.905697            3.516          155       0.001
       HIMINTY, G03                 -1.121324     0.343665         -3.263           155       0.002
       MEANSES, G04                  3.841524     0.486533           7.896          155       0.000
 For MINORITY slope, B1
      INTRCPT2, G10                 -3.090744    0.255884         -12.079           155       0.000
        SECTOR, G11                  2.493258    0.709652            3.513          155       0.001
        PRACAD, G12                 -0.754729    1.616671          -0.467           155       0.641
       HIMINTY, G13                  0.167364    0.544001            0.308          155       0.759
       MEANSES, G14                 -0.258677    0.810272          -0.319           155       0.750
 For     FEMALE slope, B2
      INTRCPT2, G20                 -1.104894    0.201094          -5.494           155       0.000
        SECTOR, G21                  0.238812    0.560862            0.426          155       0.670
        PRACAD, G22                  0.295424    1.368173            0.216          155       0.830




                                                                                                         5
HIMINTY, G23            0.270330    0.492444       0.549          155        0.583
       MEANSES, G24            0.193189    0.735303       0.263          155        0.793
 For         SES slope, B3
    INTRCPT2, G30              1.906945    0.111868      17.046          155        0.000
       SECTOR, G31             -1.070634    0.305571     -3.504          155        0.001
       PRACAD, G32             -0.356812    0.743293     -0.480          155        0.631
       HIMINTY, G33           -0.637234    0.276743       -2.303          155        0.023
       MEANSES, G34            0.768704    0.398913       1.927          155        0.055




 Random Effect               Standard       Variance      df       Chi-square P-value
                             Deviation     Component


INTRCPT1,              U0    1.44570        2.09004      95        294.93265      0.000
 MINORITY slope, U1          1.12272        1.26050      95        114.12118      0.088
   FEMALE slope, U2           0.98975        0.97961     95        119.88884        0.043
       SES slope, U3          0.26254        0.06893     95          93.80676     >.500
  level-1,         R         5.93801       35.25995


(ii) Results for Heterogeneous Variance Model Standard                    Approx.
    Fixed Effect             Coefficient     Error         T-ratio         d.f.      P-value
 For          INTRCPT1, B0
    INTRCPT2, G00             12.629541    0.132908      95.025          155      0.000
       SECTOR, G01              0.626505    0.366152      1.711          155        0.089
       PRACAD, G02              3.171302    0.890135      3.563          155        0.001
       HIMINTY, G03           -1.125486    0.337690      -3.333           155       0.001
       MEANSES, G04             3.839626    0.478031       8.032          155       0.000
 For MINORITY slope, B1
    INTRCPT2, G10             -3.067982    0.249698      -12.287         155        0.000
       SECTOR, G11              2.467170    0.692427      3.563          155        0.001
       PRACAD, G12             -0.784022    1.576908     -0.497           155       0.619
       HIMINTY, G13            0.079555    0.528302      0.151           155        0.881
       MEANSES, G14            -0.219824    0.787487      -0.279         155      0.780
 For    FEMALE slope, B2
    INTRCPT2, G20             -1.100951    0.196065       -5.615         155      0.000
       SECTOR, G21              0.211126    0.547923      0.385          155        0.700




                                                                                               6
PRACAD, G22                0.373889      1.333972        0.280           155    0.780
       HIMINTY, G23               0.275401     0.480888          0.573           155    0.567
       MEANSES, G24                 0.160079     0.718553        0.223           155    0.824
 For          SES slope, B3
    INTRCPT2, G30                  1.921190     0.111235       17.271            155    0.000
        SECTOR, G31               -1.111562     0.303874       -3.658            155    0.001
        PRACAD, G32               -0.297446     0.739653       -0.402            155    0.688
       HIMINTY, G33              -0.633772     0.275030         -2.304           155    0.023
       MEANSES, G34                 0.749275     0.397081        1.887           155    0.061


Random Effect                  Standard         Variance        df        Chi-square        P-value
                               Deviation       Component
 INTRCPT1, U0                   1.41086          1.99053        95         294.98419        0.000
 MINORITY slope, U1             0.97644          0.95344        95         113.04221         0.100
   FEMALE slope, U2              0.86431         0.74703        95         117.72762         0.057
        SES slope, U3            0.23885         0.05705        95          94.34888         >.500


                                               Standard
    Parameter                 Coefficient       Error         Z-ratio      P-value
INTRCPT1         ,alpha0      3.55983          0.017308       205.680         0.000
   FEMALE          ,alpha1    -0.17011         0.040660       -4.184         0.000


                                                 Number of
Model                                             Parameters                     Deviance
1. Homogeneous level-1 variance                         31                     46211.467967
2. Heterogeneous level-1 variance                       32                     46193.332169
                                                 Chi-square          df       P-value
Model 1 versus Model 2                           18.135798           1        0.000


(2) Level 2
(i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰
ELL_ENG ๊ฐ ์ง‘๋‹จ์˜ Aggregated Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„,
์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.




                                                                                                      7
๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰

              N        ํ‰๊ท       ํ‘œ์ค€ํŽธ์ฐจ         ๋ถ„์‚ฐ               ์™œ๋„               ์ฒจ๋„
             ํ†ต๊ณ„๋Ÿ‰      ํ†ต๊ณ„๋Ÿ‰       ํ†ต๊ณ„๋Ÿ‰        ํ†ต๊ณ„๋Ÿ‰         ํ†ต๊ณ„๋Ÿ‰     ํ‘œ์ค€์˜ค์ฐจ     ํ†ต๊ณ„๋Ÿ‰     ํ‘œ์ค€์˜ค์ฐจ
 size           160 1097.8250 629.50643 396278.347       .470    .192    -.555    .381
 sector         160       .44      .498       .248       .254    .192   -1.960    .381
 pracad         160     .5139    .25590       .065       .266    .192    -.803    .381
 disclim        160    -.0151    .97698       .954       .239    .192    -.207    .381
 himinty        160       .28      .448       .201      1.017    .192    -.977    .381
 meanses        160    -.0002    .41397       .171      -.287    .192    -.394    .381
 mathach        160   12.6245   3.11932      9.730      -.279    .192     .007    .381
 ์œ ํšจ์ˆ˜ (๋ชฉ๋ก๋ณ„)      160




(ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ



                 1.00




                 0.50




                 0.00




                -0.50




                -1.00




                -1.50


                          sector   pracad    himinty    meanses




์ง‘๋‹จ ์ˆ˜์ค€์—์„œ๋„ ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€, ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ์„ ํ•˜๊ธฐ
์œ„ํ•ด ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ box-plot ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์•„ ์ด ๋ฐ์ดํ„ฐ๋ฅผ
๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค.




                                                                                 8
(โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ

                                                     0.30000




                 Standard Error of Predicted Value
                                                     0.25000




                                                     0.20000




                                                     0.15000




                                                               2.00000   4.00000   6.00000   8.00000 10.00000 12.00000 14.00000 16.00000
                                                                                     Mahalanobis Distance

์œ„ ์ œ์‹œ๋œ Mahalanobis ๋„ํ‘œ๋ฅผ ๋ณด๋ฉด, level 2 ์ˆ˜์ค€์—์„œ ์ „๋ฐ˜์ ์œผ๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑํ•˜๊ณ 
์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.
(iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ
์ง‘๋‹จ 2 ์ˆ˜์ค€์—์„œ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ์€ likelihood-ratio test์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ์œผ๋‚˜,
๋Œ€์•ˆ์ ์œผ๋กœ Levene test๋ฅผ ํ†ตํ•ด์„œ๋„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” likelihood-ratio test ์‚ฌ์šฉ๋ฒ•์„
๋ชจ๋ฅด๋ฏ€๋กœ ๋Œ€์‹  Levene test๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹ค.
SECTOR, HIMINORITY ๊ฐ๊ฐ์˜ Levene test ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚œ๋‹ค (PREACAD,
MEAN SES๋Š” ์ง‘๋‹จ ์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์•„ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์‹ค์‹œ๊ฐ€ ์•ˆ๋˜์–ด ์ œ์‹œํ•˜์ง€ ์•Š์Œ).

                                                       mathach
                                                       Levene
                                                        ํ†ต๊ณ„๋Ÿ‰                  ์ž์œ ๋„1                ์ž์œ ๋„2             ์œ ์˜ํ™•๋ฅ 
                                                           .250                  1                 158              .618



                                                       mathach
                                                       Levene
                                                        ํ†ต๊ณ„๋Ÿ‰                  ์ž์œ ๋„1                ์ž์œ ๋„2             ์œ ์˜ํ™•๋ฅ 
                                                          1.666                  1                 158              .199



์ด๋ฅผ ํ†ตํ•ด, ์ง‘๋‹จ ์ˆ˜์ค€์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฐ€์ •๋„ ๋งŒ์กฑ๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.


(3) Level 1 ๊ณผ Level 2 ๋ณ€์ˆ˜ ์š”์•ฝ
๊ธฐ์ดˆํ†ต๊ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, 3 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์„(level 1 ์ˆ˜์ค€) ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€์œผ๋ฉฐ




                                                                                                                                           9
์ „๋ฐ˜์ ์œผ๋กœ Level 1, Level 2 ๋ชจ๋‘ ์„ ํ˜• ๋ชจํ˜• ๊ฐ€์„ค ๊ฒ€์ฆ์— ํ•„์š”ํ•œ ๊ฐ€์ •๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œํ‚ค๊ณ 
์žˆ์œผ๋ฏ€๋กœ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ดˆ๋กœ ํ•˜์—ฌ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (HLM) ๊ฒ€์ฆ์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค.




3. ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (Hierarchical Linear Model, HLM)
(1) ๊ธฐ๋ณธ ๋ชจํ˜• (null model) ์„ค์ • ๋ฐ Intraclass correlation

MATHACH ij = ฮฒ 0 j + rij
ฮฒ 0 j = ฮณ 00 + ยต 0 j

์œ„์™€ ๊ฐ™์ด ๊ธฐ๋ณธ ๋ชจํ˜•์„ ์„ค์ •ํ•˜๊ณ  ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ตฌํ•œ Intraclass correlation ๊ฐ’์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.
Intraclass correlation = 8.61431/(8.61431+39.14831)=0.18036
์ฆ‰, ํ•™๊ต๊ฐ„ ๋ณ€๋Ÿ‰์˜ ์ฐจ์ด๊ฐ€ ์•ฝ 18%์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.


(2) Level 1 ์˜ ๋ชจํ˜• ๊ฒฐ์ •
(i) Level 1 ๋ณ€์ˆ˜ ์„ค์ •



                   [ํ‘œ 7] Random Coefficient Model of Mathematics Achievement


Fixed Effect                           Coefficient     se     t Ratio

School Mean Achievement ,       ฮณ 00    12.635       0.245    51.637

Minority Gap,     ฮณ 10                   -2.930      0.267    -10.956

Female,   ฮณ 20                           -1.128      0.185    -6.097

SES,   ฮณ 30                              1.891       0.121    15.622

Random Effect,                          Variance       df       ฯ‡2       p value

                                       Component

                                         8.729         99     924.381     .000
Mean Achievement,        u0 j

                                         2.429         99     125.395     .038
Minority Gap,     u1 j

                                         0.725         99     121.728     .060
Female,   u2 j

                                         0.428         99     113.667     0.149
SES,   u3 j

                                        35.264
Level-1 effect,    rij

Correlation Among School Effects        Minority     Female    SES        Mean




                                                                                   10
Achievement

Minority                                        -           .013          -.273      -.268

Female                                     .013                  -        -.069      -.123

SES                                        -.273            -.069           -        .361

Mean Achievement                           -.268            -.123         .361         -

Reliability of OLS Regression-Coefficient Estimations

Mean Achievement                         .908

Minority Gap                             .227

Female                                   .166

SES                                      .178



[ํ‘œ 7]์—์„œ ์ œ์‹œ๋œ ์ƒ๊ด€๊ด€๊ณ„ํ‘œ ๊ฒฐ๊ณผ, SES(- .361), MINORITY(-.268), FEMALE (-.123) ๋“ฑ์˜
์ˆœ์œผ๋กœ MATH ACHIEVEMENT์™€ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, SES๋ฅผ ์ œ์ผ
๋จผ์ € ๋ชจํ˜•์— ์ž…๋ ฅํ•˜๊ณ  ๊ทธ ๋‹ค์Œ์ด minority, female ์ˆœ์œผ๋กœ ๋ชจํ˜•์— ์ž…๋ ฅํ•˜์˜€๋‹ค.


(ii) Centering ๊ฒฐ์ •
Centering์€ ์ง‘๋‹จ ํ‰๊ท ์œผ๋กœ ๊ต์ •ํ•˜์˜€๋‹ค (group mean centering). ์ด๋Š”, ๊ฐ•์ƒ์ง„๊ณผ ์ •ํ˜œ๊ฒฝ
(2002)์ด โ€œ์—ฐ๊ตฌ์ž๊ฐ€ ๊ฐ€์žฅ ์•ˆ์ •์ ์ธ ์ ˆํŽธ ๋ชจ์ˆ˜                             ฮณ 00 ๋ฅผ       ์–ป๊ณ ์ž ํ•œ๋‹ค๋ฉด, Level 1 ์—์„œ ์˜ˆ์ธก๋ณ€์ˆ˜์˜
์ค‘์‹ฌ์ ์„ ๊ต์ •ํ•˜๊ณ  Level 2 ์˜ˆ์ธก๋ณ€์ˆ˜๋ฅผ ์ „์ฒดํ‰๊ท ์œผ๋กœ ๊ต์ •ํ•˜๋Š” ๋ฐฉ์‹์„ ๊ถŒ์žฅํ•œ๋‹คโ€๋Š” ์ฃผ์žฅ์—
๊ทผ๊ฑฐํ•˜์—ฌ ์„ค์ •ํ•˜์˜€๋‹ค 2. ๋˜ํ•œ, ์‹ค์ œ ๊ฐ ๊ฐœ์ธ๋“ค์˜ ์˜ˆ์ธก๋ณ€์ˆ˜๋“ค์€ ์ „์ฒด ์ง‘๋‹จ๋ณด๋‹ค๋Š” ๊ทธ ๊ฐœ์ธ์ด
์†ํ•œ ์ง‘๋‹จ์˜ ํŠน์„ฑ์— ๋” ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฏ€๋กœ ์ „์ฒดํ‰๊ท ์— ์˜ํ•œ ๊ต์ •๋ณด๋‹ค๋Š” ์ง‘๋‹จํ‰๊ท ์— ์˜ํ•œ
๊ต์ •์ด ๋” ์ ์ ˆํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜์–ด ์ด ์—ฐ๊ตฌ์—์„œ๋Š” level 1 ์ˆ˜์ค€์—์„œ๋Š” ์ง‘๋‹จ์ˆ˜์ค€์˜ ํ‰๊ท ์— ์˜ํ•œ
๊ต์ •์„ ์ ์šฉํ•˜์˜€๋‹ค.


