SlideShare a Scribd company logo
KING FAHD UNIVERSITY OF
PETROLEUM & MINERALS
Mechanical Engineering
Department
(152)
Senior Design Project
Design Project
ME 412/416
Balancing of water VS Electricity generation (Rankine-MSF)
Name: Alkathiri, Ali Ahmed ID# 201158730
Name: Julaidan, Mohammed ID# 201168370
Name: Alhujaili, Amjad ID# 201050560
Name: ID#
Name: ID#
Advisor Name:
MOHAMMED A. ANTAR
Coordinator Name:
26/04/2016
ii
EVALUATION SHEET
Editorial Structural
Criteria Evaluation Criteria Evaluation Criteria Evaluation Criteria Evaluation
Cover page*
Introduction
Overview
Final Design
Overall description
Conclusion &
Recommendation
Conclusion*
Title*
Problem
definition*
Detailed design description Recommendation*
Abstract* Objectives* Analysis & results*
Appendices
Decision matrix
Table of
contents*
Project
management*
Material selection Gantt chart*
List of figures
Background
Existing product Cost analysis
Final drawing
List of table Market research Drawings
List of vendors, contact
information and pricing
Heading Technical data*
Product
Realization
Manufacturing processes
Specification for
supplied materials
Language Patent search
Prototype verses planned
design
Detailed supporting
analysis
Figure/table
Design &
Development
Conceptual
design
Manufacturing processes
Captions
List of
constraints* Future manufacturing
recommendation
Final Report Score
List of standards*
Figure/table
citation Concept selection
Design
verification
Test description
References
Preliminary
analysis*
Detailed results
Proof of concept Specification verification list
Items in (red) with asterisks (*) are mandatory.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
1	
	
Table	of	Contents	
List	of	tables:	.....................................................................................................................	2	
List	of	figures:	....................................................................................................................	2	
Chapter	1:	.........................................................................................................................	3	
Introduction:	.....................................................................................................................	3	
1.1	 Power	Plant:	....................................................................................................................	3	
Classification	of	power	station:	...................................................................................................	3	
1.1.1	 By	heat	source:	[1]	..........................................................................................................	3	
1.1.2	 By	prime	mover:	.............................................................................................................	3	
1.1.3	 By	duty	(scheduled):	.......................................................................................................	4	
1.2	 Desalination	Plant:	..........................................................................................................	5	
1.2.1	 Types	of	distillation	process:	..........................................................................................	5	
1.2.2	 How	it	works:	..................................................................................................................	6	
1.2.3	 Challenges:	.....................................................................................................................	7	
1.3	 Objective:	........................................................................................................................	7	
Chapter	2:	.........................................................................................................................	8	
2.1	 Power	Plant:	....................................................................................................................	8	
2.1.1	 Boiler:	...........................................................................................................................	10	
2.1.2	 High	Pressure	Turbine:	.................................................................................................	10	
2.1.3	 Low	Pressure	Turbine:	..................................................................................................	11	
2.1.4	 Condenser:	...................................................................................................................	12	
2.1.5	 Open	Feed	Water	Heater:	............................................................................................	12	
2.1.6	 Closed	Feed	Water	Heater	2:	.......................................................................................	13	
2.1.7	 Closed	Feed	Water	Heater	1:	.......................................................................................	14	
2.2	 Desalination	Plant:	........................................................................................................	15	
2.1.1	 Mass	balance	modeling:	...............................................................................................	17	
2.1.2	 Temperature	Drop	Modeling:	......................................................................................	18	
2.1.3	 The	Temperature	at	each	Stage:	..................................................................................	18	
2.1.4	 Heat	transfer	areas:	......................................................................................................	18	
2.1.5	 Flashing	Stage	Dimensions	Modeling:	..........................................................................	20	
2.1.6	 Performance	Modeling:	................................................................................................	20	
Chapter	3:	.......................................................................................................................	21	
Results	and	discussion:	....................................................................................................	21	
3.1	 Power	plant	...................................................................................................................	21	
3.1.1	 The	optimum	pressure:	................................................................................................	21	
3.1.2	 The	effect	of	mass	extraction	from	power	plant	to	MSF	plant	....................................	22	
3.1.3	 The	effect	of	the	condition	of	the	extraction	mass	......................................................	24	
3.1.4	 Make	up	water	for	the	power	plant:	............................................................................	25	
3.1.5	 Comparison	between	data:	..........................................................................................	26	
3.2	 MSF	Plant	......................................................................................................................	29	
3.2.1	 The	effect	of	condition	of	the	steam	............................................................................	29	
3.2.2	 Extraction	“b”	from	power	plant	to	the	MSF	...............................................................	32
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
2	
	
Chapter	4:	.......................................................................................................................	33	
Conclusion	.......................................................................................................................	33	
References:	.....................................................................................................................	34	
Appendix	A:	.....................................................................................................................	35	
Appendix	B:	.....................................................................................................................	36	
	
List	of	tables:	
Table	1:	Reheat	pressure	......................................................................................................................	21	
Table	2:	optimum	pressure	for	P	[12]	...................................................................................................	22	
Table	3:	Mass	extraction	and	effect	on	efficiency	................................................................................	23	
Table4 :	effect	of	the	condition	of	the	extraction	.................................................................................	24	
Table	5:	Efficiency	with	returning	water	from	MSF	..............................................................................	25	
Table	6:	Efficiency	with	returning	water	25	C	.......................................................................................	26	
Table	7:	pressure	and	its	temperatures	................................................................................................	29	
Table	8:	steam	temperature	and	its	effect	on	Q	and	number	of	stages	...............................................	29	
Table 9: table show how much “b” we need to satisfy the MSF at different top brine temperature	....	32	
	
List	of	figures:	
Figure	1:	Schematic	of	a	'once-through'	multi-stage	flash	desalinates:	.................................................	6	
Figure	2:	Power	plant	in	Saudi	Arabia	(Qurrayyah)[2]	...........................................................................	8	
Figure	3:	Power	Plant	schematic	diagram	..............................................................................................	9	
Figure	4	:	Once	through	Multi-Stage	Flash	Distillation	System	............................................................	16	
Figure	4:	preheat/Boiler	Vs	eff	....................................................................................................................	21	
Figure	5:	Effincy	Vs	Extraction	fraction	.................................................................................................	23	
Figure	6:	:	T-S	diagram	shows	how	hfg	increase	as	pressure	decreases	................................................	24	
Figure	7:	Efficiency	Vs	Pbrine	...................................................................................................................	24	
Figure	9:	the	effect	of	make	water	in	Efficiency	...................................................................................	27	
Figure	10:	The	effect	of	make	water	in	Work	net	.................................................................................	28	
Figure	11:	number	of	stage	Vs	Top	brine	temperature	........................................................................	30	
Figure	12:	Msteam	Vs	Top	brine	temperature	.........................................................................................	31	
Figure	13:		performance	ratio	Vs	Top	brine	temperature	.....................................................................	31
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
3	
	
	
Chapter	1:	
Introduction:	
Water	desalination	is	one	of	the	most	important	facilities	in	Saudi	Arabia	since	
Saudi	Arabia	does	not	have	a	natural	resource	for	water.	So,	we	need	to	save	any	
amount	of	energy	with	increasing	the	efficiency	of	the	factory.	Our	problem	is	how	to	
increase	the	efficiency	and	consume	some	power.			
1.1 Power Plant:
Power	plant	is	a	facility	that	used	to	generate	electrical	power.	Here	in	Saudi	
Arabia	we	have	Gazlan	power	plant	that	has	power	capacity	of	2400	MW.	
Classification of power station:
1.1.1 By	heat	source:	[1]	
o Fossil-fuel power stations may also use a steam turbine
generator or in the case of natural gas-fired plants may use a
combustion turbine. The steam drives a steam turbine and
generator that then produces electricity
o Nuclear power plants use a nuclear reactor's heat that is
transferred to steam which then operates a steam turbine and
generator. About 20 percent of electric generation in the USA
is produced by nuclear power plants.
o Geothermal power plants use steam extracted from hot
underground rocks.
o Biomass-fuelled power plants may be fuelled by waste from
sugar cane, municipal solid waste, landfill methane, or other
forms of biomass.
o Waste heat from industrial processes is occasionally
concentrated enough to use for power generation, usually in a
steam boiler and turbine.
o Solar thermal electric plants use sunlight to boil water and
produce steam which turns the generator.
1.1.2 By	prime	mover:	
o Steam turbine plants use the dynamic pressure generated by
expanding steam to turn the blades of a turbine. Almost all
large non-hydro plants use this system. About 90 percent of all
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
4	
	
electric power produced in the world is through use of steam
turbines.
o Gas turbine plants use the dynamic pressure from flowing gases
(air and combustion products) to directly operate the turbine.
Natural-gas fuelled (and oil fueled) combustion turbine plants
can start rapidly and so are used to supply "peak" energy during
periods of high demand, though at higher cost than base-loaded
plants. These may be comparatively small units, and sometimes
completely unmanned, being remotely operated. This type was
pioneered by the UK, Princetown being the world's first,
commissioned in 1959.
o Combined cycle plants have both a gas turbine fired by natural
gas, and a steam boiler and steam turbine which use the hot
exhaust gas from the gas turbine to produce electricity. This
greatly increases the overall efficiency of the plant, and many
new baseload power plants are combined cycle plants fired by
natural gas.
o Internal combustion reciprocating engines are used to provide
power for isolated communities and are frequently used for
small cogeneration plants. Hospitals, office buildings, industrial
plants, and other critical facilities also use them to provide
backup power in case of a power outage. These are usually
fuelled by diesel oil, heavy oil, natural gas, and landfill gas.
o Microturbines, Stirling engine and internal combustion
reciprocating engines are low-cost solutions for using
opportunity fuels, such as landfill gas, digester gas from water
treatment plants and waste gas from oil production.
1.1.3 By	duty	(scheduled):	
o Base load power plants run nearly continually to provide that
component of system load that doesn't vary during a day or
week. Baseload plants can be highly optimized for low fuel
cost, but may not start or stop quickly during changes in system
load. Examples of base-load plants would include large modern
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
5	
	
coal-fired and nuclear generating stations, or hydro plants with
a predictable supply of water.
o Peaking power plants meet the daily peak load, which may only
be for one or two hours each day. While their incremental
operating cost is always higher than base load plants, they are
required to ensure security of the system during load peaks.
Peaking plants include simple cycle gas turbines and sometimes
reciprocating internal combustion engines, which can be started
up rapidly when system peaks are predicted. Hydroelectric
plants may also be designed for peaking use.
o Load following power plants can economically follow the
variations in the daily and weekly load, at lower cost than
peaking plants and with more flexibility than baseload plants.
1.2 Desalination Plant:
Desalination	is	a	process	that	removes	minerals	from	saline	water.	
More	generally,	desalination	may	also	refer	to	the	removal	of	salts	and	
minerals,	as	in	soil	desalination,	which	also	happens	to	be	a	major	issue	for	
agricultural	production.	
	
1.2.1 Types	of	distillation	process:	
a. Multi-Stage	flash	distillation.	
b. Multiple-effect	distillation.	
c. Vapor-Compression.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
6	
	
1.2.1 Multi-Stage flash distillation [1]:
Multi-stage	flash	distillation	is	a	water	distillation	process	that	distills	
seawater	by	flashing	a	portion	of	the	water	into	steam	in	multiple	stages	of	
what	are	essentially	countercurrent	heat	exchangers.	
	
	
	
	
	
	
	
	
1.2.2 How	it	works:	
The	plant	has	a	series	of	spaces	called	stages,	each	containing	a	heat	
exchanger	and	a	condensate	collector.	The	sequence	has	a	cold	end	and	a	hot	
end	while	intermediate	stages	have	intermediate	temperatures.	The	stages	
have	different	pressures	corresponding	to	the	boiling	points	of	water	at	the	
stage	temperatures.	After	the	hot	end	there	is	a	container	called	the	brine	
heater.	
	
Figure 1: Schematic of a 'once-through' multi-stage flash desalinates:
A - Steam in
B - Seawater in
C - Potable water out
D - Waste out
E - Steam out
F - Heat exchange
G - Condensation collection
H - Brine heater
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
7	
	
1. The	cold	water	pumped	from	the	sea	through	a	heat	exchanger	and	it	warms	it	up.	
(with	each	stage,	the	temperature	of	sea	water	increase).	
	
2. Then,	when	it	reaches	the	brine	heater,	it	already	had	got	nearly	the	maximum	
temperature.	
	
3. The	water	enters	the	brine	heater	and	some	heat	is	added.	
	
4. After	the	heater,	the	water	flows	through	valves	back	into	the	stages	that	have	
ever	lower	pressure	and	temperature.	The	water	now	called	brine.	
	
5. The	brine	enters	each	stage	at	temperature	higher	than	the	boiling	temperature.	
As	a	result,	small	fraction	of	brine	flashes	to	steam	until	its	temperature	reduce	to	
equilibrium.	Then	enters	the	next	stage.	
	
