274 | Modern Approach to Speed Math Secret

3)

n
 
k 
 

n!

for n ∈ W , k ∈ W

k ! (n − k ) !


 n   n (n − 1) (n − 2) ..... (n − k + 1)

for n ∈ R , k ∈ W
 =
k 
k!
  


 n (n − 1) (n − 2) .... (k + 2) (k + 1) for n ∈ R , (n − k ) ∈ W

(n − k ) !


VJ’s GOLDEN LEMMA
Let k, l , m k , n ∈ W , Pk ∈ R
 mk
f ( x) = ∏  ∑ ak
k = 0 l = 0

n

,l

*x

Pk
mk −l 




Then

∞

f ( x) =

( Sl xh − l )
l =0
∑

Where
n

h = Highest power of x in f ( x) =

∑

ml pl

l =0

Pk 
 n
f ( x) 

 
U 0 =  ∏ ak , 0
 =  lim

h

 k =0
  x→∞ x



(

)

∪

Uk =
∀ al ,

r

present in U k −1

d

∫ dal , r (U k −1 ) dal , r + 1

r ≠ mi

Sl = Sum of all members ( terms) in set Ul =

∑ Ul

Golden Lemma / Golden Pattern

for k ≥ 1

Golden lemma

  • 1.
    274 | ModernApproach to Speed Math Secret 3) n   k    n!  for n ∈ W , k ∈ W  k ! (n − k ) !    n   n (n − 1) (n − 2) ..... (n − k + 1)  for n ∈ R , k ∈ W  = k  k!       n (n − 1) (n − 2) .... (k + 2) (k + 1) for n ∈ R , (n − k ) ∈ W  (n − k ) !  VJ’s GOLDEN LEMMA Let k, l , m k , n ∈ W , Pk ∈ R  mk f ( x) = ∏  ∑ ak k = 0 l = 0  n ,l *x Pk mk −l     Then ∞ f ( x) = ( Sl xh − l ) l =0 ∑ Where n h = Highest power of x in f ( x) = ∑ ml pl l =0 Pk   n f ( x)     U 0 =  ∏ ak , 0  =  lim  h   k =0   x→∞ x   ( ) ∪ Uk = ∀ al , r present in U k −1 d ∫ dal , r (U k −1 ) dal , r + 1 r ≠ mi Sl = Sum of all members ( terms) in set Ul = ∑ Ul Golden Lemma / Golden Pattern for k ≥ 1