(iii) OLS ๋ชจ์ˆ˜์น˜์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜ - Random, Non-Random, Fixed ๋ณ€์ˆ˜ ์„ ์ •
Level 1 ์ˆ˜์ค€์˜ ๋ณ€์ธ๋“ค์„ ์„ ์ •ํ•จ์— ์žˆ์–ด์„œ centering ์ด์™ธ์—๋„ ๊ฐ ๋ณ€์ˆ˜๋“ค์„ random, non-
random ๋˜๋Š” fixed๋กœ ๋ด์•ผํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ฒฐ์ •์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘
ํ•˜๋‚˜๊ฐ€ OLS ๋ชจ์ˆ˜์น˜์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜์ด๋‹ค. ๊ณ„์‚ฐ ๊ฒฐ๊ณผ, Mean Achievement (.908), Minority
Gap (.227), Female (.166), ๊ทธ๋ฆฌ๊ณ  SES (.178)์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค (ํ‘œ 7 ์ฐธ์กฐ). ๋ชจ๋“  ๋ณ€์ˆ˜๋“ค์˜
์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜๊ฐ€ .05 ๋ณด๋‹ค ํฌ๋ฏ€๋กœ random์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.




(3) Level 2 ์˜ ๋ชจํ˜• ๊ฒฐ์ •

2
 ๊ฐ•์ƒ์ง„, ์ •ํ˜œ๊ฒฝ (2002). ๋‹ค์ธต๋ชจํ˜•์—์„œ ์˜ˆ์ธก๋ณ€์ˆ˜ ์ฒ™๋„์˜ ์ค‘์‹ฌ์  ๊ต์ •๊ณผ ๋ชจ์ˆ˜์ถ”์ •์น˜์˜ ๋ณ€ํ™”,
๊ต์œกํ‰๊ฐ€ ์—ฐ๊ตฌ, ์ œ 15๊ถŒ ์ œ 2ํ˜ธ.



                                                                                                11
(i) Level 2 ๋ณ€์ˆ˜ ์„ค์ •
Level 2 ์˜ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด Level 2 ์ˆ˜์ค€์—์„œ์˜ ํƒ์ƒ‰์  ๋ถ„์„ (Exploratory Analysis)๋ฅผ
์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.


[ํ‘œ 8] Exploratory Analysis: estimated level-2 coefficients and their standard errors

 Level-1 Coefficient                Potential Level-2 Predictors
                             SIZE      SECTOR         PRACAD DISCLIM HIMINTY MEANSES
INTRCPT1,B0
Coefficient                 -0.000       2.564        7.503          -1.350       -2.400       5.375
Standard Error               0.000       0.402        0.643           0.203           0.463    0.334
t value                     -1.290      6.372        11.668          -6.647           -5.177   16.112


๋ถ„์„ ๊ฒฐ๊ณผ, ๊ฐ€์žฅ ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ˆ˜๊ฐ€ meanses (16.112), pracad (11.668), disclaim(-
6.647), sector(6.372), himinty(-5.177), size(-1.290) ์ˆœ์ด๋‹ค. size๋Š” ์˜ํ–ฅ์ด ๊ทนํžˆ ์ž‘์œผ๋ฏ€๋กœ
๋ณ€์ˆ˜์—์„œ ์ œ์™ธํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ , sector์™€ disclim์˜ ์ƒ๊ด€์ด -.712 ๋กœ์„œ ์ ˆ๋Œ€๊ฐ’ .70 ์„ ๋„˜์œผ๋ฏ€๋กœ
disclim์„ ์‚ญ์ œํ•ด์ฃผ๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค. ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์˜ ์ƒ๊ด€์€ .70 ์ดํ•˜์ด๋ฏ€๋กœ ๋ชจ๋‘ level
2 ์˜ ๋ชจํ˜•์— ํˆฌ์ž…ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ level 2 ์ˆ˜์ค€์— ํฌํ•จ๋˜๋Š” ๋ณ€์ˆ˜๋“ค์€ meanses, pracad,
sector, himinty์œผ๋กœ ๊ฒฐ์ •ํ•˜์˜€๋‹ค.


์œ„์™€ ๊ฐ™์€ level 1 ๊ณผ level 2 ์ˆ˜์ค€ ๊ฐ๊ฐ์˜ ๋ณ€์ธ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์—ฐ๊ตฌ๋ชจํ˜•์„
์„ค์ •ํ•˜์˜€๋‹ค.


Level 1

Yij = ฮฒ 0 j + ฮฒ1 j ( SES ) ij + ฮฒ 2 j ( MINORITY ) ij + ฮฒ 3 j ( FEMALE ) ij + rij .


Level 2

ฮฒ 0 j = ฮณ 00 + ฮณ 01 ( SECTOR ) ij + ฮณ 02 ( PRACAD) ij + ฮณ 03 ( HIMINTY ) ij + ฮณ 04 ( MEAN SES ) ij + u 0 j

ฮฒ 1 j = ฮณ 10 + ฮณ 11 ( SECTOR) ij + ฮณ 12 ( PRACAD) ij + ฮณ 13 ( HIMINTY ) ij + ฮณ 14 ( MEAN SES ) ij + u1 j

ฮฒ 2 j = ฮณ 20 + ฮณ 21 ( SECTOR) ij + ฮณ 22 ( PRACAD) ij + ฮณ 23 ( HIMINTY ) ij + ฮณ 24 ( MEAN SES ) ij + u 2 j

ฮฒ 3 j = ฮณ 30 + ฮณ 31 ( SECTOR) ij + ฮณ 32 ( PRACAD) ij + ฮณ 33 ( HIMINTY ) ij + ฮณ 34 ( MEAN SES ) ij + u 3 j

(4) Level 1 ์—์„œ์˜ specification issue




                                                                                                        12
[ํ‘œ 9] Confounding Effects of Minority
                                                                             With Fixed Effects of Minority
                                           Original Model Estimates
                                                                                             Added

  Fixed Effect                         Coefficient      Standard Error     Coefficient        Standard Error

  Model for school mean, B0j

  INTERCEPT, G00                               12.632              0.140            12.632                    0.141

  MEAN SES, G01                                 4.478              0.446             4.477                    0.446

  PREACAD, G02                                  3.485              0.726              3.49                    0.726



  Model for FEMALE slope, B1j

  INTERCEPT, G10                               -1.081              0.197            -1.132                    0.193

  MEAN SES, G11                                 0.035              0.674             0.053                    0.661

  PREACAD, G12                                  0.745              1.159             0.695                    1.137



  Model for SES slope, B2j

  INTERCEPT, G20                                2.179              0.119             1.944                    0.117

  MEAN SES, G21                                 1.374              0.381             1.316                    0.370

  PREACAD, G22                                 -2.689              0.612            -2.461                    0.594

  Model for Minority slopes, B3j

  INTERCEPT, G30                                                                    -2.892                    0.220



Condition 1: Minority๋ณ€์ˆ˜๋ฅผ ์ œ๊ฑฐํ•œ ๋ชจํ˜•๊ณผ Minority ๋ณ€์ˆ˜๋ฅผ fixed effect๋กœ ์ถ”๊ฐ€ํ•˜์—ฌ ๋ณธ ๋ชจํ˜•
๋‘๊ฐœ๋ฅผ ๋น„๊ตํ–ˆ์„ ๋•Œ, ํ›„์ž ๋ชจํ˜•์˜ coefficient๊ฐ’์ด ์ „์ž ๋ชจํ˜•์— ๋น„ํ•ด ์ค„์–ด๋“ฌ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.
์ด๋Š” Minority์™€ SES๊ฐ„ ์ƒ๊ด€์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, Minority๋ฅผ ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋œ๋‹ค.


                  [ํ‘œ 10] Random Coefficient Regression of Minority on SES
 Model

 Yij=B0j+Bij(SES)ij+rij

 where Yij=minority of student I in school j

 Boj=G00+U0j

 Bij=G01+U1j

 Fixed Effect                           Coefficient                Standard Error                 T-ratio

 Mean intercept, G00                                       0.275              0.024                  11.535

 Mean SES slope, G01                                      -0.080              0.010                  -8.450




                                                                                                                      13
Random Effect                    Variance Component              df                     Chi-square       P-value

  Intercept, U0j                                         0.088                    159         6518.94          0.000

  SES slope, U1j                                         0.009                    159         440.324          0.000



  Exploratory Regressions of B*ij on MEAN SES and PREACAD

                                       Coefficient                 Standard Error         Approximate t-to-Enter

  MEAN SES                                               0.021                   0.014             1.432

  PREACAD                                                0.033                   0.023             1.421



Condition 2: Random coefficient regression model ๊ฒฐ๊ณผ, Mean SES slope์ธ G01 ๋Š” ๋งค์šฐ
์œ ์˜๋ฏธํ•œ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค. (t= -8.450) ๊ทธ๋Ÿฌ๋ฏ€๋กœ Minority๋Š” ์›๋ž˜ ์กด์žฌํ•˜๋Š” SES์™€ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ 
์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋œ๋‹ค.


Condition 3: SES์™€ Minority๊ฐ„ ๊ด€๊ณ„๊ฐ€ ํ•™๊ต๋งˆ๋‹ค ์ฐจ์ด๊ฐ€ ์žˆ์Œ์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ [Var(U1j)=.009,
p=.000] ์ด ๊ธฐ์šธ๊ธฐ๋Š” MEAN SES๋‚˜ PREACAD์™€ ๊ฐ™์€ ๋‹ค๋ฅธ ํ•™๊ต์ˆ˜์ค€์˜ ๋ณ€์ˆ˜๋“ค๊ณผ ์œ ์˜๋ฏธํ•œ
๊ด€๊ณ„๋ฅผ       ๊ฐ€์ง์„ ๋ณด์ž„์œผ๋กœ์จ Minority๋Š” ๋ชจํ˜•์—์„œ ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋˜๋Š” ๊ฒƒ์„                                                          ๋‹ค์‹œ ํ•œ๋ฒˆ
๊ฒ€์ฆํ•˜์˜€๋‹ค.




(5) Level 2 ์—์„œ์˜ specification issue
                                   Original Model                                             Specification Test
                                                                 Mean SES missing
                                     Estimates                                                 (Fixed ses slope)

 Fixed Effect                   Coefficient         se       Coefficient            se       Coefficient        se

 Model for school mean, B0j

 INTERCEPT, G00                       12.630     0.133                  12.619    0.158            12.619      0.158

 SECTOR, G10                           0.627     0.366                   0.339    0.435                0.339   0.434

 PREACAD, G02                          3.171     0.890                   7.464    0.853                7.460   0.853

 HIMINTY, G03                         -1.125     0.338                  -2.339    0.359            -2.343      0.358

 MEAN SES, G04                         3.840     0.478



 For MINORITY slope, B1j

 INTERCEPT, G10                        2.467     0.692                  -3.066    0.250            -3.089      0.250

 SECTOR, G11                          -3.068     0.250                   2.476    0.693                2.479   0.692

 PREACAD, G12                         -0.784     1.577                  -0.914    1.577            -0.818      1.573

 HIMINTY, G13                          0.080     0.528                   0.111    0.528                0.037   0.527

 MEAN SES, G14                        -0.220     0.787                  -0.106    0.788            -0.207      0.782




                                                                                                                     14
For   FEMALE slope, B2j

    INTERCEPT, G20             -1.101   0.196   -1.099   0.197   -1.102   0.198

    SECTOR, G20                0.211    0.548   0.267    0.550    0.260   0.553

    PREACAD, G22               0.275    0.481   -0.456   1.333   -0.510   1.339

    HIMINTY, G23               0.374    1.334   0.511    0.481    0.544   0.484

    MEAN SES, G24              0.160    0.719   0.902    0.713    0.912   0.715



    For      SES slope, B3j

    INTERCEPT, G30             1.921    0.111   1.921    0.111    1.907   0.109

    SECTOR, G30               -0.634    0.275   -1.126   0.304   -1.157   0.298

    PREACAD, G32               -0.297   0.740   -0.086   0.740    0.482   0.604

    HIMINTY, G33              -1.112    0.304   -0.693   0.275   -0.870   0.241

    MEAN SES, G34              0.749    0.397   0.559    0.397



MEAN SES ๊ฐ€ ๋ถ€์ ์ ˆํ•˜๊ฒŒ ๋น ์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ, Original ๋ชจ๋ธ๊ณผ ses๋ฅผ missing ํ•œ ๊ฐ’์˜
sector, pracad, himinty ๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋ฏ€๋กœ mean ses๋ฅผ ๋บ์„ ๋•Œ misspecification์ด
๋ฐœ์ƒํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.
Ses slope๋ฅผ fix์‹œ์ผฐ์„ ๋•Œ๋Š” se๊ฐ€ ๊ฑฐ์˜ ์œ ์‚ฌํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๊ฒƒ์€ intercept์™€ slope ๊ฐ„
์„œ๋กœ ์ƒ๊ด€์ด 0 ์ด๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.


(6) Robust standard errors์˜ ์˜๋ฏธ ๋ฐ ์ง„๋‹จ ๊ฒฐ๊ณผ
์ผ๋ฐ˜ standard errors๋Š” ๊ฐ€์ •์ด ๋งŒ์กฑ๋˜์—ˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ˜๋ฉด Robust standard
errors๋Š” ๊ฐ€์ •์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๊ฒ€์ฆ์„ ํ•œ๋‹ค. ๋งŒ์•ฝ Robust standard error์™€ ๊ทธ๋ƒฅ standard
error ๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ํฌ๋ฉด ํ•ด๋‹น ๊ฐ€์ •์„ ์œ„๋ฐฐํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, ๋ฐ˜๋Œ€๋กœ ๊ทธ ๊ฐ’๋“ค์˜ ์ฐจ์ด๊ฐ€
ํฌ์ง€ ์•Š์œผ๋ฉด ๊ฐ€์ •์„ ์œ„๋ฐฐํ•˜์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.
์ด ์ž๋ฃŒ ๋ถ„์„ ๊ฒฐ๊ณผ ์ผ๋ฐ˜ standard error ๊ฒฐ๊ณผ์™€ Robust standard error ๊ฒฐ๊ณผ๊ฐ„ ์ฐจ์ด๋Š” ๊ฑฐ์˜
์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ๋ชจ๋“  ๋ถ„์„์€ ๊ฐ€์ •์„ ๋ชจ๋‘ ์œ„๋ฐฐํ•˜์ง€ ์•Š์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค 3.


(7) MLR versus MLF
์ผ๋ฐ˜์ ์œผ๋กœ, ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ (size <30), MLF๋ณด๋‹ค MLR์ด ๋” ํ˜„์‹ค์ ์ด์ง€๋งŒ ์‚ฌ๋ก€์ˆ˜๊ฐ€
ํด ๊ฒฝ์šฐ์—๋Š” ์ด ๋‘˜๊ฐ„ ์ฐจ์ด๊ฐ€ ์ž‘์•„์ง„๋‹ค. MLF์— ๋น„ํ•ด MLR๋Š” variance components์˜
์ถ”์ •์น˜๋Š” ๊ณ ์ • ํšจ๊ณผ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์กฐ์ •ํ•ด์ฃผ๋ฏ€๋กœ ์ด ์ž๋ฃŒ์—์„œ๋Š” MLR์„ ์ฑ„ํƒํ•˜์—ฌ
๋ถ„์„ํ•˜์˜€๋‹ค.