6. The	steam	cools	and	condense	against	the	heat	exchanger	tube,	and	it	heats	up	
the	water	coming	from	the	sea.	
	
7. At	the	final	stage,	the	temperature	in	nearly	same	as	the	inlet	temperature.	
	
	
	
1.2.3 Challenges:	
There	is	a	maximum	temperature	of	brine	heater	that	the	water	can’t	
be	heated	above	120,	because	this	will	result	in	corrode	the	heat	exchanger	
as	well	as	scale	formation,	which	is	the	salt	from	sea.	It	can	be	avoided	by	
adding	Nano	filters,	so	the	water	is	out	of	Mg	and	Na.	
Also,	another	challenge	is	about	how	to	balance	the	heat	used	in	brine	
heater,	that	it	gives	the	best	performance	with	low	energy	lost.	
	
	
1.3 Objective:
Our	objective	is	to	find	a	balance	between	the	power	plant	and	the	desalination	
plant	so	that	we	get	the	optimum	performance	for	both	systems.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
8	
	
Chapter	2:	
Here	in	this	chapter,	we	are	going	to	specify	the	model	for	the	power	plant	as	
well	as	the	desalination	plant.		
2.1 Power Plant:
We	chose	a	power	plant	(See	Fig.2)based	on	real	data.	The	power	
plant	we	chose	have	one	boiler,	two	turbines,	condenser,	one	open	
feed	water	heater,	two	closed	feed	water	heater,	and	three	pumps.	
We	develop	the	general	equation	for	the	whole	system.	Next,	we	will	
develop	the	general	equation	for	each	element. Our objective is to
find the optimum extraction pressure with the maximum efficiency in
the power plant (See Appendix A for the EES code).
	
	
	
Figure 2: Power plant in Saudi Arabia (Qurrayyah)[2]
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
9	
	
Figure 3: Power Plant schematic diagram
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
10	
	
	
2.1.1	 Boiler:	
in	the	boiler,	we	increase	the	water	temperature	up	to	500	C	
with	pressure	of	6000	KPa.	Also,	there	is	a	reheat	part	that	comes	out	
from	the	high	pressure	turbine.	Here	is	the	energy	balance	equation	
representing	the	heat	added	to	the	water	as	well	as	the	heat	added	to	
Z-extraction	(reheat):	
	 !"# =	&'() ℎ 11 − 	ℎ 10 + 	/		 	ℎ 15 − 	ℎ 14 	 (1)	
where:	
§ h[11] represent the enthalpy for the whole steam coming out of
the boiler to the high pressure turbine.
§ h[10] represent the enthalpy for the whole water coming into of
the boiler.
§ h[15] represent the enthalpy for the Z- fraction of steam coming
out of the boiler to the low pressure turbine.
§ h[14] represent the enthalpy for the Z- fraction of steam coming
out of the high pressure turbine to the reheat.
§ mdot represent the mass flow rate for the whole system.
§ Z represent the fraction that is going to the reheat and the low
pressure turbine.
	
2.1.2	 High	Pressure	Turbine:	
In	the	high	pressure	turbine,	we	have	three	fractions	being	
extracted	at	different	pressure	and	the	first	one	is	going	to	the	closed	
feed	water	heater	1,	and	the	other	one	is	going	to	the	closed	feed	
water	heater	2,	and	the	third	one	is	going	to	the	reheat,	and	then	to	
the	low	pressure	turbine.	The	high	pressure	turbine	has	isentropic	
efficiency	of	80%	and	here	is	the	energy	balance	equation	for	the	high	
pressure	turbine:	
2345 =	&'() 6 	ℎ 11 − 	ℎ 12 + 	8 	ℎ 11 − ℎ 13 +
	/ 	ℎ 11 − 	ℎ 14 	 	 	 	 	 	 	 (2)
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
11	
	
here	is	the	mass	flow	rate	fraction	balance:	
	 1 = 6 + 8 + /		 	 	 	 	 	 (3)	
where:	
§ h[12]	represents	the	enthalpy	of	X-fraction	of	steam	from	the	
high	pressure	turbine	at	P[12]	and	T[12].	
§ h[13]	represents	the	enthalpy	of	Y-fraction	of	steam	from	the	
high	pressure	turbine	at	P[13]	and	T[13].	
§ h[14]	represents	the	enthalpy	of	Z-fraction	of	steam	from	the	
high	pressure	turbine	at	P[14]	and	T[14].	
	
2.1.3	 Low	Pressure	Turbine:	
In	the	low	pressure	turbine,	we	have	three	fractions	being	
extracted	at	different	pressure	and	the	first	one	is	going	to	the	open	
feed	water	heater,	and	the	other	one	is	going	to	the	MSF-OT	plant,	
and	the	third	one	is	going	to	the	condenser.	The	low	pressure	turbine	
has	isentropic	efficiency	of	85%	and	here	is	the	energy	balance	
equation	for	the	low	pressure	turbine:	
	 	 	 2:45 =	&'() /×ℎ 15 − 	&×ℎ 16 − 	=×ℎ 17 − 	?×	ℎ@A"#B[18] 				
	 	 	 	 	 	 	 	 	 	 	 	 (4)	
here	is	the	mass	flow	rate	fraction	balance:	
/	 =	 &	 + 	=	 + 	? 	 	 	 	 	 	 	 (5)	
where:	
§ h[15]	represents	the	enthalpy	of	Z-fraction	of	steam	from	the	
reheat	at	P[15]	and	T[15]	to	the	low	pressure	turbine.	
§ h[16] represent the enthalpy of m-fraction	of	steam	from	the	
low pressure turbine at P[16] and T[16] and going to the open
feed water heater.
§ h[17]	represents	the	enthalpy	of	n-fraction	of	steam	from	the	
low	pressure	turbine	at	Pcondenser	and	T[17]	going	to	the	
condenser.	
§ hbrine[18]	represents	the	enthalpy	of	b-fraction	of	steam	from	
the	reheat	at	Pbrine[18]	and	Tbrine[18]	and	going	to	the	MSF.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
12	
	
§ m represents the fraction of steam that is going to the open feed
water heater.
§ n represents the fraction of steam that is going to the condenser.
§ b represents the fraction of steam that is going to the MSF brine
heater.	
	
2.1.4	 Condenser:	
In	the	condenser,	the	water	enters	the	condenser	at	Pcondenser	
and	the	water	gets	out	with	zero	quality.	Here	is	the	energy	balance	
equation	for	the	condenser:	
!(F) =	&'() =		 	ℎ 17 − 	ℎ 1 	 	 	 	 	 (7)	
where:	
§ h[1]	represents	the	enthalpy	of	n-fraction	of	water	from	the	
condenser	at	Pcondenser	and	T[1]	to	pump	1.	
	
2.1.5	 Open	Feed	Water	Heater:	
In	the	open	feed	water	heater,	n-fraction	after	pump	1,	m-
fraction	from	low	pressure	turbine,	b-fraction	from	MSF.	Here	is	the	
energy	balance	equation	for	the	open	feed	water	heater:	
ℎ 2 × = + 	ℎ 16 ×	&	 + 	ℎ 6 × 	6	 + 	8	 + ?×ℎ 20 = 	ℎ 3 	 (8)	
here	is	the	mass	flow	rate	fraction	balance	equation:	
? + 6 + 8 + & = 1		 	 	 	 	 	 (9)	
where:	
§ h[2]	represents	the	enthalpy	of	n-fraction	of	water	from	the	
condenser	at	P[2]	and	T[2]	and	going	to	the	open	feed	water	
heater.	
§ h[6]	represents	the	enthalpy	of	(x&y)-fraction	of	steam	from	
trap	2	at	P[6]	and	T[6]	and	going	to	the	open	feed	water	
heater.	
§ h[20]	represents	the	enthalpy	of	b-fraction	of	steam	from	MSF	
at	Pbrine	and	Tbrine[18]	and	going	to	the	open	feed	water	heater.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
13	
	
§ h[3]	represents	the	enthalpy	of	whole	mass	fraction	of	steam	
from	open	feed	water	heater	and	going	to	pump	2,	which	
increase	the	water	pressure	up	to	Pboiler.	
	
2.1.6	 Closed	Feed	Water	Heater	2:	
In	the	closed	feed	water	heater	2,	we	have	three	lines	entering	
the	heat	exchanger:	y-fraction	coming	from	the	high	pressure	turbine,	
whole	mass	from	pump	2	and	x-fraction	from	trap	1.	Also,	we	have	
two	lines	going	out	from	the	heat	exchanger:	one	is	going	to	the	
closed	feed	water	heater	1	and	the	other	going	trap	2.	Here	is	the	
energy	balance	equation	for	the	closed	feed	water	heater	with	
effectiveness	of	0.8	:	
8×GH 13 × 	I 13 −	IJK) 13 + 	8×ℎLM 13 + 	ℎ 4 + 	ℎ 9 ×6	 =		
	 	 	 6 + 8 ×ℎ 5 + 	ℎ 7 		 	 	 	 	 													(10)	
where:	
§ Cp[13]	represents	the	specific	heat	of	y-fraction	of	water	from	
the	high	pressure	turbine	at	P[13]	and	T[13]	and	going	to	the	
closed	feed	water	heater	2.	
§ hfg[13]	represents	the	vaporization	enthalpy	of	y-fraction	of	
steam	from	high	pressure	turbine	at	P[13]	and	T[13]	and	going	
to	the	closed	feed	water	heater	2.	
§ h[4]	represents	the	enthalpy	of	whole	mass	fraction	of	water	
from	pump	2	at	P[4]	and	T[4]	and	going	to	the	closed	feed	
water	heater	2.	
§ h[9]	represents	the	enthalpy	of	x-fraction	of	water	from	trap	1	
and	going	to	the	closed	feed	water	heater	2.	
§ h[7]	represents	the	enthalpy	of	whole	mass	fraction	of	water	
from	closed	feed	water	2	and	going	to	the	closed	feed	water	
heater	1.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
14	
	
2.1.7	 Closed	Feed	Water	Heater	1:	
In	the	closed	feed	water	heater	1,	we	have	two	fractions	going	
to	the	heat	exchanger:	one	from	the	closed	feed	water	2	and	the	
other	from	the	high	pressure	turbine.	Also,	we	have	two	fractions	
going	out	from	the	heat	exchanger:	one	is	going	to	the	boiler	and	the	
other	is	going	to	trap	1.	Here	is	the	energy	balance	equation	for	the	
closed	feed	water	heater	1:	
	 	 6×GH 12 × 	I 12 −	IJK)[12] + 6×ℎLM[12] + ℎ 7 = 	ℎ 8 ×6 + ℎ 10 				
	 	 	 	 	 	 	 	 	 	 	 (11)	
	 	 	 where:		
§ Cp[12]	represents	the	specific	heat	of	x-fraction	of	water	from	
the	high	pressure	turbine	at	P[12]	and	T[12]	and	going	to	the	
closed	feed	water	heater	1.	
§ hfg[12]	represents	the	vaporization	enthalpy	of	x-fraction	of	
steam	from	high	pressure	turbine	at	P[12]	and	T[12]	and	going	
to	the	closed	feed	water	heater	1.	
§ h[8]	represents	the	enthalpy	of	x-fraction	of	steam	from	
closed	feed	water	1	and	going	to	trap	1.	
§ h[10]	represents	the	enthalpy	of	whole	mass	fraction	of	water	
from	closed	feed	water	1	and	going	to	the	boiler.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
15	
	
	
2.2 Desalination Plant:
We chose to work on a once through multi-stage flash distillation
system consists of two basic sections, a heat addition section and a heat
recovery section as can be seen in the Fig.4, in the next page. The heat
recovery section consists of a condenser, the distillate collection trays
and the flashing chamber. On the other hand, the heat addition section
consists mainly of a brine heater. (See Appendix B for the EES code)
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
16	
	
Figure 4 : Once through Multi-Stage Flash Distillation System
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
17	
	
To	carry	out	the	mathematical	modeling	of	the	MSF	plant,	the	
following	assumptions	are	made:		
a)	The	temperature	drops	across	each	flashing	stage	as	well	as	the	
temperature	rise	in	each	condenser	stage	is	equal.	
b)	The	effect	of	boiling	point	rise	and	non-equilibrium	losses	on	the	
stage	energy	balance	is	considered	negligible.	
	
2.1.1	 Mass	balance	modeling:	
As	seen	in	Figure	2	there	is	one	input	which	is	the	seawater	Mf	and	
two	output	which	are	distillated	water	Md	and	brine	blow	down	Mb.	So	
the	mass	flow	rate	balance	will	be:	
	 	 	 	 	 	 	 		 (12)	
And	if	we	added	the	salinity:	
	 	 	 	 	 	 	 (13)	
Node:	the	distillated	water	has	a	zero	salinity.	
The	total	distillate	mass	flow	rate	is	obtained	by:	
	 	 	 	 	 	 (14)
	 	
Where:	 		 	 	 	 	 (15)	
		
The	steam	mass	flow	rate:	
	 	 	 	 	 	 (16)
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
18	
	
2.1.2	 Temperature	Drop	Modeling:	
As	we	assumed	that	the	temperature	drop	in	every	stage	is	constant,	
so	the	equation	will	be:		
	 	 	 	 	 	 	 	 (17)	
Where:	
To:	Temperature	of	seawater	leaving	the	brine	heater,	the	top	brine	
temperature.	
Tn:	Temperature	of	brine	leaving	the	last	stage	of	the	flashing	chamber.	
n:	the	number	of	flashing	stages.	
	