3
 ์ผ๋ฐ˜ standard error ๊ฒฐ๊ณผ์™€ robust standard error ๊ฒฐ๊ณผ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ
ํ‘œ๋กœ ์ œ์‹œํ•˜์ง€ ์•Š์Œ




                                                                             15
(8) ์—ฌ๋Ÿฌ ๋ชจํ˜•์˜ ๋‹จ๊ณ„๋ณ„ ์„ค๋ช… ๋ณ€๋Ÿ‰ (proportion reduction)


์ด ์ž๋ฃŒ์—์„œ๋Š” ํฌ๊ฒŒ 3 ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ ์ž๋ฃŒ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค.


1 ๋‹จ๊ณ„: Null model (unconditional model)
2 ๋‹จ๊ณ„: Random coefficient regression model
3 ๋‹จ๊ณ„: Intercepts and slopes as outcomes model


๊ฐ ๋ชจํ˜•์˜ ๋‹จ๊ณ„๋ณ„ ์„ค๋ช… ๋ณ€๋Ÿ‰์€ ์‹ 4.12 ๋ฅผ ํ†ตํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐํ•˜์˜€๋‹ค.


Null model ๏ƒ  Random coefficient regression model (level 1 ์ˆ˜์ค€)
Proportion of variance explained = (39.1413-35.29426)/ 39.1413=.098


Random coefficient regression model ๏ƒ  Intercepts and slopes as outcomes model (level
2 ์ˆ˜์ค€)
Proportion of variance explained = (8.6776 - 1.99538)/ 8.6776 =.77




                                                                                  16
HLM Question 2

1. ๋ฐ์ดํ„ฐ์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์„ค๋ช…


              Variable Name                                    Description
Repeated-Observations Model (Level 1)
TIME                                         0=Fall 2003, 1=Winter 2004, 2=Spring 2004
MATH ACHIEVEMENT                             Mathematics test scores (mean=122.64, sd=36.44)
Person-Level Model (Level 2)
ELL_ENG                                      0=Native, 1=Non Native


2. ๊ธฐ์ˆ ํ†ต๊ณ„
(1) Level 1
(i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰
Time 0,1, & 2 ๊ฐ ์‹œ์ ์˜ Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€
๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

                               [ํ‘œ 6] Level 1 ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„


                     time                                             Statistic    Std. Error

  Math achievement   0            Mean                                   109.60        2.941

                                  Variance                            1400.975

                                  Std. Deviation                         37.430

                                  Skewness                                 -.238         .191

                                  Kurtosis                                 .246          .379

                     1            Mean                                   124.56        2.804

                                  Variance                            1273.876

                                  Std. Deviation                         35.691

                                  Skewness                                 .004          .191

                                  Kurtosis                                 -.201         .379

                     2            Mean                                   131.52        2.851

                                  Variance                            1316.363

                                  Std. Deviation                         36.282

                                  Skewness                                 .105          .191

                                  Kurtosis                                 -.330         .379

[ํ‘œ 1]์„ ์‚ดํŽด๋ณด๋ฉด, ์ „๋ฐ˜์ ์œผ๋กœ Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค์˜ Math Achievement ์ ์ˆ˜์˜
๋ถ„ํฌ๊ฐ€ ์ •์ƒ๋ถ„ํฌ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.




                                                                                            17
(ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ



                       250                                                                                  Normal Q-Q Plot of fall cbm score, wrc


                                                                                                                          for time= 0
                       200                                                                       3
 fall cbm score, wrc




                                                                                                 2

                       150




                                                                              Expected Normal
                                                                                                 1



                       100                                                                       0



                                                                                                -1
                       50
                                                                 312
                                                                                                -2

                                   61
                        0
                             196 118                                                            -3

                               0                 1           2                                         0          50       100          150      200    250
                                               time                                                                      Observed Value




์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํ™•์ธ์„ ์œ„ํ•ด Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค box-
plot ๋„ํ‘œ์™€ ์ž”์ฐจ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 3 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์ด (case ๋ฒˆํ˜ธ 61, 118, 196)
๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์˜ ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ •์„
์œ„ํ•ด ์ด 3 ๊ฐœ์˜ ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค.


(โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ

                                                        [ํ‘œ 7] Level 1 ์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ


                                        time          Kolmogorov-Smirnov(a)                                                       Shapiro-Wilk

                                                Statistic          df                                Sig.           Statistic             df           Sig.

 Math                                   0
                                                      .033              162                          .200(*)              .990                 162        .282
 achievement

                                        1             .030              162                          .200(*)              .997                 162        .975

                                        2             .055              162                          .200(*)              .990                 162        .345

* This is a lower bound of the true significance.

a Lilliefors Significance Correction



[ํ‘œ 2] ๊ฒฐ๊ณผ, Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค Shapiro-Wilk์˜ Sig. ๊ฐ’์ด ๊ฐ๊ฐ .282, .975
๊ทธ๋ฆฌ๊ณ  .345 ๋กœ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์–ด ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.




                                                                                                                                                              18
(iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ



                                     [ํ‘œ 8] Level 1 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ


                                                          Levene

                                                          Statistic   df1           df2              Sig.

 Math achievement             Based on Mean                   1.499         2             477           .224

                              Based on Median                 1.270         2             477           .282

                              Based on Median and
                                                              1.270         2      463.719              .282
                              with adjusted df

                              Based on trimmed
                                                              1.394         2             477           .249
                              mean



๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์—ญ์‹œ [ํ‘œ 3] ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ง€์ง€๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.




(2) Level 2
(i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰
ELL_ENG ๊ฐ ์ง‘๋‹จ์˜ Aggregated Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„,
์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.



                                       [ํ‘œ 9] Level 2 ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„


                    ell_eng                                                     Statistic       Std. Error

 Aggregated Math    .00                  Mean                                   144.0600          5.36540

 achievement                             Variance                               1439.377

                                         Std. Deviation                         37.93913

                                         Skewness                                    -.716            .337

                                         Kurtosis                                    .143             .662

                    1.00                 Mean                                   113.0208          2.63800

                                         Variance                                779.412

                                         Std. Deviation                         27.91796

                                         Skewness                                    -.146            .228

                                         Kurtosis                                    -.172            .453




                                                                                                         19
(ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ



           210.00
                                                                                            Normal Q-Q Plot of mathach

           180.00                                                                                 for ell_eng= .00
                                                                            4


           150.00
 mathach




                                                                            2




                                                         Expected Normal
           120.00



                                                                            0
            90.00




                                                                                 104
            60.00                                                          -2



                      104
            30.00
                                                                           -4

                    .00                 1.00                                           50            100             150              200
                            ell_eng                                                                 Observed Value




์ง‘๋‹จ ์ˆ˜์ค€์—์„œ๋„ ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํ™•์ธ์„ ์œ„ํ•ด ell-english ๊ฐ
์ง‘๋‹จ๋งˆ๋‹ค(native vs. non-native)์˜ mean math acheivement์— ๋Œ€ํ•œ box-plot ๋„ํ‘œ์™€
์ž”์ฐจ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 1 ๊ฐœ์˜ outlier ๊ฐ’์ด (case ๋ฒˆํ˜ธ 104) ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ
๋ฐ์ดํ„ฐ์˜ ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ •์„ ์œ„ํ•ด ์ด 1 ๊ฐœ์˜ ๊ฐ’ ๋˜ํ•œ
์ œ๊ฑฐํ•˜๊ณ (level 1 ์—์„œ๋Š” ์ด 3 ๊ฐœ case ์ œ๊ฑฐ) ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค.


(โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ



                                       [ํ‘œ 10] Level 2 ์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ


                            ell_eng            Kolmogorov-Smirnov(a)                                              Shapiro-Wilk

                                           Statistic     df                     Sig.              Statistic                df                Sig.

 Aggregated Math            .00
                                                 .162              50              .002                    .953                 50              .043
 achievement

                            1.00                 .050    112                    .200(*)                    .996                 112             .983

* This is a lower bound of the true significance.

a Lilliefors Significance Correction



[ํ‘œ 5] ๊ฒฐ๊ณผ, ell-english ๊ฐ ์ง‘๋‹จ๋งˆ๋‹ค Shapiro-Wilk์˜ Sig. ๊ฐ’์ด ๊ฐ๊ฐ .043, .983 ์œผ๋กœ ๋‚˜ํƒ€๋‚˜
non-native์ง‘๋‹จ์˜             ๊ฒฝ์šฐ์—๋Š”        ์ •๊ทœ์„ฑ       ๊ฐ€์ •์ด          ์ง€์ง€๋œ                   ๋ฐ˜๋ฉด            native์ง‘๋‹จ์€                 ์ •๊ทœ์„ฑ              ๊ฐ€์ •์„
๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ์˜ ์ˆ˜๊ฐ€ ์–ด๋А ์ •๋„ ๋งŽ์€ ๊ฒฝ์šฐ,




                                                                                                                                              20
์ž”์ฐจ์— ๋Œ€ํ•œ ๋ถ„ํฌ๊ฐ€ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋”๋ผ๋„, ์ข…๋ชจ์–‘์˜ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ๋งŒ
                                                                                 4
ํ•œ๋‹ค๋ฉด ์ •๊ทœ์„ฑ ๊ฐ€์ •์ด ๋งŒ์กฑ๋˜์ง€ ๋ชปํ•˜๋”๋ผ๋„ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค                                              . ์‹ค์ œ,
๋นˆ๋„๋ถ„์„ ๊ฒฐ๊ณผ, ์ „๋ฐ˜์ ์œผ๋กœ ์ข…๋ชจ์–‘์˜ ํ˜•ํƒœ๋ฅผ ๋ ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฏ€๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์—
๋ฌธ์ œ๊ฐ€ ์—†๋‹ค๊ณ  ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๊ณ  ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.


(iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ



                               [ํ‘œ 11] Level 2 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ


                                            Levene

                                            Statistic   df1       df2         Sig.

      Aggregated Math   Based on Mean           1.035         1         160      .310

      achievement       Based on Median          .640         1         160      .425

                        Based on Median

                        and with adjusted        .640         1   143.971        .425

                        df

                        Based on trimmed
                                                 .879         1         160      .350
                        mean



    Level 1 ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ Level 2 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์—ญ์‹œ [ํ‘œ 6] ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ง€์ง€๋˜์—ˆ์Œ์„ ์•Œ
์ˆ˜ ์žˆ๋‹ค.


(3) Level 1 ๊ณผ Level 2 ๋ณ€์ˆ˜ ์š”์•ฝ
๊ธฐ์ดˆํ†ต๊ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, 6 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์„(level 1 ์ˆ˜์ค€) ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€์œผ๋ฉฐ
์ „๋ฐ˜์ ์œผ๋กœ Level 1, Level 2 ๋ชจ๋‘ ์„ ํ˜• ๋ชจํ˜• ๊ฐ€์„ค ๊ฒ€์ฆ์— ํ•„์š”ํ•œ ๊ฐ€์ •๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œํ‚ค๊ณ 
์žˆ์œผ๋ฏ€๋กœ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ดˆ๋กœ ํ•˜์—ฌ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (HLM) ๊ฒ€์ฆ์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค.




3. ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (Hierarchical Linear Model, HLM) โ€“ Individual Change Model
(1) Time ๋ณ€์ด์— ๋Œ€ํ•œ ์„ค์ • ๋ฐฉ๋ฒ• ์ œ์‹œํ•˜๊ธฐ
์ด ์ž๋ฃŒ์—์„œ๋Š” ๊ฐ ๊ฐœ์ธ์˜ ์ˆ˜ํ•™์„ฑ์  ์ ์ˆ˜๋ฅผ Fall 2003, Winter 2004, ๊ทธ๋ฆฌ๊ณ  Spring 2004 ๋…„
์„ธ ๋ฒˆ์— ๊ฑธ์ณ ์ธก์ •ํ•˜์˜€์œผ๋ฏ€๋กœ ์ฒซ๋ฒˆ์งธ ์ธก์ • ์‹œ์ ์ธ Fall 2003 ์„ ๊ธฐ์ค€์œผ๋กœ ์‚ผ์•„ Fall 2003 ์„
0, Winter 2004 ์„ 1, Spring 2004 ๋ฅผ 2 ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.



4
    ์ด๊ตฐํฌ (2000). ์‚ฌํšŒ๊ณผํ•™ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก , ๋ฒ•๋ฌธ์‚ฌ




                                                                                        21
(2) 1 ์ฐจ ํ•จ์ˆ˜ vs. 2 ์ฐจ ํ•จ์ˆ˜ ๊ฒฐ์ •
์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ ๊ฐœ์ธ๋ณ„ ๊ด€์ฐฐ ์‹œ์  ๊ฐฏ์ˆ˜๊ฐ€ ์ ์„ ๋•Œ๋Š” (์˜ˆ๋ฅผ ๋“ค๋ฉด, 3, 4 ๊ฐœ์˜ ์‹œ์ ) 1 ์ฐจ
                                             5
์„ ํ˜•ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋” ์œ ์šฉํ•˜๋‹ค                             . ๋˜ํ•œ, ์‹ค์ œ๋กœ ๊ฐœ์ธ ๋ณ€ํ™”(์„ฑ์žฅ) ๋ชจํ˜•์—์„œ๋Š”
[์ธก์ •์‹œ์  ์ด ๊ฐฏ์ˆ˜-2] ํ•จ์ˆ˜๊ฐ€ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•˜๋‹ค. ํ˜„์žฌ ์ž๋ฃŒ์—์„œ๋Š” ์ธก์ • ์‹œ์ ์ด 3 ๊ฐœ๋ฐ–์—
์—†์œผ๋ฏ€๋กœ 1 ์ฐจ ์„ ํ˜•ํ•จ์ˆ˜๋ฅผ ์ฑ„ํƒํ•˜๊ณ ์ž ํ•œ๋‹ค.


์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.


Level 1
Yti = ฯ€ 0i + ฯ€ 1i ati + eti


Level 2
                Q0
ฯ€ 0i = ฮฒ 00 + โˆ‘ ฮฒ 0 q X qi + r0i
               q =1
               Q1
ฯ€ 1i = ฮฒ10 + โˆ‘ ฮฒ1q X qi + r1i
               q =1



(3) A Random-Coefficient Regression Model โ€“ unconditional model
๊ธฐ์ดˆ ๋ชจํ˜•์€ ๊ฐ ๊ฐœ์ธ์˜ ์ˆ˜ํ•™์„ฑ์ ์€ ์‹œ๊ฐ„์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ(Level 1 ๋ชจํ˜•) ๊ฐœ์ธ๊ฐ„ ์ฐจ์ด๋Š”
์—†๋‹ค๊ณ  ์ƒ์ •ํ•˜๊ณ  ๋ชจํ˜•์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด ๋•Œ, Time์€ 0 ์ž์ฒด๋ฅผ ์ด๋ฏธ ์ดˆ๊ธฐ์‹œ์ ์ธ Fall
2003 ์œผ๋กœ ์„ค์ •์„ ํ•˜์˜€์œผ๋ฏ€๋กœ ์‹œ์  ๋ณ€์ˆ˜๋ฅผ centering๋ฅผ ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ Time
๋ณ€์ˆ˜๋Š” uncentered๋กœ ์„ค์ •ํ•˜์˜€๋‹ค.


Level 1
MATHACH ti = ฯ€ 0i + ฯ€ 1i (TIMEti ) + eti


Level 2
ฯ€ 0i = ฮฒ 00 + r0i
ฯ€ 1i = ฮฒ10 + r1i

HLM ๊ฒฐ๊ณผ๋Š” ์•„๋ž˜ [ํ‘œ 7]๊ณผ ๊ฐ™๋‹ค.




5
  Raudenbush & Bryk (2002). Ch. 6 Applications in the Study of Individual Change, Hierarchical
Linear Models: Applications and Data Analysis Methods, 2nd edition, Thousand Oaks, Sage
Publications.




                                                                                           22
[ํ‘œ 12] ์ˆ˜ํ•™์„ฑ์ ์˜ ์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜• โ€“ unconditional model


 Fixed Effect                      Coefficient                   Standard Error     T-ratio

 INTRCPT2,        ฮฒ 00                            112.489538            2.710107          41.507
 INTRCPT2,        ฮฒ10                              10.024796            0.616192          16.269



 Random Effect                      Variance Component                  df          Chi-square                  P-value

 INTRCPT1,        r0i                             1092.30226                  161   1994.36828                        0.000
 TIME slope,      r1i                                  3.54503                161    170.85796                        0.282
 level-1,   eti                                    114.32684



 Reliability of OLS Regression Coefficient Estimate

 Initial status   ฯ€ 0i                            0.90525105
 Growth rate      ฯ€ 1i                           0.030075284



(i) Mean Growth Trajectory
[ํ‘œ 7]์˜ ๊ณ ์ •ํšจ๊ณผ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ์ดˆ๊ธฐ ํ‰๊ท  ์ˆ˜ํ•™์„ฑ์ (B00)์ด 112.489538 ์ ์ด๋ฉฐ ๊ฐ ๊ฐœ์ธ์˜
์ˆ˜ํ•™์„ฑ์ ์€ ์‹œ์ ์ด 1 ์”ฉ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก(ํ•œ ํ•™๊ธฐ๋งˆ๋‹ค) 10.024796 ๋งŒํผ ์ฆ๊ฐ€ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.


(ii) Individual Variation in Growth Trajectories
๊ฐœ์ธ๊ฐ„ ๋ถ„์‚ฐ์€ ๋ฌด์„ ํšจ๊ณผ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ์ธ ์„ฑ์žฅ ๋ชจ์ˆ˜์ธ                                                         ฯ€ 0i   ,   ฯ€ 1i   ์˜ ๋ถ„์‚ฐ
์ถ”์ •์น˜๋Š” ๊ฐ๊ฐ 1092.30226, 3.54503 ์ด๋‹ค. 3 ์žฅ์—์„œ ์ œ์‹œ๋˜์–ด ์žˆ๋“ฏ์ด ๊ฐœ์ธ๋“ค์˜ ๋ณ€ํ™”(์„ฑ์žฅ)

๋ชจ์ˆ˜์˜ ๋ณ€ํ™”๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด                                     ฯ‡ 2 ๊ฒ€์ฆ์„      ํ•œ ๊ฒฐ๊ณผ, ์ ˆํŽธ์ธ r0i ๋Š” 1994.36828

(df= 161, p<.000)์ด๋‹ค. ์ด๋Š”, ์˜๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•˜๋ฏ€๋กœ ๊ฐ ๊ฐœ์ธ์€ ์ดˆ๊ธฐ ์‹œ์ (Time 0 ์‹œ์ )์—์„œ
๊ทธ๋“ค์˜ ์ˆ˜ํ•™์„ฑ์ ์€ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๋ฐ˜๋Œ€๋กœ ๊ฐœ์ธ์˜ ๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ 

์˜๊ฐ€์„ค์— (i.e. H0:             ฯ€ 1i   = 0) ๋Œ€ํ•œ         ฯ‡2   ๊ฐ’์€ 170.85796 ์œผ๋กœ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์–ด ๊ฐœ์ธ์˜

๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ ์ด ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค (df=161, p<.282). ์ด๋Š”, ์ดˆ๊ธฐ ์ˆ˜ํ•™
์„ฑ์ ์€ ๊ฐœ์ธ๊ฐ„ ์ฐจ์ด์— ์˜ํ•ด ๋” ์„ค๋ช…๋  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์ด ์žˆ๋Š” ๋ฐ˜๋ฉด, ๋ณ€ํ™” ๊ธฐ์šธ๊ธฐ๋Š” ์‹œ์ ์—
์˜ํ•ด ๋ชจ๋‘ ์„ค๋ช…์ด ๋˜์–ด์กŒ๋‹ค๋Š” ์˜๋ฏธ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.


(iii) Reliability of Initial Status and Change
์ดˆ๊ธฐ          ์ˆ˜ํ•™์„ฑ์ ๊ณผ            ๊ฐœ์ธ         ๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ ์—                 ๋Œ€ํ•œ     ์‹ ๋ขฐ๋„๋Š”          ์‹        6.7         ์„        ํ†ตํ•ด
๊ฐ๊ฐ .90525105 ๊ณผ .030075284 ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค (ํ‘œ 7 ์ฐธ์กฐ). ์ด๋Š” ์ด ์ž๋ฃŒ์—์„œ ์ดˆ๊ธฐ
์ˆ˜ํ•™์„ฑ์ ์—์„œ๋งŒ                  ๊ฐœ์ธ๊ฐ„       ์ฐจ์ด๊ฐ€           ์žˆ์Œ์„       ๋ณด์—ฌ์ฃผ๊ณ          ์žˆ์œผ๋ฏ€๋กœ         ์ดˆ๊ธฐ        ์ˆ˜ํ•™์„ฑ์ (์ ˆํŽธ)์€




                                                                                                                      23
๊ฐœ์ธ์ˆ˜์ค€์˜ ๋ณ€์ˆ˜์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์€ ๊ฒƒ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.


(iv) Correlation of Change with Initial Status
์„ ํ˜• ๊ฐœ์ธ ๋ณ€ํ™”(์„ฑ์žฅ) ๋ชจํ˜•์—์„œ๋Š” ์ด๋“ค ๋ณ€์ˆ˜๋“ค๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋Š” ์‹ 6.8 ์„ ํ†ตํ•ด ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.
์—ฌ๊ธฐ์„œ๋Š” ์‹ค์ œ ๋ณ€ํ™”์™€ ์‹ค์ œ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์  ์ƒํƒœ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ ์ถ”์ •์น˜๋Š” .282 ์ด๋‹ค. ์ด๋Š” ์ดˆ๊ธฐ
์‹œ์ ์— ๋ณด๋‹ค ๋†’์€ ์ˆ˜ํ•™์„ฑ์ ์„ ๊ฐ€์ง„ ๊ฐœ์ธ์ด ๋ณด๋‹ค ๋น ๋ฅธ ์†๋„๋กœ ์ˆ˜ํ•™์„ฑ์ ์ด ํ–ฅ์ƒ๋œ๋‹ค๋Š” ์˜๋ฏธ๋กœ
์•ž์„œ ์–ธ๊ธ‰ํ•œ ๊ฒƒ๊ณผ ๊ฐ™์ด                        ฯ€ 0i ๋Š”   ์‹œ์  ๋ณ€์ˆ˜์ธ Timeti ์— ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ๋‹ค์‹œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.


(4) An Intercepts- and Slopes-as-Outcomes Model
Level 1 ๋ชจํ˜•์€ unconditional model์—์„œ ์„ค์ •ํ•œ ์‹ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•˜๊ณ  ์—ฌ๊ธฐ์„œ๋Š” ell-
english๋ผ๋Š” level 2 ์ˆ˜์ค€์˜ ๋ณ€์ˆ˜ (๋”๋ฏธ๋ณ€์ˆ˜๋กœ 0 = native, 1=non-native๋ฅผ ์ง€์นญ)๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค.
์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ชจํ˜•์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด ๋•Œ, ELL-ENGLISH์—์„œ 0 ์€ non-
native์ž„์„ ๋‚˜ํƒ€๋‚ด๋ฏ€๋กœ x ์ ˆํŽธ์ด 0 ์ผ ๋•Œ์˜ ๊ฐ’์ด non-native์ธ ์‚ฌ๋žŒ๋“ค์˜ ์ˆ˜ํ•™์„ฑ์ ์„
๋‚˜ํƒ€๋‚ด๋ฏ€๋กœ centering์„ ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋ฏ€๋กœ uncenteredํ•˜์—ฌ ๋ชจํ˜•์— ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด,
ฯ€ 1i ์—๋Š”    ์•ž์„œ Time์— ์˜ํ•ด ๋ชจ๋‘ ์„ค๋ช…๋˜์—ˆ์œผ๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” slope์—๋Š” ๊ฐœ์ธ์ˆ˜์ค€ ๋ณ€์ˆ˜์ธ ELL-
ENGLISH๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์•˜๋‹ค.


Level 1
MATHACH ti = ฯ€ 0i + ฯ€ 1i (TIMEti ) + eti


Level 2
ฯ€ 0i = ฮฒ 00 + ฮฒ 01 ( ELL _ ENG ) i + r0i
ฯ€ 1i = ฮฒ10 + r1i


                        [ํ‘œ 13] ์ˆ˜ํ•™์„ฑ์ ์˜ ์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜• โ€“ ELL-ENGLISH ํšจ๊ณผ


 Fixed Effect                                Coefficient    Standard Error   T-ratio     Approx. d.f.   P-value

 Model for initial status,   ฯ€ 0i
 INTRCPT2,       ฮฒ 00                          133.927113         5.344405     25.059             160     0.000
 ELL_ENG,       ฮฒ 01                           -31.025648         5.920476       -5.24            160     0.000
 Model for growth rate,      ฯ€ 1i
 INTRCPT2,      ฮฒ10                             10.032149         0.613825     16.344             161     0.000



[ํ‘œ 8]์€ ๊ณ ์ •ํšจ๊ณผ ์ถ”์ •์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ ELL-ENGLISH์˜ t๊ฐ’์€ -.5.24 ๋กœ ์ดˆ๊ธฐ
์ˆ˜ํ•™์„ฑ์ ๊ณผ ๋น„๊ต์  ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ํ‰๊ท ์ ์œผ๋กœ ์˜์–ด๊ฐ€ ๋ชจ๊ตญ์–ด์ธ ์‚ฌ๋žŒ๋“ค๋ณด๋‹ค
์˜์–ด๊ฐ€ ๋ชจ๊ตญ์–ด๊ฐ€ ์•„๋‹Œ ์‚ฌ๋žŒ๋“ค์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์ด 31.03 ์ •๋„ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.




                                                                                                           24
[ํ‘œ 14] ELL_ENGLISH ๊ฒฐ๊ณผ์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ๊ณผ ์„ฑ์žฅ(๋ณ€ํ™”)๋ฅ ์˜ ์„ค๋ช… ๋ณ€๋Ÿ‰


                             Model        Initial Status Var.   Growth Rate Var.

Unconditional                               1092.30226              3.54503

Conditional on Ell-English                   892.98716              3.69333

Propotions of variance explained               18.25%               -4.18%



[ํ‘œ 9]๋Š” ์ด ๋ชจํ˜•์˜ ๋ฌด์„ ํ˜ธ๊ณผ์˜ ๋ถ„์‚ฐ ์ถ”์ •์น˜๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์ด๋ฅผ ๊ธฐ์ดˆ๋ชจํ˜•(unconditional
model)์—์„œ ๋‚˜ํƒ€๋‚œ ๋ถ„์‚ฐ ์ถ”์ •์น˜์™€ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•ด์ฃผ๊ณ  ์žˆ๋‹ค. ์‹ 4.24 ์— ์˜ํ•˜์—ฌ
์„ค๋ช…๋œ ๋ถ„์‚ฐ ๋น„์œจ (the proportion of variance explained)๋ฅผ ๊ตฌํ•˜๋ฉด ELL-ENGLISH๊ฐ€ ์ดˆ๊ธฐ
์ˆ˜ํ•™์„ฑ์ ์˜ ๋ถ„์‚ฐ ๋ชจ์ˆ˜์น˜์˜ 18.25%๋ฅผ ์„ค๋ช…ํ•ด์ฃผ๊ณ  ์žˆ๋‹ค.


[ํ‘œ 8]๊ณผ [ํ‘œ 9]๋ฅผ ์ข…ํ•ฉํ•ด๋ณผ ๋•Œ, ELL-ENGLISH ๋ณ€์ˆ˜๊ฐ€ ๊ฐœ์ธ๋“ค์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์— ์˜ํ–ฅ์„
๋ฏธ์น˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ELL-ENGLISH ๋ณ€์ธ์„ ํˆฌ์ž…ํ•˜๋Š” ๊ฒƒ์ด ๋ณด๋‹ค ํšจ๊ณผ์ ์ด์—ˆ๋‹ค.