2.1.3	 The	Temperature	at	each	Stage:			
	 	 	 	 	 	 	 	 (18)	
Where	i	represents	the	stage	number.	
	 	
2.1.4	 Heat	transfer	areas:	
	 	 	 The	equation	of	the	brine	heat	transfer	area	required	Ab	is:	
	 	 	 	 	 	 (19)	
Where	Ub	and	Tlmtd,b	are:	
	
	 	
	
	
Also,	the	condenser	heat	transfer	area	in	the	first	stage	is:	
	 	 	 	 	 	 (20)	
Where	Tlmtd,c		and	Uc		are:
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
19	
	
	
		 Where	Tv,1	can	be	calculated	as	flow:	
	
	
	
	
	
	
	
	
	
	
And	the	total	heat	transfer	area	can	be	calculated	is	flows:	
		 	 	 	 	 	 	 (21)
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
20	
	
2.1.5	 Flashing	Stage	Dimensions	Modeling:	
The	gate	height	at	each	stage,	GH	is:	 	
	
	 	 	 	 	
	 	 	 	 	 (22)	
	
	 	 	
	 	 And	the	brine	pool	height,	H:	
		 	 	 	 	 	 	 (23)	
	
Also,	the	width	of	each	chamber	is	calculated	by:	
	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 (24)	
	
	
2.1.6	 Performance	Modeling:	
The	performance	of	the	desalination	plants	is	expressed	as	the	
performance	ratio,	PR,	which	defined	as	the	amount	of	distillate	produced	
per	unit	of	steam	consumption.	And	is	calculated	by:	
	 	 	 	 	 	 	 	 (25)
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
21	
	
Chapter	3:	
Results	and	discussion:	
3.1 Power plant
3.1.1 The	optimum	pressure:	
The	optimum	pressure	in	the	power	plant	in	boiler,	reheat	and		extraction	
line	from	turbines	to	feed	water.	All	following	pressure	calculate	at	extraction	
equal	0.	
	
3.1.1.1 Boiler pressure
The	pressure	of	the	boiler	is	the	maximum	pressure	in	the	power	plant.	The	
pressure	set	it	to	be	12MPa	and	all	following	pressure	will	depends	on	this	
pressure.	 We	 use	 12	 MPa.	 As	 we	 increase	 the	 pressure	 of	 the	 boiler,	 the	
efficiency	 of	 the	 cycle	 will	 increase	 but	 this	 increase	 should	 have	 some	
constrain.		
	
3.1.1.2 Reheat pressure
The	best	condition	of	the	reheat	pressure	is	to	be	20-25	%	of	the	boiler	
pressure,	which	is	equal	to	2400	KPa.	We	can	see	that	from	the	following	
graph	and	table.	
Table 1: Reheat pressure
	
	
	
	
	
	
	
	
Wnet
(KW)
Efficiency
(%)
Pressure
(KPa)
71119236.197000
71739036.296500
72376936.386000
73034636.475500
73714536.555000
74419236.634500
75151436.74000
75914636.763500
76712236.83000
77547736.822500
77719536.822400
78422236.82000
Figure 5: preheat/Boiler Vs eff
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
22	
	
3.1.1.3 Extraction pressure p [12]
The extraction pressure from the HPT to CFWH1. We can see P =
2500 KPa is the best condition. This pressure cannot be lower than the
pressure of reheat.	
	
3.1.2 The	effect	of	mass	extraction	from	power	plant	to	MSF	plant		
Here in this part, we want to see the effect of the amount of mass that
extract form the power plant to the MSF plant. As we can see from the figure
and the table, the effect of the extraction is not going to effect the power plant.
If we say that we need to extract 10 % of the mass flow rate of the power plant,
we will loss 0.43% from the efficiency and if we compare this loss to how much
are we going to produce water, that loss will be nothing. The value of extraction
represent how much do we take from the power plant to the MSF. The following
table shows extraction value starts from 0% to 34% of the mass flow rate of the
power plant. The following data are at 700 KPa and we will discuss latter why
we choose this pressure for the extraction.
Wnet
(KW)
Efficiency
(%)
Pressure
(KPa)
59678031.715000
63562733.044500
67334834.214000
71041835.253500
74734736.173000
78474936.972500
Table 2: optimum pressure for P [12]
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
23	
	
Table 3: Mass extraction and effect on efficiency
Wnet
(KW)
Efficiency
(%)
Extraction
fraction
77719536.820
77629836.780.01
77540036.730.02
77450236.690.03
77360536.650.04
77270736.610.05
77181036.560.06
77091236.520.07
77001436.480.08
76911736.440.09
76821936.390.1
76373136.180.15
75924335.970.2
75475535.760.25
75026735.540.3
74667635.370.34
Figure 6: Effincy Vs Extraction fraction
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
24	
	
3.1.3 The	effect	of	the	condition	of	the	extraction	mass		
Here we are going to see, how the condition of the extraction can effect
on the power plant system. The following result is when we extract 10 % of
the mass flow rate of the power plant. As we can see, decreasing the pressure
will lead to decrease the value of hg . However, hfg will increase because as we
decrease the pressure hfg increase from the
T-S diagram. From here we can calculate the
amount of heat that will be delivered to the
MSF plant which equal to = m*hfg.. From
here, we can control the condition of the
pressure of extraction based on the needed
heat in the MSF plant.
Table4 : effect of the condition of the extraction
Q	Desalination
(KJ)
Wnet
(KW)
Efficiency
(%)
hg
(KJ/Kg)
Pressure
(KPa)
15883476857736.4127841200
15997176847536.4127811100
16116976838536.427781000
16243976831036.42774900
16379676825336.42769800
16526176821936.392763700
16686376821636.392757600
16864376825536.42749500
17067476835536.42739400
17307976855136.412725300
17612476891936.432707200
18059876969836.462675100
Figure 8: Efficiency Vs Pbrine
Figure 7: : T-S diagram shows how hfg increase
as pressure decreases
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
25	
	
3.1.4 Make	up	water	for	the	power	plant:		
The losses in the mass flow rate from the power plant during the extraction
to the MSF plant should be compensating. Usually the makeup water that for the
power plant is water at 25 Co
. in this project we tried to see how we could use the
same water that used in the MSF plant. Water that come back again will have less
energy than that delivered to MSF because the energy used to heat up the see
water temperature.
1- Using the water from the MSF:
Steam that used in MSF plant will have hg at the extraction pressure. The
outlet of the brine heater will have hf at the extraction pressure. In this case, we
can use this water and pump it back to the open feed eater at the same pressure of
the OFWH. This water will be the makeup water for the power plant. We can see
from the table 5, how the efficiency will be if we return the water from MSF plant.
Table 5: Efficiency with returning water from MSF
Wnet
(KW)
Efficiency
(%)
b
77719536.820
77629836.780.01
77540036.730.02
77450236.690.03
77360536.650.04
77270736.610.05
77181036.560.06
77091236.520.07
77001436.480.08
76911736.440.09
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
26	
	
2- Using water at 25Co
As we extract steam from power plant we should have make up water to
complete the cycle. In this case we will have makeup water in 25 C. we will pump
this water to same pressure of OFWH. The flowing data are at 700 KPa for the
make water and its efficiency.
Table 6: Efficiency with returning water 25 C
Wnet
(KW)
Efficiency
(%)
b
77719536.820
77557136.740.01
77394636.650.02
77232136.570.03
77069736.490.04
76907236.410.05
76744736.320.06
76582336.240.07
76419836.160.08
76257336.070.09
3.1.5 Comparison	between	data:	
This table will show how much is the difference in efficiency and Wnet between make
up water from MSF or at 25 C
Defiance
(KW)
Wnet
(KW)
Wnet
(KW)
Defiance
(%)
Efficiency
(%)
Efficiency
(%)
b
0777195777195036.8236.820
7277755717762980.0436.7436.780.01
14547739467754000.0836.6536.730.02
21817723217745020.1236.5736.690.03
29087706977736050.1636.4936.650.04
36357690727727070.236.4136.610.05
43637674477718100.2436.3236.560.06
50897658237709120.2836.2436.520.07
58167641987700140.3236.1636.480.08
65447625737691170.3736.0736.440.09
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
27	
	
Figure 9: the effect of make water in Efficiency
36
36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9
0 0.02 0.04 0.06 0.08 0.1
b	Vs	Efficiency	
Back	from	MSF at	25	C
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
28	
	
	
	
	
	
	
	
	
	
	
	
Figure 10: The effect of make water in Work net
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
760000
762000
764000
766000
768000
770000
772000
774000
776000
778000
0 0.02 0.04 0.06 0.08 0.1
b	Vs	Wnet
Back	from	MSF At	25	C
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
29	
	
3.2 MSF Plant
In MSF plant, we are going to see how much steam do we need from the
power plant to produce 378.8 Kg/s of desalt water. Also, how can the temperature of
the steam can affect the performance ration of the MSF.
3.2.1 The	effect	of	condition	of	the	steam		
As we see previously how the extraction condition can effect on the power plant.
It is also effect on MSF. As we increase the pressure of extraction, the temperature of
the steam will increase. Therefore, the temperature of top brine will increase also. We
can see how temperature will be difference with pressure in the following table.
Table 7: pressure and its temperatures
TsatPextraction
1881200
184.11100
179.91000
175.4900
170.4800
165700
158.9600
151.9500
143.6400
133.6300
120.2200
99.63100
Increasing the pressure of extraction will led to increase in performance ratio and
increasing in number of stages. In addition, it will led to decrease the amount of steam
that need in MSF plant. The following table shows how temperature will effect in the
energy needed (Q) and number of stages.
Table 8: steam temperature and its effect on Q and number of stages
MsteamQ (KJ)PR∆T (Co
)nTn (Co
)To (Co
)
95.70492118373.9582.752440106
90.839332000254.172.82540110
80.819291756904.6872.7586212940120
73.099191567515.1822.81253240130
66.996821416115.6542.7777783640140
62.067841292236.1032.754040150
58.026961188926.5282.7906984340160
54.692461101556.9262.7659574740170
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
30	
	
Tn: Brine Temperature in last stage
To: Top brine temperature
n: Total number of stages
∆T: The temperature drop per stage
PR: performance ratio
Q: heat need in brine heater
In	figure	11,	we	can	see	the	relation	between	the	top	brine	temperature,	which	is	(Tsat	–	10),	
and	 the	 number	 of	 stages.	 As	 we	 increases	 number	 of	 stages	 the	 performance	 ratio	 will	
increases.			
	
Figure 11: number of stage Vs Top brine temperature
y	=	0.3613x	- 14.543
20
25
30
35
40
45
50
100 110 120 130 140 150 160 170
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
31	
	
The	following	figure	shows,	what	is	the	relation	between	the	top	brine	temperature	and	mass	
flow	rate	of	the	steam.	As	we	increase	temperature	of	the	steam	we	will	need	less	mass	flow	
rate	so	less	amount	of	extraction	from	the	power	plant.			
	
	
Figure 12: Msteam Vs Top brine temperature
We can see from the following graph how performance ratio will effect by increasing the top
brine temperature. Actually increasing the temperature led to increase number of stage which
is going to increase the performance ratio.
	