                                                                              25

HLM final project

  • 1.
    HLM FINAL PROJECT By ์ž„ํ˜„์ˆ™, ์‹ ์ฒ ๊ท , ๊ณ ์€ํฌ Class: Multivariate Analyses Instructor: Park, Hyun Jung Semester: Fall Semester 2007 1
  • 2.
    HLM Question 1 1.๋ฐ์ดํ„ฐ์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์„ค๋ช… Variable Name Description Student level (Level 1) MATH ACHIEVEMENT A measure of mathematics achievement (mean=12.75, sd=6.88) A standardized scale constructed from variables measuring parental SES education, occupation, and income MINORITY An indicator for student ethnicity (1=minority, 0 =others) FEMALE An indicator for student gender (1=female, 0=male) School level (Level 2) SIZE School enrollment SECTOR 1= Catholic, 2=Public PRACAD Proportion of students in the academic track DISCLIM A scale measuring disciplinary climate HIMNTY 1=More than 40% minority enrollment, 0=less than 40% Mean of the SES values for the students in this school who are included in MEANSES the level-1 file 2. ๊ธฐ์ˆ ํ†ต๊ณ„ (1) Level 1 (i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ Minority์— ๋”ฐ๋ฅธ Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. [ํ‘œ 1] Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ minority Statistic Std. Error mathach 0 Mean 13.88239 .092219 Variance 44.316 Std. Deviation 6.657021 Skewness -.331 .034 Kurtosis -.789 .068 2
  • 3.
    1 Mean 9.75288 .147363 Variance 42.867 Std. Deviation 6.547308 Skewness .190 .055 Kurtosis -.825 .110 (ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ 3 5,321 2 1 0 -1 -2 4,599 5,009 4,899 -3 6,033 -4 ses minority female ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€, ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ box-plot ๋„ํ‘œ์™€ ์ž”์ฐจ ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 3 ๊ฐœ์˜ outlier๊ฐ’๋“ค (case ๋ฒˆํ˜ธ 4899, 5321, 6033)์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์‚ฌ๋ก€์ˆ˜ ๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ •์„ ์œ„ํ•ด ์ด 3 ๊ฐœ์˜ outlier ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค. (โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ [ํ‘œ 2] Minority์— ๋”ฐ๋ฅธ Math Acheivement์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ Kolmogorov-Smirnov(a) Shapiro-Wilk minority Statistic df Sig. Statistic df Sig. mathach 0 .058 5211 .000 1 .054 1974 .000 .980 1974 .000 a Lilliefors Significance Correction 3
  • 4.
    [ํ‘œ 3] Female์—๋”ฐ๋ฅธ Math Achievement์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ Kolmogorov-Smirnov(a) Shapiro-Wilk female Statistic df Sig. Statistic df Sig. mathach 0 .059 3390 .000 .965 3390 .000 1 .047 3795 .000 .980 3795 .000 a Lilliefors Significance Correction [ํ‘œ 2]์™€ [ํ‘œ 3] ๊ฒฐ๊ณผ ์ •๊ทœ์„ฑ ์˜๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋˜์–ด ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ์˜ ์ˆ˜๊ฐ€ ์–ด๋А ์ •๋„ ๋งŽ์€ ๊ฒฝ์šฐ, ์ž”์ฐจ์— ๋Œ€ํ•œ ๋ถ„ํฌ๊ฐ€ ์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋”๋ผ๋„, ์ข…๋ชจ์–‘์˜ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ๋งŒ ํ•œ๋‹ค๋ฉด ์ •๊ทœ์„ฑ ๊ฐ€์ •์ด 1 ๋งŒ์กฑ๋˜์ง€ ๋ชปํ•˜๋”๋ผ๋„ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค . ์‹ค์ œ, ๋นˆ๋„๋ถ„์„ ๊ฒฐ๊ณผ, ์ „๋ฐ˜์ ์œผ๋กœ ์ข…๋ชจ์–‘์˜ ํ˜•ํƒœ๋ฅผ ๋ ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฏ€๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์— ๋ฌธ์ œ๊ฐ€ ์—†๋‹ค๊ณ  ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๊ณ  ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. (iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ [ํ‘œ 4] Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ Levene Statistic df1 df2 Sig. mathach Based on Mean 1.034 1 7183 .309 Based on Median .765 1 7183 .382 Based on Median and with .765 1 7178.133 .382 adjusted df Based on trimmed mean .875 1 7183 .350 [ํ‘œ 4] ๊ฒฐ๊ณผ, Minority์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ์— ๋Œ€ํ•œ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์—ˆ์œผ๋ฏ€๋กœ ๋“ฑ๋ถ„์‚ฐ์„ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. 1 ์ด๊ตฐํฌ (2000). ์‚ฌํšŒ๊ณผํ•™ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก , ๋ฒ•๋ฌธ์‚ฌ 4
  • 5.
    [ํ‘œ 5] Female์—๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ Levene Statistic df1 df2 Sig. mathach Based on Mean 13.411 1 7183 .000 Based on Median 11.710 1 7183 .001 Based on Median and with 11.710 1 7150.795 .001 adjusted df Based on trimmed mean 12.547 1 7183 .000 ๋ฐ˜๋ฉด, Female์— ๋”ฐ๋ฅธ Math Achievement์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ์€ ์˜๊ฐ€์„ค์ด ๊ธฐ๊ฐ๋˜์–ด ๋“ฑ๋ถ„์‚ฐ์„ฑ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜์˜€์œผ๋ฏ€๋กœ ์ฐจํ›„ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜•์—์„œ Female ๋ณ€์ˆ˜์˜ ๋ถ„์‚ฐ์„ ์ด์งˆ์ ์œผ๋กœ ์„ค์ •ํ•˜๊ณ  ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. Var (rij ) = ฯƒ ij and log(ฯƒ ij ) = ฮฑ 0 + ฮฑ 1 ( FEMALEij ) 2 2 [ํ‘œ 6] Comparison of Homogeneous and Heterogeneous Level-1 Variance Models for Mathematics Achievement (i) Results for Homogeneous Variance Model Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 INTRCPT2, G00 12.629710 0.135239 93.388 155 0.000 SECTOR, G01 0.618126 0.372608 1.659 155 0.099 PRACAD, G02 3.184714 0.905697 3.516 155 0.001 HIMINTY, G03 -1.121324 0.343665 -3.263 155 0.002 MEANSES, G04 3.841524 0.486533 7.896 155 0.000 For MINORITY slope, B1 INTRCPT2, G10 -3.090744 0.255884 -12.079 155 0.000 SECTOR, G11 2.493258 0.709652 3.513 155 0.001 PRACAD, G12 -0.754729 1.616671 -0.467 155 0.641 HIMINTY, G13 0.167364 0.544001 0.308 155 0.759 MEANSES, G14 -0.258677 0.810272 -0.319 155 0.750 For FEMALE slope, B2 INTRCPT2, G20 -1.104894 0.201094 -5.494 155 0.000 SECTOR, G21 0.238812 0.560862 0.426 155 0.670 PRACAD, G22 0.295424 1.368173 0.216 155 0.830 5
  • 6.
    HIMINTY, G23 0.270330 0.492444 0.549 155 0.583 MEANSES, G24 0.193189 0.735303 0.263 155 0.793 For SES slope, B3 INTRCPT2, G30 1.906945 0.111868 17.046 155 0.000 SECTOR, G31 -1.070634 0.305571 -3.504 155 0.001 PRACAD, G32 -0.356812 0.743293 -0.480 155 0.631 HIMINTY, G33 -0.637234 0.276743 -2.303 155 0.023 MEANSES, G34 0.768704 0.398913 1.927 155 0.055 Random Effect Standard Variance df Chi-square P-value Deviation Component INTRCPT1, U0 1.44570 2.09004 95 294.93265 0.000 MINORITY slope, U1 1.12272 1.26050 95 114.12118 0.088 FEMALE slope, U2 0.98975 0.97961 95 119.88884 0.043 SES slope, U3 0.26254 0.06893 95 93.80676 >.500 level-1, R 5.93801 35.25995 (ii) Results for Heterogeneous Variance Model Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 INTRCPT2, G00 12.629541 0.132908 95.025 155 0.000 SECTOR, G01 0.626505 0.366152 1.711 155 0.089 PRACAD, G02 3.171302 0.890135 3.563 155 0.001 HIMINTY, G03 -1.125486 0.337690 -3.333 155 0.001 MEANSES, G04 3.839626 0.478031 8.032 155 0.000 For MINORITY slope, B1 INTRCPT2, G10 -3.067982 0.249698 -12.287 155 0.000 SECTOR, G11 2.467170 0.692427 3.563 155 0.001 PRACAD, G12 -0.784022 1.576908 -0.497 155 0.619 HIMINTY, G13 0.079555 0.528302 0.151 155 0.881 MEANSES, G14 -0.219824 0.787487 -0.279 155 0.780 For FEMALE slope, B2 INTRCPT2, G20 -1.100951 0.196065 -5.615 155 0.000 SECTOR, G21 0.211126 0.547923 0.385 155 0.700 6
  • 7.
    PRACAD, G22 0.373889 1.333972 0.280 155 0.780 HIMINTY, G23 0.275401 0.480888 0.573 155 0.567 MEANSES, G24 0.160079 0.718553 0.223 155 0.824 For SES slope, B3 INTRCPT2, G30 1.921190 0.111235 17.271 155 0.000 SECTOR, G31 -1.111562 0.303874 -3.658 155 0.001 PRACAD, G32 -0.297446 0.739653 -0.402 155 0.688 HIMINTY, G33 -0.633772 0.275030 -2.304 155 0.023 MEANSES, G34 0.749275 0.397081 1.887 155 0.061 Random Effect Standard Variance df Chi-square P-value Deviation Component INTRCPT1, U0 1.41086 1.99053 95 294.98419 0.000 MINORITY slope, U1 0.97644 0.95344 95 113.04221 0.100 FEMALE slope, U2 0.86431 0.74703 95 117.72762 0.057 SES slope, U3 0.23885 0.05705 95 94.34888 >.500 Standard Parameter Coefficient Error Z-ratio P-value INTRCPT1 ,alpha0 3.55983 0.017308 205.680 0.000 FEMALE ,alpha1 -0.17011 0.040660 -4.184 0.000 Number of Model Parameters Deviance 1. Homogeneous level-1 variance 31 46211.467967 2. Heterogeneous level-1 variance 32 46193.332169 Chi-square df P-value Model 1 versus Model 2 18.135798 1 0.000 (2) Level 2 (i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ ELL_ENG ๊ฐ ์ง‘๋‹จ์˜ Aggregated Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 7
  • 8.
    ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ N ํ‰๊ท  ํ‘œ์ค€ํŽธ์ฐจ ๋ถ„์‚ฐ ์™œ๋„ ์ฒจ๋„ ํ†ต๊ณ„๋Ÿ‰ ํ†ต๊ณ„๋Ÿ‰ ํ†ต๊ณ„๋Ÿ‰ ํ†ต๊ณ„๋Ÿ‰ ํ†ต๊ณ„๋Ÿ‰ ํ‘œ์ค€์˜ค์ฐจ ํ†ต๊ณ„๋Ÿ‰ ํ‘œ์ค€์˜ค์ฐจ size 160 1097.8250 629.50643 396278.347 .470 .192 -.555 .381 sector 160 .44 .498 .248 .254 .192 -1.960 .381 pracad 160 .5139 .25590 .065 .266 .192 -.803 .381 disclim 160 -.0151 .97698 .954 .239 .192 -.207 .381 himinty 160 .28 .448 .201 1.017 .192 -.977 .381 meanses 160 -.0002 .41397 .171 -.287 .192 -.394 .381 mathach 160 12.6245 3.11932 9.730 -.279 .192 .007 .381 ์œ ํšจ์ˆ˜ (๋ชฉ๋ก๋ณ„) 160 (ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ 1.00 0.50 0.00 -0.50 -1.00 -1.50 sector pracad himinty meanses ์ง‘๋‹จ ์ˆ˜์ค€์—์„œ๋„ ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€, ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ box-plot ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์•„ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. 8
  • 9.
    (โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ 0.30000 Standard Error of Predicted Value 0.25000 0.20000 0.15000 2.00000 4.00000 6.00000 8.00000 10.00000 12.00000 14.00000 16.00000 Mahalanobis Distance ์œ„ ์ œ์‹œ๋œ Mahalanobis ๋„ํ‘œ๋ฅผ ๋ณด๋ฉด, level 2 ์ˆ˜์ค€์—์„œ ์ „๋ฐ˜์ ์œผ๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑํ•˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์ง‘๋‹จ 2 ์ˆ˜์ค€์—์„œ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ์€ likelihood-ratio test์„ ํ†ตํ•ด ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ๋Œ€์•ˆ์ ์œผ๋กœ Levene test๋ฅผ ํ†ตํ•ด์„œ๋„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” likelihood-ratio test ์‚ฌ์šฉ๋ฒ•์„ ๋ชจ๋ฅด๋ฏ€๋กœ ๋Œ€์‹  Levene test๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹ค. SECTOR, HIMINORITY ๊ฐ๊ฐ์˜ Levene test ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚œ๋‹ค (PREACAD, MEAN SES๋Š” ์ง‘๋‹จ ์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์•„ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์‹ค์‹œ๊ฐ€ ์•ˆ๋˜์–ด ์ œ์‹œํ•˜์ง€ ์•Š์Œ). mathach Levene ํ†ต๊ณ„๋Ÿ‰ ์ž์œ ๋„1 ์ž์œ ๋„2 ์œ ์˜ํ™•๋ฅ  .250 1 158 .618 mathach Levene ํ†ต๊ณ„๋Ÿ‰ ์ž์œ ๋„1 ์ž์œ ๋„2 ์œ ์˜ํ™•๋ฅ  1.666 1 158 .199 ์ด๋ฅผ ํ†ตํ•ด, ์ง‘๋‹จ ์ˆ˜์ค€์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฐ€์ •๋„ ๋งŒ์กฑ๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (3) Level 1 ๊ณผ Level 2 ๋ณ€์ˆ˜ ์š”์•ฝ ๊ธฐ์ดˆํ†ต๊ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, 3 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์„(level 1 ์ˆ˜์ค€) ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€์œผ๋ฉฐ 9
  • 10.
    ์ „๋ฐ˜์ ์œผ๋กœ Level 1,Level 2 ๋ชจ๋‘ ์„ ํ˜• ๋ชจํ˜• ๊ฐ€์„ค ๊ฒ€์ฆ์— ํ•„์š”ํ•œ ๊ฐ€์ •๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œํ‚ค๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ดˆ๋กœ ํ•˜์—ฌ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (HLM) ๊ฒ€์ฆ์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค. 3. ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (Hierarchical Linear Model, HLM) (1) ๊ธฐ๋ณธ ๋ชจํ˜• (null model) ์„ค์ • ๋ฐ Intraclass correlation MATHACH ij = ฮฒ 0 j + rij ฮฒ 0 j = ฮณ 00 + ยต 0 j ์œ„์™€ ๊ฐ™์ด ๊ธฐ๋ณธ ๋ชจํ˜•์„ ์„ค์ •ํ•˜๊ณ  ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ตฌํ•œ Intraclass correlation ๊ฐ’์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Intraclass correlation = 8.61431/(8.61431+39.14831)=0.18036 ์ฆ‰, ํ•™๊ต๊ฐ„ ๋ณ€๋Ÿ‰์˜ ์ฐจ์ด๊ฐ€ ์•ฝ 18%์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (2) Level 1 ์˜ ๋ชจํ˜• ๊ฒฐ์ • (i) Level 1 ๋ณ€์ˆ˜ ์„ค์ • [ํ‘œ 7] Random Coefficient Model of Mathematics Achievement Fixed Effect Coefficient se t Ratio School Mean Achievement , ฮณ 00 12.635 0.245 51.637 Minority Gap, ฮณ 10 -2.930 0.267 -10.956 Female, ฮณ 20 -1.128 0.185 -6.097 SES, ฮณ 30 1.891 0.121 15.622 Random Effect, Variance df ฯ‡2 p value Component 8.729 99 924.381 .000 Mean Achievement, u0 j 2.429 99 125.395 .038 Minority Gap, u1 j 0.725 99 121.728 .060 Female, u2 j 0.428 99 113.667 0.149 SES, u3 j 35.264 Level-1 effect, rij Correlation Among School Effects Minority Female SES Mean 10
  • 11.
    Achievement Minority - .013 -.273 -.268 Female .013 - -.069 -.123 SES -.273 -.069 - .361 Mean Achievement -.268 -.123 .361 - Reliability of OLS Regression-Coefficient Estimations Mean Achievement .908 Minority Gap .227 Female .166 SES .178 [ํ‘œ 7]์—์„œ ์ œ์‹œ๋œ ์ƒ๊ด€๊ด€๊ณ„ํ‘œ ๊ฒฐ๊ณผ, SES(- .361), MINORITY(-.268), FEMALE (-.123) ๋“ฑ์˜ ์ˆœ์œผ๋กœ MATH ACHIEVEMENT์™€ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, SES๋ฅผ ์ œ์ผ ๋จผ์ € ๋ชจํ˜•์— ์ž…๋ ฅํ•˜๊ณ  ๊ทธ ๋‹ค์Œ์ด minority, female ์ˆœ์œผ๋กœ ๋ชจํ˜•์— ์ž…๋ ฅํ•˜์˜€๋‹ค. (ii) Centering ๊ฒฐ์ • Centering์€ ์ง‘๋‹จ ํ‰๊ท ์œผ๋กœ ๊ต์ •ํ•˜์˜€๋‹ค (group mean centering). ์ด๋Š”, ๊ฐ•์ƒ์ง„๊ณผ ์ •ํ˜œ๊ฒฝ (2002)์ด โ€œ์—ฐ๊ตฌ์ž๊ฐ€ ๊ฐ€์žฅ ์•ˆ์ •์ ์ธ ์ ˆํŽธ ๋ชจ์ˆ˜ ฮณ 00 ๋ฅผ ์–ป๊ณ ์ž ํ•œ๋‹ค๋ฉด, Level 1 ์—์„œ ์˜ˆ์ธก๋ณ€์ˆ˜์˜ ์ค‘์‹ฌ์ ์„ ๊ต์ •ํ•˜๊ณ  Level 2 ์˜ˆ์ธก๋ณ€์ˆ˜๋ฅผ ์ „์ฒดํ‰๊ท ์œผ๋กœ ๊ต์ •ํ•˜๋Š” ๋ฐฉ์‹์„ ๊ถŒ์žฅํ•œ๋‹คโ€๋Š” ์ฃผ์žฅ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์„ค์ •ํ•˜์˜€๋‹ค 2. ๋˜ํ•œ, ์‹ค์ œ ๊ฐ ๊ฐœ์ธ๋“ค์˜ ์˜ˆ์ธก๋ณ€์ˆ˜๋“ค์€ ์ „์ฒด ์ง‘๋‹จ๋ณด๋‹ค๋Š” ๊ทธ ๊ฐœ์ธ์ด ์†ํ•œ ์ง‘๋‹จ์˜ ํŠน์„ฑ์— ๋” ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฏ€๋กœ ์ „์ฒดํ‰๊ท ์— ์˜ํ•œ ๊ต์ •๋ณด๋‹ค๋Š” ์ง‘๋‹จํ‰๊ท ์— ์˜ํ•œ ๊ต์ •์ด ๋” ์ ์ ˆํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜์–ด ์ด ์—ฐ๊ตฌ์—์„œ๋Š” level 1 ์ˆ˜์ค€์—์„œ๋Š” ์ง‘๋‹จ์ˆ˜์ค€์˜ ํ‰๊ท ์— ์˜ํ•œ ๊ต์ •์„ ์ ์šฉํ•˜์˜€๋‹ค. (iii) OLS ๋ชจ์ˆ˜์น˜์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜ - Random, Non-Random, Fixed ๋ณ€์ˆ˜ ์„ ์ • Level 1 ์ˆ˜์ค€์˜ ๋ณ€์ธ๋“ค์„ ์„ ์ •ํ•จ์— ์žˆ์–ด์„œ centering ์ด์™ธ์—๋„ ๊ฐ ๋ณ€์ˆ˜๋“ค์„ random, non- random ๋˜๋Š” fixed๋กœ ๋ด์•ผํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ฒฐ์ •์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๊ฐ€ OLS ๋ชจ์ˆ˜์น˜์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜์ด๋‹ค. ๊ณ„์‚ฐ ๊ฒฐ๊ณผ, Mean Achievement (.908), Minority Gap (.227), Female (.166), ๊ทธ๋ฆฌ๊ณ  SES (.178)์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค (ํ‘œ 7 ์ฐธ์กฐ). ๋ชจ๋“  ๋ณ€์ˆ˜๋“ค์˜ ์‹ ๋ขฐ๋„ ๊ณ„์ˆ˜๊ฐ€ .05 ๋ณด๋‹ค ํฌ๋ฏ€๋กœ random์œผ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. (3) Level 2 ์˜ ๋ชจํ˜• ๊ฒฐ์ • 2 ๊ฐ•์ƒ์ง„, ์ •ํ˜œ๊ฒฝ (2002). ๋‹ค์ธต๋ชจํ˜•์—์„œ ์˜ˆ์ธก๋ณ€์ˆ˜ ์ฒ™๋„์˜ ์ค‘์‹ฌ์  ๊ต์ •๊ณผ ๋ชจ์ˆ˜์ถ”์ •์น˜์˜ ๋ณ€ํ™”, ๊ต์œกํ‰๊ฐ€ ์—ฐ๊ตฌ, ์ œ 15๊ถŒ ์ œ 2ํ˜ธ. 11
  • 12.
    (i) Level 2๋ณ€์ˆ˜ ์„ค์ • Level 2 ์˜ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด Level 2 ์ˆ˜์ค€์—์„œ์˜ ํƒ์ƒ‰์  ๋ถ„์„ (Exploratory Analysis)๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. [ํ‘œ 8] Exploratory Analysis: estimated level-2 coefficients and their standard errors Level-1 Coefficient Potential Level-2 Predictors SIZE SECTOR PRACAD DISCLIM HIMINTY MEANSES INTRCPT1,B0 Coefficient -0.000 2.564 7.503 -1.350 -2.400 5.375 Standard Error 0.000 0.402 0.643 0.203 0.463 0.334 t value -1.290 6.372 11.668 -6.647 -5.177 16.112 ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ฐ€์žฅ ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ˆ˜๊ฐ€ meanses (16.112), pracad (11.668), disclaim(- 6.647), sector(6.372), himinty(-5.177), size(-1.290) ์ˆœ์ด๋‹ค. size๋Š” ์˜ํ–ฅ์ด ๊ทนํžˆ ์ž‘์œผ๋ฏ€๋กœ ๋ณ€์ˆ˜์—์„œ ์ œ์™ธํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ , sector์™€ disclim์˜ ์ƒ๊ด€์ด -.712 ๋กœ์„œ ์ ˆ๋Œ€๊ฐ’ .70 ์„ ๋„˜์œผ๋ฏ€๋กœ disclim์„ ์‚ญ์ œํ•ด์ฃผ๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค. ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์˜ ์ƒ๊ด€์€ .70 ์ดํ•˜์ด๋ฏ€๋กœ ๋ชจ๋‘ level 2 ์˜ ๋ชจํ˜•์— ํˆฌ์ž…ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ level 2 ์ˆ˜์ค€์— ํฌํ•จ๋˜๋Š” ๋ณ€์ˆ˜๋“ค์€ meanses, pracad, sector, himinty์œผ๋กœ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์œ„์™€ ๊ฐ™์€ level 1 ๊ณผ level 2 ์ˆ˜์ค€ ๊ฐ๊ฐ์˜ ๋ณ€์ธ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์—ฐ๊ตฌ๋ชจํ˜•์„ ์„ค์ •ํ•˜์˜€๋‹ค. Level 1 Yij = ฮฒ 0 j + ฮฒ1 j ( SES ) ij + ฮฒ 2 j ( MINORITY ) ij + ฮฒ 3 j ( FEMALE ) ij + rij . Level 2 ฮฒ 0 j = ฮณ 00 + ฮณ 01 ( SECTOR ) ij + ฮณ 02 ( PRACAD) ij + ฮณ 03 ( HIMINTY ) ij + ฮณ 04 ( MEAN SES ) ij + u 0 j ฮฒ 1 j = ฮณ 10 + ฮณ 11 ( SECTOR) ij + ฮณ 12 ( PRACAD) ij + ฮณ 13 ( HIMINTY ) ij + ฮณ 14 ( MEAN SES ) ij + u1 j ฮฒ 2 j = ฮณ 20 + ฮณ 21 ( SECTOR) ij + ฮณ 22 ( PRACAD) ij + ฮณ 23 ( HIMINTY ) ij + ฮณ 24 ( MEAN SES ) ij + u 2 j ฮฒ 3 j = ฮณ 30 + ฮณ 31 ( SECTOR) ij + ฮณ 32 ( PRACAD) ij + ฮณ 33 ( HIMINTY ) ij + ฮณ 34 ( MEAN SES ) ij + u 3 j (4) Level 1 ์—์„œ์˜ specification issue 12
  • 13.
    [ํ‘œ 9] ConfoundingEffects of Minority With Fixed Effects of Minority Original Model Estimates Added Fixed Effect Coefficient Standard Error Coefficient Standard Error Model for school mean, B0j INTERCEPT, G00 12.632 0.140 12.632 0.141 MEAN SES, G01 4.478 0.446 4.477 0.446 PREACAD, G02 3.485 0.726 3.49 0.726 Model for FEMALE slope, B1j INTERCEPT, G10 -1.081 0.197 -1.132 0.193 MEAN SES, G11 0.035 0.674 0.053 0.661 PREACAD, G12 0.745 1.159 0.695 1.137 Model for SES slope, B2j INTERCEPT, G20 2.179 0.119 1.944 0.117 MEAN SES, G21 1.374 0.381 1.316 0.370 PREACAD, G22 -2.689 0.612 -2.461 0.594 Model for Minority slopes, B3j INTERCEPT, G30 -2.892 0.220 Condition 1: Minority๋ณ€์ˆ˜๋ฅผ ์ œ๊ฑฐํ•œ ๋ชจํ˜•๊ณผ Minority ๋ณ€์ˆ˜๋ฅผ fixed effect๋กœ ์ถ”๊ฐ€ํ•˜์—ฌ ๋ณธ ๋ชจํ˜• ๋‘๊ฐœ๋ฅผ ๋น„๊ตํ–ˆ์„ ๋•Œ, ํ›„์ž ๋ชจํ˜•์˜ coefficient๊ฐ’์ด ์ „์ž ๋ชจํ˜•์— ๋น„ํ•ด ์ค„์–ด๋“ฌ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” Minority์™€ SES๊ฐ„ ์ƒ๊ด€์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ, Minority๋ฅผ ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋œ๋‹ค. [ํ‘œ 10] Random Coefficient Regression of Minority on SES Model Yij=B0j+Bij(SES)ij+rij where Yij=minority of student I in school j Boj=G00+U0j Bij=G01+U1j Fixed Effect Coefficient Standard Error T-ratio Mean intercept, G00 0.275 0.024 11.535 Mean SES slope, G01 -0.080 0.010 -8.450 13
  • 14.
    Random Effect Variance Component df Chi-square P-value Intercept, U0j 0.088 159 6518.94 0.000 SES slope, U1j 0.009 159 440.324 0.000 Exploratory Regressions of B*ij on MEAN SES and PREACAD Coefficient Standard Error Approximate t-to-Enter MEAN SES 0.021 0.014 1.432 PREACAD 0.033 0.023 1.421 Condition 2: Random coefficient regression model ๊ฒฐ๊ณผ, Mean SES slope์ธ G01 ๋Š” ๋งค์šฐ ์œ ์˜๋ฏธํ•œ ๊ฐ’์„ ๊ฐ€์ง„๋‹ค. (t= -8.450) ๊ทธ๋Ÿฌ๋ฏ€๋กœ Minority๋Š” ์›๋ž˜ ์กด์žฌํ•˜๋Š” SES์™€ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋œ๋‹ค. Condition 3: SES์™€ Minority๊ฐ„ ๊ด€๊ณ„๊ฐ€ ํ•™๊ต๋งˆ๋‹ค ์ฐจ์ด๊ฐ€ ์žˆ์Œ์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ [Var(U1j)=.009, p=.000] ์ด ๊ธฐ์šธ๊ธฐ๋Š” MEAN SES๋‚˜ PREACAD์™€ ๊ฐ™์€ ๋‹ค๋ฅธ ํ•™๊ต์ˆ˜์ค€์˜ ๋ณ€์ˆ˜๋“ค๊ณผ ์œ ์˜๋ฏธํ•œ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง์„ ๋ณด์ž„์œผ๋กœ์จ Minority๋Š” ๋ชจํ˜•์—์„œ ์ œ๊ฑฐํ•ด์„œ๋Š” ์•ˆ๋˜๋Š” ๊ฒƒ์„ ๋‹ค์‹œ ํ•œ๋ฒˆ ๊ฒ€์ฆํ•˜์˜€๋‹ค. (5) Level 2 ์—์„œ์˜ specification issue Original Model Specification Test Mean SES missing Estimates (Fixed ses slope) Fixed Effect Coefficient se Coefficient se Coefficient se Model for school mean, B0j INTERCEPT, G00 12.630 0.133 12.619 0.158 12.619 0.158 SECTOR, G10 0.627 0.366 0.339 0.435 0.339 0.434 PREACAD, G02 3.171 0.890 7.464 0.853 7.460 0.853 HIMINTY, G03 -1.125 0.338 -2.339 0.359 -2.343 0.358 MEAN SES, G04 3.840 0.478 For MINORITY slope, B1j INTERCEPT, G10 2.467 0.692 -3.066 0.250 -3.089 0.250 SECTOR, G11 -3.068 0.250 2.476 0.693 2.479 0.692 PREACAD, G12 -0.784 1.577 -0.914 1.577 -0.818 1.573 HIMINTY, G13 0.080 0.528 0.111 0.528 0.037 0.527 MEAN SES, G14 -0.220 0.787 -0.106 0.788 -0.207 0.782 14