	
Figure 13: performance ratio Vs Top brine temperature
	
	
40
50
60
70
80
90
100
100 110 120 130 140 150 160 170
y	=	0.0455x	- 0.7828
1
2
3
4
5
6
7
8
100 110 120 130 140 150 160 170
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
32	
	
3.2.2 Extraction	“b”	from	power	plant	to	the	MSF	
b = ms / mp
ms: mass of steam required in MSF
mp: mass flow rate of water in power plant, which is 800 Kg/s
The following table show how much “b” we need to satisfy the MSF at different top
brine temperature.
Table 9: table show how much “b” we need to satisfy the MSF at different top brine temperature
bmsteam
(Kg/s)
Q
(KJ)
To
(Co
)
0.11963195.7049211837106
0.11354990.83933200025110
0.10102480.81929175690120
0.09137473.09919156751130
0.08374666.99682141611140
0.07758562.06784129223150
0.07253458.02696118892160
0.06836654.69246110155170
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
33	
	
Chapter	4:	
Conclusion	
To	sum	up,	we	focused	on	this	project	to	find	the	optimum	performance	ratio	by	
combining	the	steam	power	plant	with	the	MSF	distillation	plant.	First,	we	worked	on	the	
power	plant	and	we	found	out	the	best	reheat	pressure	to	be	2400	kPa.	Then,	we	looked	on	
the	effect	of	the	extraction,	which	is	going	to	supply	steam	to	the	MSF	plant,	on	the	
efficiency	of	the	power	plant	and	we	found	out	that	if	we	take	8%	of	the	mass	in	the	power	
plant	the	efficiency	will	decrease	by	1%	which	is	very	small	compared	to	what	we	will	get	in	
the	MSF.	After	that,	we	found	that	the	best	pressure	of	the	extraction	to	be	700	kPa	and	we	
looked	on	the	effect	of	the	makeup	mass	to	the	power	plant.	If	the	makeup	was	water	at	
temperature	of	165	C	or	water	at	25	C	and	we	found	that	the	efficiency	will	decrease	by	
0.36%	if	we	put	a	makeup	water	at	25	C.	Then,	we	looked	at	the	MSF	and	see	the	effect	of	
the	increasing	the	temperature	of	the	supplied	steam.	As	we	increase	the	steam	
temperature,	the	number	of	stages	increase	which	will	lead	us	to	an	increase	in	the	
performance	ratio.	If	we	increase	the	steam	temperature	from	106	C	to	170	C,	the	
performance	ratio	will	increase	by	almost	100%.	These	changes	caused	big	improvement	on	
the	combination	of	the	power	plant	and	MSF	which	will	save	a	lot	of	money.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
34	
	
References:	
[1]	Wikipedia	
[2]	acwapower.com	
[3]	Hisham	T.	El-Dessouky	and	Hisham	M.	Ettouney	"Fundamentals	of	Salt	
Water	Desalination",	Elsevier,	2002.	
[4]	MOHAMMED	A.	ANTAR	and	SYED	M.	ZUBAIR	“Analysis	and	Assessment	of	
Performance	of	a	MSF	Evaporation	Desalination	Plant”,February	2010.
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
35	
	
	
	
	
	
	
	
	
	
	
	