  • 15.
    For FEMALE slope, B2j INTERCEPT, G20 -1.101 0.196 -1.099 0.197 -1.102 0.198 SECTOR, G20 0.211 0.548 0.267 0.550 0.260 0.553 PREACAD, G22 0.275 0.481 -0.456 1.333 -0.510 1.339 HIMINTY, G23 0.374 1.334 0.511 0.481 0.544 0.484 MEAN SES, G24 0.160 0.719 0.902 0.713 0.912 0.715 For SES slope, B3j INTERCEPT, G30 1.921 0.111 1.921 0.111 1.907 0.109 SECTOR, G30 -0.634 0.275 -1.126 0.304 -1.157 0.298 PREACAD, G32 -0.297 0.740 -0.086 0.740 0.482 0.604 HIMINTY, G33 -1.112 0.304 -0.693 0.275 -0.870 0.241 MEAN SES, G34 0.749 0.397 0.559 0.397 MEAN SES ๊ฐ€ ๋ถ€์ ์ ˆํ•˜๊ฒŒ ๋น ์กŒ๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ, Original ๋ชจ๋ธ๊ณผ ses๋ฅผ missing ํ•œ ๊ฐ’์˜ sector, pracad, himinty ๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋ฏ€๋กœ mean ses๋ฅผ ๋บ์„ ๋•Œ misspecification์ด ๋ฐœ์ƒํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. Ses slope๋ฅผ fix์‹œ์ผฐ์„ ๋•Œ๋Š” se๊ฐ€ ๊ฑฐ์˜ ์œ ์‚ฌํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๊ฒƒ์€ intercept์™€ slope ๊ฐ„ ์„œ๋กœ ์ƒ๊ด€์ด 0 ์ด๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. (6) Robust standard errors์˜ ์˜๋ฏธ ๋ฐ ์ง„๋‹จ ๊ฒฐ๊ณผ ์ผ๋ฐ˜ standard errors๋Š” ๊ฐ€์ •์ด ๋งŒ์กฑ๋˜์—ˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋ฐ˜๋ฉด Robust standard errors๋Š” ๊ฐ€์ •์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๊ฒ€์ฆ์„ ํ•œ๋‹ค. ๋งŒ์•ฝ Robust standard error์™€ ๊ทธ๋ƒฅ standard error ๊ฐ’์˜ ์ฐจ์ด๊ฐ€ ํฌ๋ฉด ํ•ด๋‹น ๊ฐ€์ •์„ ์œ„๋ฐฐํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, ๋ฐ˜๋Œ€๋กœ ๊ทธ ๊ฐ’๋“ค์˜ ์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š์œผ๋ฉด ๊ฐ€์ •์„ ์œ„๋ฐฐํ•˜์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด ์ž๋ฃŒ ๋ถ„์„ ๊ฒฐ๊ณผ ์ผ๋ฐ˜ standard error ๊ฒฐ๊ณผ์™€ Robust standard error ๊ฒฐ๊ณผ๊ฐ„ ์ฐจ์ด๋Š” ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ๋ชจ๋“  ๋ถ„์„์€ ๊ฐ€์ •์„ ๋ชจ๋‘ ์œ„๋ฐฐํ•˜์ง€ ์•Š์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค 3. (7) MLR versus MLF ์ผ๋ฐ˜์ ์œผ๋กœ, ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ (size <30), MLF๋ณด๋‹ค MLR์ด ๋” ํ˜„์‹ค์ ์ด์ง€๋งŒ ์‚ฌ๋ก€์ˆ˜๊ฐ€ ํด ๊ฒฝ์šฐ์—๋Š” ์ด ๋‘˜๊ฐ„ ์ฐจ์ด๊ฐ€ ์ž‘์•„์ง„๋‹ค. MLF์— ๋น„ํ•ด MLR๋Š” variance components์˜ ์ถ”์ •์น˜๋Š” ๊ณ ์ • ํšจ๊ณผ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์กฐ์ •ํ•ด์ฃผ๋ฏ€๋กœ ์ด ์ž๋ฃŒ์—์„œ๋Š” MLR์„ ์ฑ„ํƒํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. 3 ์ผ๋ฐ˜ standard error ๊ฒฐ๊ณผ์™€ robust standard error ๊ฒฐ๊ณผ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ฑฐ์˜ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ ํ‘œ๋กœ ์ œ์‹œํ•˜์ง€ ์•Š์Œ 15
  • 16.
    (8) ์—ฌ๋Ÿฌ ๋ชจํ˜•์˜๋‹จ๊ณ„๋ณ„ ์„ค๋ช… ๋ณ€๋Ÿ‰ (proportion reduction) ์ด ์ž๋ฃŒ์—์„œ๋Š” ํฌ๊ฒŒ 3 ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ ์ž๋ฃŒ๋ฅผ ๊ฒ€์ฆํ•˜์˜€๋‹ค. 1 ๋‹จ๊ณ„: Null model (unconditional model) 2 ๋‹จ๊ณ„: Random coefficient regression model 3 ๋‹จ๊ณ„: Intercepts and slopes as outcomes model ๊ฐ ๋ชจํ˜•์˜ ๋‹จ๊ณ„๋ณ„ ์„ค๋ช… ๋ณ€๋Ÿ‰์€ ์‹ 4.12 ๋ฅผ ํ†ตํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐํ•˜์˜€๋‹ค. Null model ๏ƒ  Random coefficient regression model (level 1 ์ˆ˜์ค€) Proportion of variance explained = (39.1413-35.29426)/ 39.1413=.098 Random coefficient regression model ๏ƒ  Intercepts and slopes as outcomes model (level 2 ์ˆ˜์ค€) Proportion of variance explained = (8.6776 - 1.99538)/ 8.6776 =.77 16
  • 17.
    HLM Question 2 1.๋ฐ์ดํ„ฐ์— ์‚ฌ์šฉ๋œ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์„ค๋ช… Variable Name Description Repeated-Observations Model (Level 1) TIME 0=Fall 2003, 1=Winter 2004, 2=Spring 2004 MATH ACHIEVEMENT Mathematics test scores (mean=122.64, sd=36.44) Person-Level Model (Level 2) ELL_ENG 0=Native, 1=Non Native 2. ๊ธฐ์ˆ ํ†ต๊ณ„ (1) Level 1 (i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ Time 0,1, & 2 ๊ฐ ์‹œ์ ์˜ Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. [ํ‘œ 6] Level 1 ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ time Statistic Std. Error Math achievement 0 Mean 109.60 2.941 Variance 1400.975 Std. Deviation 37.430 Skewness -.238 .191 Kurtosis .246 .379 1 Mean 124.56 2.804 Variance 1273.876 Std. Deviation 35.691 Skewness .004 .191 Kurtosis -.201 .379 2 Mean 131.52 2.851 Variance 1316.363 Std. Deviation 36.282 Skewness .105 .191 Kurtosis -.330 .379 [ํ‘œ 1]์„ ์‚ดํŽด๋ณด๋ฉด, ์ „๋ฐ˜์ ์œผ๋กœ Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค์˜ Math Achievement ์ ์ˆ˜์˜ ๋ถ„ํฌ๊ฐ€ ์ •์ƒ๋ถ„ํฌ๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. 17
  • 18.
    (ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ 250 Normal Q-Q Plot of fall cbm score, wrc for time= 0 200 3 fall cbm score, wrc 2 150 Expected Normal 1 100 0 -1 50 312 -2 61 0 196 118 -3 0 1 2 0 50 100 150 200 250 time Observed Value ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํ™•์ธ์„ ์œ„ํ•ด Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค box- plot ๋„ํ‘œ์™€ ์ž”์ฐจ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 3 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์ด (case ๋ฒˆํ˜ธ 61, 118, 196) ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์˜ ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ •์„ ์œ„ํ•ด ์ด 3 ๊ฐœ์˜ ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค. (โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ [ํ‘œ 7] Level 1 ์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ time Kolmogorov-Smirnov(a) Shapiro-Wilk Statistic df Sig. Statistic df Sig. Math 0 .033 162 .200(*) .990 162 .282 achievement 1 .030 162 .200(*) .997 162 .975 2 .055 162 .200(*) .990 162 .345 * This is a lower bound of the true significance. a Lilliefors Significance Correction [ํ‘œ 2] ๊ฒฐ๊ณผ, Time 0, 1, & 2 ๊ฐ ์‹œ์ ๋งˆ๋‹ค Shapiro-Wilk์˜ Sig. ๊ฐ’์ด ๊ฐ๊ฐ .282, .975 ๊ทธ๋ฆฌ๊ณ  .345 ๋กœ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์–ด ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 18
  • 19.
    (iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ [ํ‘œ 8] Level 1 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ Levene Statistic df1 df2 Sig. Math achievement Based on Mean 1.499 2 477 .224 Based on Median 1.270 2 477 .282 Based on Median and 1.270 2 463.719 .282 with adjusted df Based on trimmed 1.394 2 477 .249 mean ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์—ญ์‹œ [ํ‘œ 3] ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ง€์ง€๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (2) Level 2 (i) ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ ELL_ENG ๊ฐ ์ง‘๋‹จ์˜ Aggregated Math achievement์˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (ํ‰๊ท , ํ‘œ์ค€ํŽธ์ฐจ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. [ํ‘œ 9] Level 2 ์˜ ๊ธฐ์ˆ ํ†ต๊ณ„ ell_eng Statistic Std. Error Aggregated Math .00 Mean 144.0600 5.36540 achievement Variance 1439.377 Std. Deviation 37.93913 Skewness -.716 .337 Kurtosis .143 .662 1.00 Mean 113.0208 2.63800 Variance 779.412 Std. Deviation 27.91796 Skewness -.146 .228 Kurtosis -.172 .453 19
  • 20.
    (ii) ๋ณ€์ˆ˜ ๋ถ„ํฌ 210.00 Normal Q-Q Plot of mathach 180.00 for ell_eng= .00 4 150.00 mathach 2 Expected Normal 120.00 0 90.00 104 60.00 -2 104 30.00 -4 .00 1.00 50 100 150 200 ell_eng Observed Value ์ง‘๋‹จ ์ˆ˜์ค€์—์„œ๋„ ์› ์ž๋ฃŒ์˜ ๋ถ„ํฌ๊ฐ€ ์ œ๋Œ€๋กœ ๋˜์–ด ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํ™•์ธ์„ ์œ„ํ•ด ell-english ๊ฐ ์ง‘๋‹จ๋งˆ๋‹ค(native vs. non-native)์˜ mean math acheivement์— ๋Œ€ํ•œ box-plot ๋„ํ‘œ์™€ ์ž”์ฐจ๋„ํ‘œ๋ฅผ ๊ตฌํ•œ ๊ฒฐ๊ณผ, 1 ๊ฐœ์˜ outlier ๊ฐ’์ด (case ๋ฒˆํ˜ธ 104) ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ฐ€์„ค ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์˜ ์‚ฌ๋ก€์ˆ˜๊ฐ€ ์ถฉ๋ถ„ํ•˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ์ถ”์ •์„ ์œ„ํ•ด ์ด 1 ๊ฐœ์˜ ๊ฐ’ ๋˜ํ•œ ์ œ๊ฑฐํ•˜๊ณ (level 1 ์—์„œ๋Š” ์ด 3 ๊ฐœ case ์ œ๊ฑฐ) ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค. (โ…ฒ) ์ •๊ทœ์„ฑ ๊ฒ€์ฆ [ํ‘œ 10] Level 2 ์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ฆ ell_eng Kolmogorov-Smirnov(a) Shapiro-Wilk Statistic df Sig. Statistic df Sig. Aggregated Math .00 .162 50 .002 .953 50 .043 achievement 1.00 .050 112 .200(*) .996 112 .983 * This is a lower bound of the true significance. a Lilliefors Significance Correction [ํ‘œ 5] ๊ฒฐ๊ณผ, ell-english ๊ฐ ์ง‘๋‹จ๋งˆ๋‹ค Shapiro-Wilk์˜ Sig. ๊ฐ’์ด ๊ฐ๊ฐ .043, .983 ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ non-native์ง‘๋‹จ์˜ ๊ฒฝ์šฐ์—๋Š” ์ •๊ทœ์„ฑ ๊ฐ€์ •์ด ์ง€์ง€๋œ ๋ฐ˜๋ฉด native์ง‘๋‹จ์€ ์ •๊ทœ์„ฑ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ์˜ ์ˆ˜๊ฐ€ ์–ด๋А ์ •๋„ ๋งŽ์€ ๊ฒฝ์šฐ, 20
  • 21.