Appendix	A:
File:powerplant6withoptimumpresuure.EES4/25/20169:30:38PMPage1
EESVer.9.901:#1696:DepartmentofMechanicalEngineeringKingFahdUniversityPetroleumandMinerals
Boiler
HPTLPT
Condenser
CFWH1CFWH2OPWH
P2
P1
Trap1Trap2
(11)
(10)
(12)(13)
(14)
(15)
(16)
(17)
(1)(2)
(3)(4)
(5)
(6)
(7)
(8)
(9)
Pboiler=
*
****
T11=
*
**
T12=
*
**
P12=
*
***
Preheat=
*
***
T14=
*
****
x=
*
*****
P13=
*
***
T13=
*
****
y=
*
*****
z=
*
*****
T15=
*
**P16=
*
**
T16=
*
****
b=
*
******
m=
*
******
n=
*
*****
Pcond=
*
**
T17=
*
***
P2=
*
**
P1=
*
**
T3=
*
****
T4=
*
****T7=
*
****
T5=
*
**
T6=
*
****
T8=
*
****
T10=
*
**
Pbrine,18=
*
**
b=
*
******
T2=
*
****
sys,new=
*
****
Preheat=
*
***
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 1
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Knowen information
Pboiler = 12000
P12 = 2600
P13 = 2500
Preheat = 2400
P16 = 900
Pcond = 7.5
T11 = 565
T15 = 550
HPT = 0.8
LPT = 0.85
b = 0.07254
Pbrine,18 = 700
rat =
Preheat
Pboiler
Qdesel = b · M · hbrinefg,18
M = 800
CFWH1 = CFWH2
CFWH2 = 0.4
massdes = M · b
Heat Transfer Coefficient of steam at Steam Temperature
hbrinefg,18 = Enthalpyvaporization SteamIAPWS , P = Pbrine,18
HPT
h11 = h Steam , T = T11 , P = Pboiler
s11 = s Steam , T = T11 , P = Pboiler
Isontropic turbine
s11 = s12
s11 = s13
s11 = s14
hiso,12 = h Steam , s = s12 , P = P12
hiso,13 = h Steam , s = s13 , P = P13
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 2
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
hiso,14 = h Steam , s = s14 , P = Preheat
HPT =
h11 – h12
h11 – hiso,12
HPT =
h11 – h13
h11 – hiso,13
HPT =
h11 – h14
h11 – hiso,14
T12 = T Steam , s = s12 , P = P12
T13 = T Steam , s = s13 , P = P13
T14 = T Steam , s = s14 , P = Preheat
1
Mass balance
1 = z + x + y
WHPT = M · x · h11 – h12 + y · h11 – h13 + z · h11 – h14
LPT
h15 = h Steam , T = T15 , P = Preheat
s15 = s Steam , T = T15 , P = Preheat
Isontropic turbine
s15 = s16
s15 = s17
hiso,16 = h Steam , s = s16 , P = P16
hiso,17 = h Steam , s = s17 , P = Pcond
LPT =
h15 – h16
h15 – hiso,16
LPT =
h15 – h17
h15 – hiso,17
T16 = T Steam , s = s16 , P = P16
T17 = T Steam , s = s17 , P = Pcond
2
Mass Balance
z = m + n + b
hbrine,18 = h Steam , x = 1 , P = Pbrine,18
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 3
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
WLPT = M · z · h15 – m · h16 – n · h17 – b · hbrine,18
Condencer
h1 = h water , P = Pcond , x = 0
To calculate the work in pump 1
v1 = v water , P = Pcond , x = 0
Qout = M · n · h17 – h1
Pump 1
P2 = P16
P1 = Pcond
Wp1 = M · n · v1 · P2 – P1
M · n · h2 – h1 = Wp1
OFWH
3
h2 · n + h16 · m + h6 · x + y + b · h20 = h3
Hrecovery = M · n · h2 + h16 · m + h6 · x + y + b · h20
hnew,3 =
Hrecovery
M
h21 = h water , T = 25 , P = 101
h3 = h water , P = P16 , x = 0
To calculate the work in pump 2
v3 = v water , P = P16 , x = 0
T3 = T water , P = P16 , h = hnew,3
T2 = T water , P = P16 , h = h2
T6 = T water , P = P16 , h = h6
Pump 2
P4 = Pboiler
P3 = P16
Wp2 = M · v3 · P4 – P3
M · h4 – hnew,3 = Wp2
T4 = T3
pump 3
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 4
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
P16 = P20
v19 = v water , P = Pbrine,18 , x = 0
WP3 = M · b · P20 – Pbrine,18 · v19
WP3 = M · b · h20 – h19
h19 = h water , P = Pbrine,18 , x = 0
CFWH 2
4
y · Cp13 · T13 – Tsat,13 + y · hfg,13 + h4 + h9 · x = x + y · h5 + h7
Tsat,13 = Tsat water , P = P13
Tavg,13 =
T13 + Tsat,13
2
Cp13 = Cp water , T = Tavg,13 , P = P13
hfg,13 = Enthalpyvaporization Steam , P = P13
T7 – T4
T13 – T4
= CFWH2
T5 = T water , P = P13 , x = 0
h7 = h water , T = T7 , P = P4
Trap 2
h5 = h6
h5 = h water , P = P13 , x = 0
CFWH 1
5
x · Cp12 · T12 – Tsat,12 + x · hfg,12 + h7 = h8 · x + h10
Tsat,12 = Tsat water , P = P12
Tavg,12 =
T12 + Tsat,12
2
Cp12 = Cp water , T = Tavg,12 , P = P12
hfg,12 = Enthalpyvaporization Steam , P = P12
h8 = h water , P = P12 , x = 0
T10 – T7
T12 – T7
= CFWH1
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 5
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
T8 = T water , P = P12 , x = 0
h10 = h water , T = T10 , P = P4
Trap 1
h8 = h9
Boiler
Qin = M · h11 – h10 + z · h15 – h14
The System effecince
Wtotal,pump = Wp1 + Wp2 + WP3
Wnet = WLPT + WHPT – Wp1 – Wp2 – WP3
sys,new =
Wnet
Qin
· 100
HC,2 = M · n · h2
HC,4 = M · h4
HC,5 = M · x + y · h5
HC,6 = M · x + y · h6
HC,7 = M · h7
HC,8 = M · x · h8
HC,9 = M · x · h9
HC,10 = M · h10
HC,11 = M · h11
HC,12 = M · x · h12
HC,13 = M · y · h13
HC,14 = M · z · h14
HC,15 = M · z · h15
HC,16 = M · m · h16
HC,17 = M · n · h17
HC,18 = M · b · hbrine,18
SOLUTION
Unit Settings: SI C kPa kJ mass deg
b = 0.07254 CFWH1 = 0.4
CFWH2 = 0.4 HPT = 0.8
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 6
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
LPT = 0.85 sys,new = 36.51sys,new = 36.51
Hrecovery = 594343 m = 0.07824
massdes = 58.03 M = 800
n = 0.4825 Pboiler = 12000
Pcond = 7.5 Preheat = 2400
Qdesel = 119881 Qin = 2.111E+06
Qout = 907519 rat = 0.2
WHPT = 309122 WLPT = 471878
Wnet = 770684 Wp1 = 347.3
Wp2 = 9956 WP3 = 12.86
Wtotal,pump = 10316 x = 0.1523
y = 0.2144 z = 0.6333
38 potential unit problems were detected.
Arrays Table: Main
Cpi hi hbrine,i HC,i hfg,i hiso,i hnew,i Pi Pbrine,i si
1 168.8 7.5
2 169.7 65487 900
3 742.9 742.9 900
4 755.4 604299 12000
5 962 282218
6 962 282218
7 995.3 796218
8 971.7 118388
9 971.7 118388
10 1163 930464
11 3519 2.815E+06 6.699
12 2.612 3145 383111 1831 3051 2600 6.699
13 2.605 3137 538036 1840 3041 2500 6.699
14 3128 1.585E+06 3031 6.699
15 3575 1.811E+06 7.483
16 3294 206156 3244 900 7.483
17 2520 972659 2334 7.483
18 2763 160361 700
19 697.4
20 697.6 900
21 104.8
Arrays Table: Main
Ti Tavg,i Tsat,i vi hbrinefg,i
1 0.001008
2 40.33
3 175.4 0.001121
4 175.4
5 224
6 175.4
7 230.7
8 226.1
9
10 266
11 565
12 319 272.6 226.1
13 313.7 268.8 224
14 308.2
15 550
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 7
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Arrays Table: Main
Ti Tavg,i Tsat,i vi hbrinefg,i
16 389.9
17 40.3
18 2066
19 0.001108
20
21
There are a total of 114 equations in the Main program.
Block Rel. Res. Abs. Res. Units Calls Time(ms) Equations
0 0.000E+00 0.000E+00 OK 1 0 P_boiler=12000
0 0.000E+00 0.000E+00 OK 1 0 P[12]=2600
0 0.000E+00 0.000E+00 OK 1 0 P[13]=2500
0 0.000E+00 0.000E+00 OK 1 0 P_reheat=2400
0 0.000E+00 0.000E+00 OK 1 0 P[16]=900
0 0.000E+00 0.000E+00 OK 1 0 P_cond=7.5
0 0.000E+00 0.000E+00 OK 1 0 T[11]=565
0 0.000E+00 0.000E+00 OK 1 0 T[15]=550
0 0.000E+00 0.000E+00 OK 1 0 Eta_HPT=0.8
0 0.000E+00 0.000E+00 OK 1 0 Eta_LPT=0.85
0 0.000E+00 0.000E+00 OK 1 0 b=.07254
0 0.000E+00 0.000E+00 OK 1 0 P_brine[18]=700
0 0.000E+00 0.000E+00 OK 1 0 M_dot=800
0 0.000E+00 0.000E+00 OK 1 0 epsilon_CFWH2=0.4
0 0.000E+00 0.000E+00 OK 4 0 rat=P_reheat/P_boiler
0 0.000E+00 0.000E+00 OK 4 0 mass_des=M_dot*b
0 0.000E+00 0.000E+00 ? 4 0 h_brinefg[18]=Enthalpy_vaporization(Steam_IAPWS,P=P_brine[18])
0 0.000E+00 0.000E+00 ? 4 0 h[11]=Enthalpy(Steam,T=T[11],P=P_boiler)
0 0.000E+00 0.000E+00 ? 4 0 s[11]=Entropy(Steam,T=T[11],P=P_boiler)
0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[12]
0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[13]
0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[14]
0 0.000E+00 0.000E+00 ? 4 0 h_iso[12]=Enthalpy(Steam,S=S[12],P=P[12])
0 0.000E+00 0.000E+00 ? 4 0 h_iso[13]=Enthalpy(Steam,S=S[13],P=P[13])
0 0.000E+00 0.000E+00 ? 4 0 h_iso[14]=Enthalpy(Steam,S=S[14],P=P_reheat)
0 1.355E-19 -5.073E-17 OK 4 0 Eta_HPT=(h[11]-h[12])/(h[11]-h_iso[12])
0 1.355E-19 5.182E-17 OK 4 0 Eta_HPT=(h[11]-h[13])/(h[11]-h_iso[13])
0 2.033E-19 -7.942E-17 OK 4 0 Eta_HPT=(h[11]-h[14])/(h[11]-h_iso[14])
0 0.000E+00 0.000E+00 ? 4 0 T[12]=Temperature(Steam,S=S[12],P=P[12])
0 0.000E+00 0.000E+00 ? 4 0 T[13]=Temperature(Steam,S=S[13],P=P[13])
0 0.000E+00 0.000E+00 ? 4 0 T[14]=Temperature(Steam,S=S[14],P=P_reheat)
0 0.000E+00 0.000E+00 ? 4 0 h[15]=Enthalpy(Steam,T=T[15],P=P_reheat)
0 0.000E+00 0.000E+00 ? 4 0 s[15]=Entropy(Steam,T=T[15],P=P_reheat)
0 0.000E+00 0.000E+00 OK 4 0 s[15]=s[16]
0 0.000E+00 0.000E+00 OK 4 0 s[15]=s[17]
0 0.000E+00 0.000E+00 ? 4 0 h_iso[16]=Enthalpy(Steam,S=s[16],P=P[16])
0 0.000E+00 0.000E+00 ? 4 0 h_iso[17]=Enthalpy(Steam,S=s[17],P=P_cond)
0 1.276E-19 3.587E-17 OK 4 0 Eta_LPT=(h[15]-h[16])/(h[15]-h_iso[16])
0 1.276E-19 1.346E-16 OK 4 0 Eta_LPT=(h[15]-h[17])/(h[15]-h_iso[17])
0 0.000E+00 0.000E+00 ? 4 0 T[16]=Temperature(Steam,S=s[16],P=P[16])
0 0.000E+00 0.000E+00 ? 4 0 T[17]=Temperature(Steam,S=s[17],P=P_cond)
0 0.000E+00 0.000E+00 ? 4 0 h_brine[18]=Enthalpy(Steam,x=1,P=P_brine[18])
0 0.000E+00 0.000E+00 ? 4 0 h[1]=Enthalpy(Water,P=P_cond,x=0)
0 0.000E+00 0.000E+00 ? 4 0 v[1]=Volume(Water,P=P_cond,x=0)
0 0.000E+00 0.000E+00 OK 4 0 P[2]=P[16]
0 0.000E+00 0.000E+00 OK 4 0 P[1]=P_cond
0 0.000E+00 0.000E+00 ? 4 0 h[21]=Enthalpy(Water,T=25,P=101)
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 8
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 ? 4 0 h[3]=Enthalpy(Water,P=P[16],x=0)
0 0.000E+00 0.000E+00 ? 4 0 v[3]=Volume(Water,P=P[16],x=0)
0 0.000E+00 0.000E+00 OK 4 0 P[4]=P_boiler
0 0.000E+00 0.000E+00 OK 4 0 P[3]=P[16]
0 0.000E+00 0.000E+00 OK 4 0 W_p2=m_dot*v[3]*(P[4]-P[3])
0 0.000E+00 0.000E+00 OK 4 0 P[16]=P[20]
0 0.000E+00 0.000E+00 ? 4 0 v[19]=Volume(Water,P=P_brine[18],x=0)
0 0.000E+00 0.000E+00 OK 4 0 W_P3=m_dot*b*(P[20]-P_brine[18])*v[19]
0 0.000E+00 0.000E+00 ? 4 0 h[19]=Enthalpy(Water,P=P_brine[18],x=0)
0 0.000E+00 0.000E+00 ? 4 0 T_sat[13]=T_sat(Water,P=P[13])
0 0.000E+00 0.000E+00 OK 4 0 T_avg[13]=((T[13]+T_sat[13])/2)
0 0.000E+00 0.000E+00 ? 4 0 Cp[13]=Cp(Water,T=T_avg[13],P=P[13])
0 0.000E+00 0.000E+00 ? 4 15 h_fg[13]=Enthalpy_vaporization(Steam,P=P[13])
0 0.000E+00 0.000E+00 ? 4 0 T[5]=Temperature(Water,P=P[13],x=0)
0 0.000E+00 0.000E+00 ? 4 0 h[5]=Enthalpy(Water,P=P[13],x=0)
0 0.000E+00 0.000E+00 ? 4 0 T_sat[12]=T_sat(Water,P=P[12])
0 0.000E+00 0.000E+00 OK 4 0 T_avg[12]=((T[12]+T_sat[12])/2)
0 0.000E+00 0.000E+00 ? 4 0 Cp[12]=Cp(Water,T=T_avg[12],P=P[12])
0 0.000E+00 0.000E+00 ? 4 16 h_fg[12]=Enthalpy_vaporization(Steam,P=P[12])
0 0.000E+00 0.000E+00 ? 4 0 h[8]=Enthalpy(Water,P=P[12],x=0)
0 0.000E+00 0.000E+00 ? 4 0 T[8]=Temperature(Water,P=P[12],x=0)
0 0.000E+00 0.000E+00 OK 4 0 h[8]=h[9]
0 0.000E+00 0.000E+00 OK 4 0 H_C[11]=m_dot*h[11]
0 0.000E+00 0.000E+00 OK 4 0 H_C[18]=m_dot*(b)*h_brine[18]
0 0.000E+00 0.000E+00 OK 4 0 Q_desel=b*M_dot*h_brinefg[18]
0 0.000E+00 0.000E+00 OK 4 0 epsilon_CFWH1=epsilon_CFWH2
0 1.087E-16 -1.398E-15 OK 4 0 W_P3=m_dot*b*(h[20]-h[19])
0 0.000E+00 0.000E+00 OK 4 0 h[5]=h[6]
0 0.000E+00 0.000E+00 ? 4 0 T[6]=Temperature(Water,P=P[16],h=h[6])
1 0.000E+00 0.000E+00 OK 48 0 1=(z+x+y)
1 0.000E+00 0.000E+00 OK 48 0 z=(m+n+b)
1 0.000E+00 0.000E+00 OK 40 0 W_p1=m_dot*(n*v[1]*(P[2]-P[1]))
1 1.919E-08 -6.663E-06 OK 48 0 m_dot*(n)*(h[2]-h[1])=W_p1
1 1.121E-11 -8.325E-09 OK 64 0 h[2]*(n)+h[16]*m+h[6]*(x+y)+b*h[20]=h[3]
1 1.121E-11 6.662E-06 OK 72 0 H_recovery=m_dot*(n*h[2]+h[16]*m+h[6]*(x+y)+b*h[20])
1 0.000E+00 0.000E+00 OK 40 0 h_new[3]=H_recovery/m_dot
1 2.002E-14 3.512E-12 ? 82 109 T[3]=Temperature(Water,P=P[16],h=h_new[3])
1 6.245E-19 -6.217E-15 OK 40 0 m_dot*(h[4]-h_new[3])=W_p2
1 0.000E+00 0.000E+00 OK 40 0 T[4]=T[3]
1 0.000E+00 0.000E+00 OK 56 0 y*Cp[13]*(T[13]-T_sat[13])+y*h_fg[13]+h[4]+h[9]*x=(x+y)*h[5]+h[7]
1 1.152E-18 4.608E-19 OK 40 0 (T[7]-T[4])/(T[13]-T[4])=epsilon_CFWH2
1 1.104E-16 -1.099E-13 ? 40 0 h[7]=Enthalpy(Water,T=T[7],P=P[4])
1 8.468E-20 1.110E-16 OK 48 0 x*Cp[12]*(T[12]-T_sat[12])+x*h_fg[12]+h[7]=h[8]*x+h[10]
1 1.897E-18 7.589E-19 OK 40 0 (T[10]-T[7])/(T[12]-T[7])=epsilon_CFWH1
1 2.148E-17 -2.498E-14 ? 40 0 h[10]=Enthalpy(Water,T=T[10],P=P[4])
2 3.174E-10 -9.812E-05 OK 3 0 W_HPT=m_dot*(x*(h[11]-h[12])+y*(h[11]-h[13])+z*(h[11]-h[14]))
3 3.174E-10 -1.498E-04 OK 3 0 W_LPT=m_dot*(z*h[15]-m*h[16]-n*h[17]-b*h_brine[18])
4 2.525E-09 2.291E-03 OK 3 0 Q_out=m_dot*(n*(h[17]-h[1]))
5 4.229E-14 1.705E-12 ? 3 16 T[2]=Temperature(Water,P=P[16],h=h[2])
6 2.525E-09 5.329E-03 OK 3 0 Q_in=m_dot*(h[11]-h[10]+z*(h[15]-h[14]))
7 3.786E-11 3.905E-07 OK 3 0 W_total_pump=W_p1+W_p2+W_p3
8 2.525E-09 1.946E-03 OK 3 0 W_net=W_LPT+W_HPT-W_p1-W_p2-W_p3
9 4.218E-14 1.540E-12 OK 3 0 Eta_sys_new=(W_net/q_in)*100
10 3.786E-11 2.479E-06 OK 3 0 H_C[2]=m_dot*n*h[2]
11 2.525E-09 1.526E-03 OK 3 0 H_C[4]=m_dot*h[4]
12 3.174E-10 -8.958E-05 OK 3 0 H_C[5]=m_dot*(x+y)*h[5]
13 3.174E-10 -8.958E-05 OK 3 0 H_C[6]=m_dot*(x+y)*h[6]
14 2.525E-09 2.010E-03 OK 3 0 H_C[7]=m_dot*h[7]
15 3.174E-10 -3.758E-05 OK 3 0 H_C[8]=m_dot*(x)*h[8]
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 9
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
16 3.174E-10 -3.758E-05 OK 3 0 H_C[9]=m_dot*(x)*h[9]
17 2.525E-09 2.349E-03 OK 3 0 H_C[10]=m_dot*h[10]
18 3.174E-10 -1.216E-04 OK 3 0 H_C[12]=m_dot*x*h[12]
19 2.525E-09 1.358E-03 OK 3 0 H_C[13]=m_dot*(y)*h[13]
20 2.525E-09 4.001E-03 OK 3 0 H_C[14]=m_dot*(z)*h[14]
21 2.525E-09 4.572E-03 OK 3 0 H_C[15]=m_dot*(z)*h[15]
22 3.174E-10 -6.544E-05 OK 3 0 H_C[16]=m_dot*(m)*h[16]
23 2.525E-09 2.456E-03 OK 3 0 H_C[17]=m_dot*(n)*h[17]
Parametric Table: overall viwe
b T10 sys,new Wnet T3 hnew,3 x y z n
Run 1 0 266 36.82 777195 175.4 742.9 0.1523 0.2144 0.6333 0.5428
Run 2 0.01 266 36.78 776298 175.4 742.9 0.1523 0.2144 0.6333 0.5345
Run 3 0.02 266 36.73 775400 175.4 742.9 0.1523 0.2144 0.6333 0.5262
Run 4 0.03 266 36.69 774502 175.4 742.9 0.1523 0.2144 0.6333 0.5179
Run 5 0.04 266 36.65 773605 175.4 742.9 0.1523 0.2144 0.6333 0.5095
Run 6 0.05 266 36.61 772707 175.4 742.9 0.1523 0.2144 0.6333 0.5012
Run 7 0.06 266 36.56 771810 175.4 742.9 0.1523 0.2144 0.6333 0.4929
Run 8 0.07 266 36.52 770912 175.4 742.9 0.1523 0.2144 0.6333 0.4846
Run 9 0.08 266 36.48 770014 175.4 742.9 0.1523 0.2144 0.6333 0.4763
Run 10 0.09 266 36.44 769117 175.4 742.9 0.1523 0.2144 0.6333 0.468
Run 11 0.1 266 36.39 768219 175.4 742.9 0.1523 0.2144 0.6333 0.4597
Run 12 0.11 266 36.35 767321 175.4 742.9 0.1523 0.2144 0.6333 0.4514
Run 13 0.12 266 36.31 766424 175.4 742.9 0.1523 0.2144 0.6333 0.4431
Run 14 0.13 266 36.27 765526 175.4 742.9 0.1523 0.2144 0.6333 0.4347
Run 15 0.14 266 36.22 764629 175.4 742.9 0.1523 0.2144 0.6333 0.4264
Run 16 0.15 266 36.18 763731 175.4 742.9 0.1523 0.2144 0.6333 0.4181
Run 17 0.16 266 36.14 762833 175.4 742.9 0.1523 0.2144 0.6333 0.4098
Run 18 0.17 266 36.1 761936 175.4 742.9 0.1523 0.2144 0.6333 0.4015
Run 19 0.18 266 36.05 761038 175.4 742.9 0.1523 0.2144 0.6333 0.3932
Run 20 0.19 266 36.01 760140 175.4 742.9 0.1523 0.2144 0.6333 0.3849
Run 21 0.2 266 35.97 759243 175.4 742.9 0.1523 0.2144 0.6333 0.3766
Run 22 0.21 266 35.93 758345 175.4 742.9 0.1523 0.2144 0.6333 0.3683
Run 23 0.22 266 35.88 757448 175.4 742.9 0.1523 0.2144 0.6333 0.36
Run 24 0.23 266 35.84 756550 175.4 742.9 0.1523 0.2144 0.6333 0.3516
Run 25 0.24 266 35.8 755652 175.4 742.9 0.1523 0.2144 0.6333 0.3433
Run 26 0.25 266 35.76 754755 175.4 742.9 0.1523 0.2144 0.6333 0.335
Run 27 0.26 266 35.71 753857 175.4 742.9 0.1523 0.2144 0.6333 0.3267
Run 28 0.27 266 35.67 752959 175.4 742.9 0.1523 0.2144 0.6333 0.3184
Run 29 0.28 266 35.63 752062 175.4 742.9 0.1523 0.2144 0.6333 0.3101
Run 30 0.29 266 35.59 751164 175.4 742.9 0.1523 0.2144 0.6333 0.3018
Run 31 0.3 266 35.54 750267 175.4 742.9 0.1523 0.2144 0.6333 0.2935
Run 32 0.31 266 35.5 749369 175.4 742.9 0.1523 0.2144 0.6333 0.2852
Run 33 0.32 266 35.46 748471 175.4 742.9 0.1523 0.2144 0.6333 0.2769
Run 34 0.33 266 35.42 747574 175.4 742.9 0.1523 0.2144 0.6333 0.2685
Run 35 0.34 266 35.37 746676 175.4 742.9 0.1523 0.2144 0.6333 0.2602
Parametric Table: overall viwe
m
Run 1 0.0905
Run 2 0.08881
Run 3 0.08712
Run 4 0.08543
Run 5 0.08374
Run 6 0.08205
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 10
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Parametric Table: overall viwe
m
Run 7 0.08036
Run 8 0.07867
Run 9 0.07698
Run 10 0.07529
Run 11 0.0736
Run 12 0.07191
Run 13 0.07022
Run 14 0.06853
Run 15 0.06684
Run 16 0.06515
Run 17 0.06346
Run 18 0.06177
Run 19 0.06008
Run 20 0.05839
Run 21 0.0567
Run 22 0.05501
Run 23 0.05332
Run 24 0.05163
Run 25 0.04994
Run 26 0.04825
Run 27 0.04656
Run 28 0.04487
Run 29 0.04318
Run 30 0.04149
Run 31 0.0398
Run 32 0.03811
Run 33 0.03642
Run 34 0.03473
Run 35 0.03304
Parametric Table: O.P for P_12
P12 sys,new Wnet x z y m n
Run 1 5000 31.71 596780 0.4112 0.4441 0.1447 0.04252 0.4016
Run 2 4500 33.04 635627 0.3552 0.4801 0.1647 0.05165 0.4285
Run 3 4000 34.21 673348 0.301 0.5171 0.1819 0.06104 0.4561
Run 4 3500 35.25 710418 0.2479 0.5559 0.1962 0.07088 0.485
Run 5 3000 36.17 747347 0.195 0.5973 0.2076 0.08139 0.516
Run 6 2500 36.97 784749 0.1415 0.6428 0.2158 0.09291 0.5499
Parametric Table: O.P for P_13
P13 sys,new Wnet x z y m n
Run 1 2000 36.88 796997 0.2084 0.6563 0.1353 0.09147 0.4923
Run 2 1900 37.01 803773 0.2123 0.6664 0.1213 0.09493 0.4989
Run 3 1800 37.14 810485 0.2163 0.6766 0.1071 0.09839 0.5057
Run 4 1700 37.25 817126 0.2205 0.687 0.09246 0.1019 0.5126
Run 5 1600 37.35 823694 0.2249 0.6976 0.07744 0.1054 0.5198
Run 6 1500 37.44 830179 0.2295 0.7085 0.06195 0.1089 0.5271
Run 7 1400 37.51 836574 0.2343 0.7197 0.04595 0.1124 0.5348
Run 8 1300 37.57 842866 0.2394 0.7312 0.02936 0.116 0.5427
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 11
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Parametric Table: O.P for P_reheat
Preheat rat sys,new Wnet x z y m n
Run 1 7000 0.5833 36.19 711192 0.1523 0.6333 0.2144 0.09917 0.5341
Run 2 6500 0.5417 36.29 717390 0.1523 0.6333 0.2144 0.09855 0.5347
Run 3 6000 0.5 36.38 723769 0.1523 0.6333 0.2144 0.09789 0.5354
Run 4 5500 0.4583 36.47 730346 0.1523 0.6333 0.2144 0.09717 0.5361
Run 5 5000 0.4167 36.55 737145 0.1523 0.6333 0.2144 0.09639 0.5369
Run 6 4500 0.375 36.63 744192 0.1523 0.6333 0.2144 0.09554 0.5377
Run 7 4000 0.3333 36.7 751514 0.1523 0.6333 0.2144 0.09459 0.5387
Run 8 3500 0.2917 36.76 759146 0.1523 0.6333 0.2144 0.09351 0.5398
Run 9 3000 0.25 36.8 767122 0.1523 0.6333 0.2144 0.09228 0.541
Run 10 2500 0.2083 36.82 775477 0.1523 0.6333 0.2144 0.09083 0.5425
Run 11 2400 0.2 36.82 777195 0.1523 0.6333 0.2144 0.0905 0.5428
Run 12 2000 0.1667 36.8 784222 0.1523 0.6333 0.2144 0.08905 0.5442
Parametric Table: P_brine
Pbrine,18 hbrine,18 b Wnet sys,new T3 Qdesel T10
Run 1 1200 2784 0.1 768577 36.41 175.4 158834 266
Run 2 1100 2781 0.1 768475 36.41 175.4 159971 266
Run 3 1000 2778 0.1 768385 36.4 175.4 161169 266
Run 4 900 2774 0.1 768310 36.4 175.4 162439 266
Run 5 800 2769 0.1 768253 36.4 175.4 163796 266
Run 6 700 2763 0.1 768219 36.39 175.4 165261 266
Run 7 600 2757 0.1 768216 36.39 175.4 166863 266
Run 8 500 2749 0.1 768255 36.4 175.4 168643 266
Run 9 400 2739 0.1 768355 36.4 175.4 170674 266
Run 10 300 2725 0.1 768551 36.41 175.4 173079 266
Run 11 200 2707 0.1 768919 36.43 175.4 176124 266
Run 12 100 2675 0.1 769698 36.46 175.4 180598 266
Parametric Table: 1234
b T10 sys,new Wnet T3 hnew,3 x y z n
Run 1 0 263.4 37.14 822747 179.9 762.9 0.2505 0.04243 0.7071 0.586
Run 2 0.01 263.4 37.13 822602 179.9 762.9 0.2505 0.04243 0.7071 0.5776
Run 3 0.02 263.4 37.12 822456 179.9 762.9 0.2505 0.04243 0.7071 0.5692
Run 4 0.03 263.4 37.12 822311 179.9 762.9 0.2505 0.04243 0.7071 0.5608
Run 5 0.04 263.4 37.11 822165 179.9 762.9 0.2505 0.04243 0.7071 0.5524
Run 6 0.05 263.4 37.1 822019 179.9 762.9 0.2505 0.04243 0.7071 0.5439
Run 7 0.06 263.4 37.1 821874 179.9 762.9 0.2505 0.04243 0.7071 0.5355
Run 8 0.07 263.4 37.09 821728 179.9 762.9 0.2505 0.04243 0.7071 0.5271
Run 9 0.08 263.4 37.08 821583 179.9 762.9 0.2505 0.04243 0.7071 0.5187
Run 10 0.09 263.4 37.08 821437 179.9 762.9 0.2505 0.04243 0.7071 0.5103
Run 11 0.1 263.4 37.07 821291 179.9 762.9 0.2505 0.04243 0.7071 0.5018