    ์ž”์ฐจ์— ๋Œ€ํ•œ ๋ถ„ํฌ๊ฐ€์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด์ง€ ์•Š๋”๋ผ๋„, ์ข…๋ชจ์–‘์˜ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ๋งŒ 4 ํ•œ๋‹ค๋ฉด ์ •๊ทœ์„ฑ ๊ฐ€์ •์ด ๋งŒ์กฑ๋˜์ง€ ๋ชปํ•˜๋”๋ผ๋„ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค . ์‹ค์ œ, ๋นˆ๋„๋ถ„์„ ๊ฒฐ๊ณผ, ์ „๋ฐ˜์ ์œผ๋กœ ์ข…๋ชจ์–‘์˜ ํ˜•ํƒœ๋ฅผ ๋ ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฏ€๋กœ ์ •๊ทœ์„ฑ ๊ฐ€์ •์— ๋ฌธ์ œ๊ฐ€ ์—†๋‹ค๊ณ  ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๊ณ  ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. (iv) ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ [ํ‘œ 11] Level 2 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ Levene Statistic df1 df2 Sig. Aggregated Math Based on Mean 1.035 1 160 .310 achievement Based on Median .640 1 160 .425 Based on Median and with adjusted .640 1 143.971 .425 df Based on trimmed .879 1 160 .350 mean Level 1 ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ Level 2 ์˜ ๋“ฑ๋ถ„์‚ฐ์„ฑ ๊ฒ€์ฆ ์—ญ์‹œ [ํ‘œ 6] ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ง€์ง€๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (3) Level 1 ๊ณผ Level 2 ๋ณ€์ˆ˜ ์š”์•ฝ ๊ธฐ์ดˆํ†ต๊ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, 6 ๊ฐœ์˜ outlier ๊ฐ’๋“ค์„(level 1 ์ˆ˜์ค€) ์ œ๊ฑฐํ•˜๊ณ  ๋ถ„์„์„ ์‹œ์ž‘ํ•˜์˜€์œผ๋ฉฐ ์ „๋ฐ˜์ ์œผ๋กœ Level 1, Level 2 ๋ชจ๋‘ ์„ ํ˜• ๋ชจํ˜• ๊ฐ€์„ค ๊ฒ€์ฆ์— ํ•„์š”ํ•œ ๊ฐ€์ •๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œํ‚ค๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์ด ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ดˆ๋กœ ํ•˜์—ฌ ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (HLM) ๊ฒ€์ฆ์„ ์‹œ์ž‘ํ•˜์˜€๋‹ค. 3. ์œ„๊ณ„์  ์„ ํ˜• ๋ชจํ˜• (Hierarchical Linear Model, HLM) โ€“ Individual Change Model (1) Time ๋ณ€์ด์— ๋Œ€ํ•œ ์„ค์ • ๋ฐฉ๋ฒ• ์ œ์‹œํ•˜๊ธฐ ์ด ์ž๋ฃŒ์—์„œ๋Š” ๊ฐ ๊ฐœ์ธ์˜ ์ˆ˜ํ•™์„ฑ์  ์ ์ˆ˜๋ฅผ Fall 2003, Winter 2004, ๊ทธ๋ฆฌ๊ณ  Spring 2004 ๋…„ ์„ธ ๋ฒˆ์— ๊ฑธ์ณ ์ธก์ •ํ•˜์˜€์œผ๋ฏ€๋กœ ์ฒซ๋ฒˆ์งธ ์ธก์ • ์‹œ์ ์ธ Fall 2003 ์„ ๊ธฐ์ค€์œผ๋กœ ์‚ผ์•„ Fall 2003 ์„ 0, Winter 2004 ์„ 1, Spring 2004 ๋ฅผ 2 ๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. 4 ์ด๊ตฐํฌ (2000). ์‚ฌํšŒ๊ณผํ•™ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•๋ก , ๋ฒ•๋ฌธ์‚ฌ 21
  • 22.
    (2) 1 ์ฐจํ•จ์ˆ˜ vs. 2 ์ฐจ ํ•จ์ˆ˜ ๊ฒฐ์ • ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ ๊ฐœ์ธ๋ณ„ ๊ด€์ฐฐ ์‹œ์  ๊ฐฏ์ˆ˜๊ฐ€ ์ ์„ ๋•Œ๋Š” (์˜ˆ๋ฅผ ๋“ค๋ฉด, 3, 4 ๊ฐœ์˜ ์‹œ์ ) 1 ์ฐจ 5 ์„ ํ˜•ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋” ์œ ์šฉํ•˜๋‹ค . ๋˜ํ•œ, ์‹ค์ œ๋กœ ๊ฐœ์ธ ๋ณ€ํ™”(์„ฑ์žฅ) ๋ชจํ˜•์—์„œ๋Š” [์ธก์ •์‹œ์  ์ด ๊ฐฏ์ˆ˜-2] ํ•จ์ˆ˜๊ฐ€ ์‚ฌ์šฉ๊ฐ€๋Šฅํ•˜๋‹ค. ํ˜„์žฌ ์ž๋ฃŒ์—์„œ๋Š” ์ธก์ • ์‹œ์ ์ด 3 ๊ฐœ๋ฐ–์— ์—†์œผ๋ฏ€๋กœ 1 ์ฐจ ์„ ํ˜•ํ•จ์ˆ˜๋ฅผ ์ฑ„ํƒํ•˜๊ณ ์ž ํ•œ๋‹ค. ์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. Level 1 Yti = ฯ€ 0i + ฯ€ 1i ati + eti Level 2 Q0 ฯ€ 0i = ฮฒ 00 + โˆ‘ ฮฒ 0 q X qi + r0i q =1 Q1 ฯ€ 1i = ฮฒ10 + โˆ‘ ฮฒ1q X qi + r1i q =1 (3) A Random-Coefficient Regression Model โ€“ unconditional model ๊ธฐ์ดˆ ๋ชจํ˜•์€ ๊ฐ ๊ฐœ์ธ์˜ ์ˆ˜ํ•™์„ฑ์ ์€ ์‹œ๊ฐ„์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ(Level 1 ๋ชจํ˜•) ๊ฐœ์ธ๊ฐ„ ์ฐจ์ด๋Š” ์—†๋‹ค๊ณ  ์ƒ์ •ํ•˜๊ณ  ๋ชจํ˜•์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด ๋•Œ, Time์€ 0 ์ž์ฒด๋ฅผ ์ด๋ฏธ ์ดˆ๊ธฐ์‹œ์ ์ธ Fall 2003 ์œผ๋กœ ์„ค์ •์„ ํ•˜์˜€์œผ๋ฏ€๋กœ ์‹œ์  ๋ณ€์ˆ˜๋ฅผ centering๋ฅผ ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ Time ๋ณ€์ˆ˜๋Š” uncentered๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. Level 1 MATHACH ti = ฯ€ 0i + ฯ€ 1i (TIMEti ) + eti Level 2 ฯ€ 0i = ฮฒ 00 + r0i ฯ€ 1i = ฮฒ10 + r1i HLM ๊ฒฐ๊ณผ๋Š” ์•„๋ž˜ [ํ‘œ 7]๊ณผ ๊ฐ™๋‹ค. 5 Raudenbush & Bryk (2002). Ch. 6 Applications in the Study of Individual Change, Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition, Thousand Oaks, Sage Publications. 22
  • 23.
    [ํ‘œ 12] ์ˆ˜ํ•™์„ฑ์ ์˜์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜• โ€“ unconditional model Fixed Effect Coefficient Standard Error T-ratio INTRCPT2, ฮฒ 00 112.489538 2.710107 41.507 INTRCPT2, ฮฒ10 10.024796 0.616192 16.269 Random Effect Variance Component df Chi-square P-value INTRCPT1, r0i 1092.30226 161 1994.36828 0.000 TIME slope, r1i 3.54503 161 170.85796 0.282 level-1, eti 114.32684 Reliability of OLS Regression Coefficient Estimate Initial status ฯ€ 0i 0.90525105 Growth rate ฯ€ 1i 0.030075284 (i) Mean Growth Trajectory [ํ‘œ 7]์˜ ๊ณ ์ •ํšจ๊ณผ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ์ดˆ๊ธฐ ํ‰๊ท  ์ˆ˜ํ•™์„ฑ์ (B00)์ด 112.489538 ์ ์ด๋ฉฐ ๊ฐ ๊ฐœ์ธ์˜ ์ˆ˜ํ•™์„ฑ์ ์€ ์‹œ์ ์ด 1 ์”ฉ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก(ํ•œ ํ•™๊ธฐ๋งˆ๋‹ค) 10.024796 ๋งŒํผ ์ฆ๊ฐ€ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. (ii) Individual Variation in Growth Trajectories ๊ฐœ์ธ๊ฐ„ ๋ถ„์‚ฐ์€ ๋ฌด์„ ํšจ๊ณผ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ์ธ ์„ฑ์žฅ ๋ชจ์ˆ˜์ธ ฯ€ 0i , ฯ€ 1i ์˜ ๋ถ„์‚ฐ ์ถ”์ •์น˜๋Š” ๊ฐ๊ฐ 1092.30226, 3.54503 ์ด๋‹ค. 3 ์žฅ์—์„œ ์ œ์‹œ๋˜์–ด ์žˆ๋“ฏ์ด ๊ฐœ์ธ๋“ค์˜ ๋ณ€ํ™”(์„ฑ์žฅ) ๋ชจ์ˆ˜์˜ ๋ณ€ํ™”๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ฯ‡ 2 ๊ฒ€์ฆ์„ ํ•œ ๊ฒฐ๊ณผ, ์ ˆํŽธ์ธ r0i ๋Š” 1994.36828 (df= 161, p<.000)์ด๋‹ค. ์ด๋Š”, ์˜๊ฐ€์„ค์„ ๊ธฐ๊ฐํ•˜๋ฏ€๋กœ ๊ฐ ๊ฐœ์ธ์€ ์ดˆ๊ธฐ ์‹œ์ (Time 0 ์‹œ์ )์—์„œ ๊ทธ๋“ค์˜ ์ˆ˜ํ•™์„ฑ์ ์€ ์œ ์˜๋ฏธํ•˜๊ฒŒ ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๋ฐ˜๋Œ€๋กœ ๊ฐœ์ธ์˜ ๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ  ์˜๊ฐ€์„ค์— (i.e. H0: ฯ€ 1i = 0) ๋Œ€ํ•œ ฯ‡2 ๊ฐ’์€ 170.85796 ์œผ๋กœ ์˜๊ฐ€์„ค์ด ์ง€์ง€๋˜์–ด ๊ฐœ์ธ์˜ ๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ ์ด ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์—†์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค (df=161, p<.282). ์ด๋Š”, ์ดˆ๊ธฐ ์ˆ˜ํ•™ ์„ฑ์ ์€ ๊ฐœ์ธ๊ฐ„ ์ฐจ์ด์— ์˜ํ•ด ๋” ์„ค๋ช…๋  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์ด ์žˆ๋Š” ๋ฐ˜๋ฉด, ๋ณ€ํ™” ๊ธฐ์šธ๊ธฐ๋Š” ์‹œ์ ์— ์˜ํ•ด ๋ชจ๋‘ ์„ค๋ช…์ด ๋˜์–ด์กŒ๋‹ค๋Š” ์˜๋ฏธ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. (iii) Reliability of Initial Status and Change ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ๊ณผ ๊ฐœ์ธ ๋ณ€ํ™”(์„ฑ์žฅ)๋ฅ ์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋„๋Š” ์‹ 6.7 ์„ ํ†ตํ•ด ๊ฐ๊ฐ .90525105 ๊ณผ .030075284 ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค (ํ‘œ 7 ์ฐธ์กฐ). ์ด๋Š” ์ด ์ž๋ฃŒ์—์„œ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์—์„œ๋งŒ ๊ฐœ์ธ๊ฐ„ ์ฐจ์ด๊ฐ€ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ (์ ˆํŽธ)์€ 23
  • 24.
    ๊ฐœ์ธ์ˆ˜์ค€์˜ ๋ณ€์ˆ˜์— ์˜ํ•ด์˜ํ–ฅ์„ ๋ฐ›์€ ๊ฒƒ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. (iv) Correlation of Change with Initial Status ์„ ํ˜• ๊ฐœ์ธ ๋ณ€ํ™”(์„ฑ์žฅ) ๋ชจํ˜•์—์„œ๋Š” ์ด๋“ค ๋ณ€์ˆ˜๋“ค๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„๋Š” ์‹ 6.8 ์„ ํ†ตํ•ด ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์‹ค์ œ ๋ณ€ํ™”์™€ ์‹ค์ œ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์  ์ƒํƒœ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ ์ถ”์ •์น˜๋Š” .282 ์ด๋‹ค. ์ด๋Š” ์ดˆ๊ธฐ ์‹œ์ ์— ๋ณด๋‹ค ๋†’์€ ์ˆ˜ํ•™์„ฑ์ ์„ ๊ฐ€์ง„ ๊ฐœ์ธ์ด ๋ณด๋‹ค ๋น ๋ฅธ ์†๋„๋กœ ์ˆ˜ํ•™์„ฑ์ ์ด ํ–ฅ์ƒ๋œ๋‹ค๋Š” ์˜๋ฏธ๋กœ ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๊ฒƒ๊ณผ ๊ฐ™์ด ฯ€ 0i ๋Š” ์‹œ์  ๋ณ€์ˆ˜์ธ Timeti ์— ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ๋‹ค์‹œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. (4) An Intercepts- and Slopes-as-Outcomes Model Level 1 ๋ชจํ˜•์€ unconditional model์—์„œ ์„ค์ •ํ•œ ์‹ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•˜๊ณ  ์—ฌ๊ธฐ์„œ๋Š” ell- english๋ผ๋Š” level 2 ์ˆ˜์ค€์˜ ๋ณ€์ˆ˜ (๋”๋ฏธ๋ณ€์ˆ˜๋กœ 0 = native, 1=non-native๋ฅผ ์ง€์นญ)๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ชจํ˜•์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด ๋•Œ, ELL-ENGLISH์—์„œ 0 ์€ non- native์ž„์„ ๋‚˜ํƒ€๋‚ด๋ฏ€๋กœ x ์ ˆํŽธ์ด 0 ์ผ ๋•Œ์˜ ๊ฐ’์ด non-native์ธ ์‚ฌ๋žŒ๋“ค์˜ ์ˆ˜ํ•™์„ฑ์ ์„ ๋‚˜ํƒ€๋‚ด๋ฏ€๋กœ centering์„ ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋ฏ€๋กœ uncenteredํ•˜์—ฌ ๋ชจํ˜•์— ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด, ฯ€ 1i ์—๋Š” ์•ž์„œ Time์— ์˜ํ•ด ๋ชจ๋‘ ์„ค๋ช…๋˜์—ˆ์œผ๋ฏ€๋กœ ์—ฌ๊ธฐ์„œ๋Š” slope์—๋Š” ๊ฐœ์ธ์ˆ˜์ค€ ๋ณ€์ˆ˜์ธ ELL- ENGLISH๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์•˜๋‹ค. Level 1 MATHACH ti = ฯ€ 0i + ฯ€ 1i (TIMEti ) + eti Level 2 ฯ€ 0i = ฮฒ 00 + ฮฒ 01 ( ELL _ ENG ) i + r0i ฯ€ 1i = ฮฒ10 + r1i [ํ‘œ 13] ์ˆ˜ํ•™์„ฑ์ ์˜ ์„ ํ˜• ์„ฑ์žฅ ๋ชจํ˜• โ€“ ELL-ENGLISH ํšจ๊ณผ Fixed Effect Coefficient Standard Error T-ratio Approx. d.f. P-value Model for initial status, ฯ€ 0i INTRCPT2, ฮฒ 00 133.927113 5.344405 25.059 160 0.000 ELL_ENG, ฮฒ 01 -31.025648 5.920476 -5.24 160 0.000 Model for growth rate, ฯ€ 1i INTRCPT2, ฮฒ10 10.032149 0.613825 16.344 161 0.000 [ํ‘œ 8]์€ ๊ณ ์ •ํšจ๊ณผ ์ถ”์ •์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ ELL-ENGLISH์˜ t๊ฐ’์€ -.5.24 ๋กœ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ๊ณผ ๋น„๊ต์  ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ํ‰๊ท ์ ์œผ๋กœ ์˜์–ด๊ฐ€ ๋ชจ๊ตญ์–ด์ธ ์‚ฌ๋žŒ๋“ค๋ณด๋‹ค ์˜์–ด๊ฐ€ ๋ชจ๊ตญ์–ด๊ฐ€ ์•„๋‹Œ ์‚ฌ๋žŒ๋“ค์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์ด 31.03 ์ •๋„ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 24
  • 25.
    [ํ‘œ 14] ELL_ENGLISH๊ฒฐ๊ณผ์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ๊ณผ ์„ฑ์žฅ(๋ณ€ํ™”)๋ฅ ์˜ ์„ค๋ช… ๋ณ€๋Ÿ‰ Model Initial Status Var. Growth Rate Var. Unconditional 1092.30226 3.54503 Conditional on Ell-English 892.98716 3.69333 Propotions of variance explained 18.25% -4.18% [ํ‘œ 9]๋Š” ์ด ๋ชจํ˜•์˜ ๋ฌด์„ ํ˜ธ๊ณผ์˜ ๋ถ„์‚ฐ ์ถ”์ •์น˜๋ฅผ ์ œ์‹œํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์ด๋ฅผ ๊ธฐ์ดˆ๋ชจํ˜•(unconditional model)์—์„œ ๋‚˜ํƒ€๋‚œ ๋ถ„์‚ฐ ์ถ”์ •์น˜์™€ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•ด์ฃผ๊ณ  ์žˆ๋‹ค. ์‹ 4.24 ์— ์˜ํ•˜์—ฌ ์„ค๋ช…๋œ ๋ถ„์‚ฐ ๋น„์œจ (the proportion of variance explained)๋ฅผ ๊ตฌํ•˜๋ฉด ELL-ENGLISH๊ฐ€ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์˜ ๋ถ„์‚ฐ ๋ชจ์ˆ˜์น˜์˜ 18.25%๋ฅผ ์„ค๋ช…ํ•ด์ฃผ๊ณ  ์žˆ๋‹ค. [ํ‘œ 8]๊ณผ [ํ‘œ 9]๋ฅผ ์ข…ํ•ฉํ•ด๋ณผ ๋•Œ, ELL-ENGLISH ๋ณ€์ˆ˜๊ฐ€ ๊ฐœ์ธ๋“ค์˜ ์ดˆ๊ธฐ ์ˆ˜ํ•™์„ฑ์ ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ELL-ENGLISH ๋ณ€์ธ์„ ํˆฌ์ž…ํ•˜๋Š” ๊ฒƒ์ด ๋ณด๋‹ค ํšจ๊ณผ์ ์ด์—ˆ๋‹ค. 25