Run 12 0.11 263.4 37.06 821146 179.9 762.9 0.2505 0.04243 0.7071 0.4934
Run 13 0.12 263.4 37.06 821000 179.9 762.9 0.2505 0.04243 0.7071 0.485
Run 14 0.13 263.4 37.05 820854 179.9 762.9 0.2505 0.04243 0.7071 0.4766
Run 15 0.14 263.4 37.04 820709 179.9 762.9 0.2505 0.04243 0.7071 0.4682
Run 16 0.15 263.4 37.04 820563 179.9 762.9 0.2505 0.04243 0.7071 0.4598
Run 17 0.16 263.4 37.03 820418 179.9 762.9 0.2505 0.04243 0.7071 0.4513
Run 18 0.17 263.4 37.02 820272 179.9 762.9 0.2505 0.04243 0.7071 0.4429
Run 19 0.18 263.4 37.02 820126 179.9 762.9 0.2505 0.04243 0.7071 0.4345
Run 20 0.19 263.4 37.01 819981 179.9 762.9 0.2505 0.04243 0.7071 0.4261
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 12
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Parametric Table: 1234
m
Run 1 0.1211
Run 2 0.1195
Run 3 0.1179
Run 4 0.1163
Run 5 0.1147
Run 6 0.1132
Run 7 0.1116
Run 8 0.11
Run 9 0.1084
Run 10 0.1068
Run 11 0.1053
Run 12 0.1037
Run 13 0.1021
Run 14 0.1005
Run 15 0.09893
Run 16 0.09735
Run 17 0.09576
Run 18 0.09418
Run 19 0.0926
Run 20 0.09102
0.1 0.2 0.3 0.4 0.5 0.6
36
36.5
37
Preheat/P,boiler
sys,new
File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 13
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
35
35.5
36
36.5
37
37.5
38
b
sys,new
0 200 400 600 800 1000 1200
36.3
36.4
36.5
Pbrine[18]
sys,new
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
36	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Appendix	B:
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 1
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Inputs
Md = 378.8 Total Distillate Flow Rate
n = 42 Total Number of Stages
Tf = 25 [C] Feed Seawater Temperature
To = 160 [C] Top Brine Temperature
Tsteam = 170 [C] Steam Temperature
Tn = 40 [C] Brine Temperature In Last Stage
Xf = 42000 [ppm] Salinity of Feed Seawater
Cp = Cp water , T = Tf , x = 0 Heat Capacity of Liquid Streams
Cd = 0.5 Weir Friction Cofficient
Vvn = 6 [m/s] Vapor Velocity in the last Stage
Vb = 180 [Kg/ms] Brine Mass Flow Rate Per Stage Width
Temprutres Calcution
Tavg =
To + Tn
2
Avrege Temperature of Brine Seawater
hfg,av = Enthalpyvaporization SteamIAPWS , T = Tavg Heat Transfer Coefficient of Braine at Avrege Temperature
hfg,steam = Enthalpyvaporization SteamIAPWS , T = Tsteam Heat Transfer Coefficient of steam at Steam Temperature
T =
To – Tn
n
The Temperature Drop Per Stage
Ti = To – T Temperature at i Stage
Tii,DELTA,T = To – T · i for i = 1 to n
T1 = Tf + n · T Seawater Temperature leavs the first stage of the condenser
T2 = T1 – T Seawater Temperature leavs the second stage of the condenser
i = Tf + n – i – 1 · T for i = 1 to n xi=Ti
flow rate
for first stage
y = Cp ·
T
hfg,av
specific ratio of Sensible Heat
Md = Mf · 1 – 1 – y
n
Mb = Mf – Md Rejected Brine Mass Flow Rate
Xf · Mf = Xb · Mb X is Salt Concentration
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 2
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Msteam = Mf · Cp ·
To – T1
hfg,steam
Steam Flow Rate
Heat transfer Area
Ab = Msteam ·
hfg,steam
Ub · Tlmtd,b
Area of Brine Preheater
Ub = 1.7194 + 3.2063 · 10
– 3
· Tsteam + 1.5971 · 10
– 5
· Tsteam
2
– 1.9918 · 10
– 7
· Tsteam
3
Tlmtd,b =
Tsteam – To – Tsteam – T1
ln
Tsteam – To
Tsteam – T1
Logarithmic Mean Temperature
Ac =
Mf · Cp · T1 – T2
Uc · Tlmtd,c
Area of Condenser
Uc = 1.7194 + 3.2063 · 10
– 3
· Tv,1 + 1.5971 · 10
– 5
· Tv,1
2
– 1.9918 · 10
– 7
· Tv,1
3
Tv,1 = Ti – BPE1 – NEA1 – T1 Vapor Temperature
BPE1 = X1 · B + X1 · C · 10
– 3
Boiling Point Elevation
X1 =
Mf · Xf
B1
B1 = Mf – D1
D1 = y · Mf Amount of Flashing Vapor Formed in First Stage
B = 6.71 + 6.34 · 10
– 2
· Ti + 9.74 · 10
– 5
· Ti
2
· 10
– 3
C = 22.238 + 9.59 · 10
– 3
· Ti + 9.42 · 10
– 5
· Ti
2
· 10
– 8
NEA1 = 0.9784
To
· 15.7378
H1
· 1.3777
Vb
· 10
– 6
Non-Equilibrium Allawnce
T1 = 0
Tlmtd,c =
Tv,1 – T1 – Tv,1 – T2
ln
Tv,1 – T1
Tv,1 – T2
A = n · Ac + Ab
Dii = Mf · 1 – 1 – y
i
for i = 1 to n Md in each stage + all stages before
Mb,i = Mf – Mf · 1 – 1 – y
i
for i = 1 to n R = Mb
Xi =
Mf · Xf
Bi
for i = 1 to n
Bi = Mf – Dii for i = 1 to n
stage Diamentions
GH1 =
Mf · 2 · bi · Pi
– 0.5
Cd · W
Gate Height
bi = 1002
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 3
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Pi = 10490 Presure in each Stage
GH : gate height
dP : stage pressure drop
db : brine density
Cd : weir friction coeff.
W : stage width
H1 = 0.2 + GH1
W =
Mf
Vb
Width of the Stage
PR =
Md
Msteam
Performance
Q = Msteam · hfg,steam
Msteam = 800 · bex Bex : the extraxtion fraction of mass flow rate
SOLUTION
Unit Settings: SI C kPa kJ mass deg
A = 46290 [m2
] Ab = 4156 [m2
]
Ac = 1003 [m2
] B = 0.01908
BPE1 = 1.27 [C] B1 = 1885 [Kg/s]
bex = 0.07253 C = 2.607E-07
Cd = 0.5 Cp = 4.183 [Kj/Kg-C]
bi = 1002 Pi = 10490
T = 2.857 [C] T1 = 0 [C]
D1 = 10.04 [Kg/s] GH1 = 0.07852 [m]
H1 = 0.2785 [m] hfg,av = 2256 [Kj/Kg]
hfg,steam = 2049 [Kj/Kg] Mb = 1516 [Kg/s]
Md = 378.8 [Kg/s] Mf = 1895 [Kg/s]
Msteam = 58.03 [Kg/s] n = 42
NEA1 = 0.06547 [C] PR = 6.528
Q = 118885 T1 = 145 [C]
T2 = 142.1 [C] Tavg = 100 [C]
Tf = 25 [C] Ti = 157.1 [C]
Tlmtd,b = 16.37 [C] Tlmtd,c = 12.18 [C]
Tn = 40 [C] To = 160 [C]
Tsteam = 170 [C] Tv,1 = 155.8 [C]
Ub = 1.747 [Kw/m2
-C] Uc = 1.853 [Kw/m2
-C]
Vb = 180 [Kg/ms] Vvn = 6 [m/s]
W = 10.53 [m] X1 = 42224
Xb = 52496 [ppm] Xf = 42000 [ppm]
y = 0.005297
264 potential unit problems were detected.
Arrays Table: Main
i Dii Bi Xi Mb,i Tii,3
1 145 10.04 1885 42224 1885 157.1
2 142.1 20.02 1875 42449 1875 154.3
3 139.3 29.95 1865 42675 1865 151.4
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 4
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
Arrays Table: Main
i Dii Bi Xi Mb,i Tii,3
4 136.4 39.82 1855 42902 1855 148.6
5 133.6 49.65 1845 43130 1845 145.7
6 130.7 59.42 1835 43360 1835 142.9
7 127.9 69.14 1825 43591 1825 140
8 125 78.81 1816 43823 1816 137.1
9 122.1 88.43 1806 44056 1806 134.3
10 119.3 98 1797 44291 1797 131.4
11 116.4 107.5 1787 44527 1787 128.6
12 113.6 117 1778 44764 1778 125.7
13 110.7 126.4 1768 45002 1768 122.9
14 107.9 135.8 1759 45242 1759 120
15 105 145.1 1749 45483 1749 117.1
16 102.1 154.3 1740 45725 1740 114.3
17 99.29 163.6 1731 45969 1731 111.4
18 96.43 172.7 1722 46213 1722 108.6
19 93.57 181.9 1713 46460 1713 105.7
20 90.71 190.9 1704 46707 1704 102.9
21 87.86 200 1695 46956 1695 100
22 85 208.9 1686 47206 1686 97.14
23 82.14 217.9 1677 47457 1677 94.29
24 79.29 226.7 1668 47710 1668 91.43
25 76.43 235.6 1659 47964 1659 88.57
26 73.57 244.4 1650 48219 1650 85.71
27 70.71 253.1 1641 48476 1641 82.86
28 67.86 261.8 1633 48734 1633 80
29 65 270.4 1624 48994 1624 77.14
30 62.14 279 1616 49255 1616 74.29
31 59.29 287.6 1607 49517 1607 71.43
32 56.43 296.1 1598 49781 1598 68.57
33 53.57 304.6 1590 50046 1590 65.71
34 50.71 313 1582 50312 1582 62.86
35 47.86 321.4 1573 50580 1573 60
36 45 329.7 1565 50850 1565 57.14
37 42.14 338 1557 51120 1557 54.29
38 39.29 346.3 1548 51393 1548 51.43
39 36.43 354.5 1540 51666 1540 48.57
40 33.57 362.6 1532 51941 1532 45.71
41 30.71 370.7 1524 52218 1524 42.86
42 27.86 378.8 1516 52496 1516 40
There are a total of 299 equations in the Main program.
Block Rel. Res. Abs. Res. Units Calls Time(ms) Equations
0 0.000E+00 0.000E+00 OK 1 0 M_d=378.8
0 0.000E+00 0.000E+00 OK 1 0 n=42
0 0.000E+00 0.000E+00 OK 1 0 T_f=25[C]
0 0.000E+00 0.000E+00 OK 1 0 T_o=160[C]
0 0.000E+00 0.000E+00 OK 1 0 T_steam=170[C]
0 0.000E+00 0.000E+00 OK 1 0 T_n=40[C]
0 0.000E+00 0.000E+00 OK 1 0 X_f=42000[ppm]
0 0.000E+00 0.000E+00 OK 1 0 C_d=0.5
0 0.000E+00 0.000E+00 OK 1 0 V_vn=6[m/s]
0 0.000E+00 0.000E+00 OK 1 0 V_b=180[Kg/ms]
0 0.000E+00 0.000E+00 OK 1 0 DELTA_T1=0
0 0.000E+00 0.000E+00 OK 1 0 DELTA_bi=1002
0 0.000E+00 0.000E+00 OK 1 0 DELTA_Pi=10490
0 0.000E+00 0.000E+00 OK 4 0 C_p=Cp(Water,T=T_f,x=0)
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 5
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 OK 4 0 T_avg=(T_o+T_n)/2
0 0.000E+00 0.000E+00 OK 4 0 h_fg_av=Enthalpy_vaporization(Steam_IAPWS,T=T_avg)
0 0.000E+00 0.000E+00 OK 4 0 h_fg_steam=Enthalpy_vaporization(Steam_IAPWS,T=T_steam)
0 0.000E+00 0.000E+00 OK 4 0 DELTA_T=(T_o-T_n)/n
0 0.000E+00 0.000E+00 OK 4 0 T_i=T_o-DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 Ti[1,3]=T_o-DELTA_T*1
0 0.000E+00 0.000E+00 ? 4 0 Ti[2,3]=T_o-DELTA_T*2
0 0.000E+00 0.000E+00 ? 4 0 Ti[3,3]=T_o-DELTA_T*3
0 0.000E+00 0.000E+00 ? 4 0 Ti[4,3]=T_o-DELTA_T*4
0 0.000E+00 0.000E+00 ? 4 0 Ti[5,3]=T_o-DELTA_T*5
0 0.000E+00 0.000E+00 ? 4 0 Ti[6,3]=T_o-DELTA_T*6
0 0.000E+00 0.000E+00 ? 4 0 Ti[7,3]=T_o-DELTA_T*7
0 0.000E+00 0.000E+00 ? 4 0 Ti[8,3]=T_o-DELTA_T*8
0 0.000E+00 0.000E+00 ? 4 0 Ti[9,3]=T_o-DELTA_T*9
0 0.000E+00 0.000E+00 ? 4 0 Ti[10,3]=T_o-DELTA_T*10
0 0.000E+00 0.000E+00 ? 4 0 Ti[11,3]=T_o-DELTA_T*11
0 0.000E+00 0.000E+00 ? 4 0 Ti[12,3]=T_o-DELTA_T*12
0 0.000E+00 0.000E+00 ? 4 0 Ti[13,3]=T_o-DELTA_T*13
0 0.000E+00 0.000E+00 ? 4 0 Ti[14,3]=T_o-DELTA_T*14
0 0.000E+00 0.000E+00 ? 4 0 Ti[15,3]=T_o-DELTA_T*15
0 0.000E+00 0.000E+00 ? 4 0 Ti[16,3]=T_o-DELTA_T*16
0 0.000E+00 0.000E+00 ? 4 0 Ti[17,3]=T_o-DELTA_T*17
0 0.000E+00 0.000E+00 ? 4 0 Ti[18,3]=T_o-DELTA_T*18
0 0.000E+00 0.000E+00 ? 4 0 Ti[19,3]=T_o-DELTA_T*19
0 0.000E+00 0.000E+00 ? 4 0 Ti[20,3]=T_o-DELTA_T*20
0 0.000E+00 0.000E+00 ? 4 0 Ti[21,3]=T_o-DELTA_T*21
0 0.000E+00 0.000E+00 ? 4 0 Ti[22,3]=T_o-DELTA_T*22
0 0.000E+00 0.000E+00 ? 4 0 Ti[23,3]=T_o-DELTA_T*23
0 0.000E+00 0.000E+00 ? 4 0 Ti[24,3]=T_o-DELTA_T*24
0 0.000E+00 0.000E+00 ? 4 0 Ti[25,3]=T_o-DELTA_T*25
0 0.000E+00 0.000E+00 ? 4 0 Ti[26,3]=T_o-DELTA_T*26
0 0.000E+00 0.000E+00 ? 4 0 Ti[27,3]=T_o-DELTA_T*27
0 0.000E+00 0.000E+00 ? 4 0 Ti[28,3]=T_o-DELTA_T*28
0 0.000E+00 0.000E+00 ? 4 0 Ti[29,3]=T_o-DELTA_T*29
0 0.000E+00 0.000E+00 ? 4 0 Ti[30,3]=T_o-DELTA_T*30
0 0.000E+00 0.000E+00 ? 4 0 Ti[31,3]=T_o-DELTA_T*31
0 0.000E+00 0.000E+00 ? 4 0 Ti[32,3]=T_o-DELTA_T*32
0 0.000E+00 0.000E+00 ? 4 0 Ti[33,3]=T_o-DELTA_T*33
0 0.000E+00 0.000E+00 ? 4 0 Ti[34,3]=T_o-DELTA_T*34
0 0.000E+00 0.000E+00 ? 4 0 Ti[35,3]=T_o-DELTA_T*35
0 0.000E+00 0.000E+00 ? 4 0 Ti[36,3]=T_o-DELTA_T*36
0 0.000E+00 0.000E+00 ? 4 0 Ti[37,3]=T_o-DELTA_T*37
0 0.000E+00 0.000E+00 ? 4 0 Ti[38,3]=T_o-DELTA_T*38
0 0.000E+00 0.000E+00 ? 4 0 Ti[39,3]=T_o-DELTA_T*39
0 0.000E+00 0.000E+00 ? 4 0 Ti[40,3]=T_o-DELTA_T*40
0 0.000E+00 0.000E+00 ? 4 0 Ti[41,3]=T_o-DELTA_T*41
0 0.000E+00 0.000E+00 ? 4 0 Ti[42,3]=T_o-DELTA_T*42
0 0.000E+00 0.000E+00 OK 4 0 T_1=T_f+n*DELTA_T
0 0.000E+00 0.000E+00 OK 4 0 T_2=T_1-DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[1]=T_f+(n-(1-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[2]=T_f+(n-(2-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[3]=T_f+(n-(3-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[4]=T_f+(n-(4-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[5]=T_f+(n-(5-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[6]=T_f+(n-(6-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[7]=T_f+(n-(7-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[8]=T_f+(n-(8-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[9]=T_f+(n-(9-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[10]=T_f+(n-(10-1))*DELTA_T
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 6
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 ? 4 0 xi[11]=T_f+(n-(11-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[12]=T_f+(n-(12-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[13]=T_f+(n-(13-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[14]=T_f+(n-(14-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[15]=T_f+(n-(15-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[16]=T_f+(n-(16-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[17]=T_f+(n-(17-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[18]=T_f+(n-(18-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[19]=T_f+(n-(19-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[20]=T_f+(n-(20-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[21]=T_f+(n-(21-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[22]=T_f+(n-(22-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[23]=T_f+(n-(23-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[24]=T_f+(n-(24-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[25]=T_f+(n-(25-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[26]=T_f+(n-(26-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[27]=T_f+(n-(27-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[28]=T_f+(n-(28-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[29]=T_f+(n-(29-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[30]=T_f+(n-(30-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[31]=T_f+(n-(31-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[32]=T_f+(n-(32-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[33]=T_f+(n-(33-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[34]=T_f+(n-(34-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[35]=T_f+(n-(35-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[36]=T_f+(n-(36-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[37]=T_f+(n-(37-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[38]=T_f+(n-(38-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[39]=T_f+(n-(39-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[40]=T_f+(n-(40-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[41]=T_f+(n-(41-1))*DELTA_T
0 0.000E+00 0.000E+00 ? 4 0 xi[42]=T_f+(n-(42-1))*DELTA_T
0 0.000E+00 0.000E+00 OK 4 0 y=C_p*DELTA_T/h_fg_av
0 7.327E-20 2.776E-17 OK 4 0 M_d=M_f*(1-(1-y)^n)
0 0.000E+00 0.000E+00 OK 4 0 M_b=M_f-M_d
0 0.000E+00 0.000E+00 OK 4 0 X_f*M_f=X_b*M_b
0 0.000E+00 0.000E+00 OK 4 0 M_steam=M_f*C_p*(T_o-T_1)/h_fg_steam
0 0.000E+00 0.000E+00 ? 4 0 U_b=1.7194+(3.2063*10^(-3))*T_steam+1.5971*10^(-5)*T_steam^2-1.9918*10^(
0 0.000E+00 0.000E+00 OK 4 0 T_lmtd_b=((T_steam-T_o)-(T_steam-T_1))/ln((T_steam-T_o)/(T_steam-T_1))
0 0.000E+00 0.000E+00 OK 4 0 D_1=y*M_f
0 0.000E+00 0.000E+00 ? 4 0 B=(6.71+6.34*(10^(-2))*T_i+(9.74*10^(-5))*(T_i^2))*10^(-3)
0 0.000E+00 0.000E+00 ? 4 0 C=(22.238+9.59*10^(-3)*T_i+9.42*10^(-5)*T_i^2)*10^(-8)
0 0.000E+00 0.000E+00 ? 4 0 Di[1]=M_f*(1-(1-y)^(1))
0 0.000E+00 0.000E+00 ? 4 0 M_b[1]=M_f-M_f*(1-(1-y)^(1))
0 0.000E+00 0.000E+00 ? 4 0 B[1]=M_f-Di[1]
0 0.000E+00 0.000E+00 ? 4 0 Di[2]=M_f*(1-(1-y)^(2))
0 0.000E+00 0.000E+00 ? 4 0 M_b[2]=M_f-M_f*(1-(1-y)^(2))
0 0.000E+00 0.000E+00 ? 4 0 B[2]=M_f-Di[2]
0 0.000E+00 0.000E+00 ? 4 0 Di[3]=M_f*(1-(1-y)^(3))
0 0.000E+00 0.000E+00 ? 4 0 M_b[3]=M_f-M_f*(1-(1-y)^(3))
0 0.000E+00 0.000E+00 ? 4 0 B[3]=M_f-Di[3]
0 0.000E+00 0.000E+00 ? 4 0 Di[4]=M_f*(1-(1-y)^(4))
0 0.000E+00 0.000E+00 ? 4 0 M_b[4]=M_f-M_f*(1-(1-y)^(4))
0 0.000E+00 0.000E+00 ? 4 0 B[4]=M_f-Di[4]
0 0.000E+00 0.000E+00 ? 4 0 Di[5]=M_f*(1-(1-y)^(5))
0 0.000E+00 0.000E+00 ? 4 0 M_b[5]=M_f-M_f*(1-(1-y)^(5))
0 0.000E+00 0.000E+00 ? 4 0 B[5]=M_f-Di[5]
0 0.000E+00 0.000E+00 ? 4 0 Di[6]=M_f*(1-(1-y)^(6))
0 0.000E+00 0.000E+00 ? 4 0 M_b[6]=M_f-M_f*(1-(1-y)^(6))
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 7
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 ? 4 0 B[6]=M_f-Di[6]
0 0.000E+00 0.000E+00 ? 4 0 Di[7]=M_f*(1-(1-y)^(7))
0 0.000E+00 0.000E+00 ? 4 0 M_b[7]=M_f-M_f*(1-(1-y)^(7))
0 0.000E+00 0.000E+00 ? 4 0 B[7]=M_f-Di[7]
0 0.000E+00 0.000E+00 ? 4 0 Di[8]=M_f*(1-(1-y)^(8))
0 0.000E+00 0.000E+00 ? 4 0 M_b[8]=M_f-M_f*(1-(1-y)^(8))
0 0.000E+00 0.000E+00 ? 4 0 B[8]=M_f-Di[8]
0 0.000E+00 0.000E+00 ? 4 0 Di[9]=M_f*(1-(1-y)^(9))
0 0.000E+00 0.000E+00 ? 4 0 M_b[9]=M_f-M_f*(1-(1-y)^(9))
0 0.000E+00 0.000E+00 ? 4 0 B[9]=M_f-Di[9]
0 0.000E+00 0.000E+00 ? 4 0 Di[10]=M_f*(1-(1-y)^(10))
0 0.000E+00 0.000E+00 ? 4 0 M_b[10]=M_f-M_f*(1-(1-y)^(10))
0 0.000E+00 0.000E+00 ? 4 0 B[10]=M_f-Di[10]
0 0.000E+00 0.000E+00 ? 4 0 Di[11]=M_f*(1-(1-y)^(11))
0 0.000E+00 0.000E+00 ? 4 0 M_b[11]=M_f-M_f*(1-(1-y)^(11))
0 0.000E+00 0.000E+00 ? 4 0 B[11]=M_f-Di[11]
0 0.000E+00 0.000E+00 ? 4 0 Di[12]=M_f*(1-(1-y)^(12))
0 0.000E+00 0.000E+00 ? 4 0 M_b[12]=M_f-M_f*(1-(1-y)^(12))
0 0.000E+00 0.000E+00 ? 4 0 B[12]=M_f-Di[12]
0 0.000E+00 0.000E+00 ? 4 0 Di[13]=M_f*(1-(1-y)^(13))
0 0.000E+00 0.000E+00 ? 4 0 M_b[13]=M_f-M_f*(1-(1-y)^(13))
0 0.000E+00 0.000E+00 ? 4 0 B[13]=M_f-Di[13]
0 0.000E+00 0.000E+00 ? 4 0 Di[14]=M_f*(1-(1-y)^(14))
0 0.000E+00 0.000E+00 ? 4 0 M_b[14]=M_f-M_f*(1-(1-y)^(14))
0 0.000E+00 0.000E+00 ? 4 0 B[14]=M_f-Di[14]
0 0.000E+00 0.000E+00 ? 4 0 Di[15]=M_f*(1-(1-y)^(15))
0 0.000E+00 0.000E+00 ? 4 0 M_b[15]=M_f-M_f*(1-(1-y)^(15))
0 0.000E+00 0.000E+00 ? 4 0 B[15]=M_f-Di[15]
0 0.000E+00 0.000E+00 ? 4 0 Di[16]=M_f*(1-(1-y)^(16))
0 0.000E+00 0.000E+00 ? 4 0 M_b[16]=M_f-M_f*(1-(1-y)^(16))
0 0.000E+00 0.000E+00 ? 4 0 B[16]=M_f-Di[16]
0 0.000E+00 0.000E+00 ? 4 0 Di[17]=M_f*(1-(1-y)^(17))
0 0.000E+00 0.000E+00 ? 4 0 M_b[17]=M_f-M_f*(1-(1-y)^(17))
0 0.000E+00 0.000E+00 ? 4 0 B[17]=M_f-Di[17]
0 0.000E+00 0.000E+00 ? 4 0 Di[18]=M_f*(1-(1-y)^(18))
0 0.000E+00 0.000E+00 ? 4 0 M_b[18]=M_f-M_f*(1-(1-y)^(18))
0 0.000E+00 0.000E+00 ? 4 0 B[18]=M_f-Di[18]
0 0.000E+00 0.000E+00 ? 4 0 Di[19]=M_f*(1-(1-y)^(19))
0 0.000E+00 0.000E+00 ? 4 0 M_b[19]=M_f-M_f*(1-(1-y)^(19))
0 0.000E+00 0.000E+00 ? 4 0 B[19]=M_f-Di[19]
0 0.000E+00 0.000E+00 ? 4 0 Di[20]=M_f*(1-(1-y)^(20))
0 0.000E+00 0.000E+00 ? 4 0 M_b[20]=M_f-M_f*(1-(1-y)^(20))
0 0.000E+00 0.000E+00 ? 4 0 B[20]=M_f-Di[20]
0 0.000E+00 0.000E+00 ? 4 0 Di[21]=M_f*(1-(1-y)^(21))
0 0.000E+00 0.000E+00 ? 4 0 M_b[21]=M_f-M_f*(1-(1-y)^(21))
0 0.000E+00 0.000E+00 ? 4 0 B[21]=M_f-Di[21]
0 0.000E+00 0.000E+00 ? 4 0 Di[22]=M_f*(1-(1-y)^(22))
0 0.000E+00 0.000E+00 ? 4 0 M_b[22]=M_f-M_f*(1-(1-y)^(22))
0 0.000E+00 0.000E+00 ? 4 0 B[22]=M_f-Di[22]
0 0.000E+00 0.000E+00 ? 4 0 Di[23]=M_f*(1-(1-y)^(23))
0 0.000E+00 0.000E+00 ? 4 0 M_b[23]=M_f-M_f*(1-(1-y)^(23))
0 0.000E+00 0.000E+00 ? 4 0 B[23]=M_f-Di[23]
0 0.000E+00 0.000E+00 ? 4 0 Di[24]=M_f*(1-(1-y)^(24))
0 0.000E+00 0.000E+00 ? 4 0 M_b[24]=M_f-M_f*(1-(1-y)^(24))
0 0.000E+00 0.000E+00 ? 4 0 B[24]=M_f-Di[24]
0 0.000E+00 0.000E+00 ? 4 0 Di[25]=M_f*(1-(1-y)^(25))
0 0.000E+00 0.000E+00 ? 4 0 M_b[25]=M_f-M_f*(1-(1-y)^(25))
0 0.000E+00 0.000E+00 ? 4 0 B[25]=M_f-Di[25]
0 0.000E+00 0.000E+00 ? 4 0 Di[26]=M_f*(1-(1-y)^(26))
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 8
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 ? 4 0 M_b[26]=M_f-M_f*(1-(1-y)^(26))
0 0.000E+00 0.000E+00 ? 4 0 B[26]=M_f-Di[26]
0 0.000E+00 0.000E+00 ? 4 0 Di[27]=M_f*(1-(1-y)^(27))
0 0.000E+00 0.000E+00 ? 4 0 M_b[27]=M_f-M_f*(1-(1-y)^(27))
0 0.000E+00 0.000E+00 ? 4 0 B[27]=M_f-Di[27]
0 0.000E+00 0.000E+00 ? 4 0 Di[28]=M_f*(1-(1-y)^(28))
0 0.000E+00 0.000E+00 ? 4 0 M_b[28]=M_f-M_f*(1-(1-y)^(28))
0 0.000E+00 0.000E+00 ? 4 0 B[28]=M_f-Di[28]
0 0.000E+00 0.000E+00 ? 4 0 Di[29]=M_f*(1-(1-y)^(29))
0 0.000E+00 0.000E+00 ? 4 0 M_b[29]=M_f-M_f*(1-(1-y)^(29))
0 0.000E+00 0.000E+00 ? 4 0 B[29]=M_f-Di[29]
0 0.000E+00 0.000E+00 ? 4 0 Di[30]=M_f*(1-(1-y)^(30))
0 0.000E+00 0.000E+00 ? 4 0 M_b[30]=M_f-M_f*(1-(1-y)^(30))
0 0.000E+00 0.000E+00 ? 4 0 B[30]=M_f-Di[30]
0 0.000E+00 0.000E+00 ? 4 0 Di[31]=M_f*(1-(1-y)^(31))
0 0.000E+00 0.000E+00 ? 4 0 M_b[31]=M_f-M_f*(1-(1-y)^(31))
0 0.000E+00 0.000E+00 ? 4 0 B[31]=M_f-Di[31]
0 0.000E+00 0.000E+00 ? 4 0 Di[32]=M_f*(1-(1-y)^(32))
0 0.000E+00 0.000E+00 ? 4 0 M_b[32]=M_f-M_f*(1-(1-y)^(32))
0 0.000E+00 0.000E+00 ? 4 0 B[32]=M_f-Di[32]
0 0.000E+00 0.000E+00 ? 4 0 Di[33]=M_f*(1-(1-y)^(33))
0 0.000E+00 0.000E+00 ? 4 0 M_b[33]=M_f-M_f*(1-(1-y)^(33))
0 0.000E+00 0.000E+00 ? 4 0 B[33]=M_f-Di[33]
0 0.000E+00 0.000E+00 ? 4 0 Di[34]=M_f*(1-(1-y)^(34))
0 0.000E+00 0.000E+00 ? 4 0 M_b[34]=M_f-M_f*(1-(1-y)^(34))
0 0.000E+00 0.000E+00 ? 4 0 B[34]=M_f-Di[34]
0 0.000E+00 0.000E+00 ? 4 0 Di[35]=M_f*(1-(1-y)^(35))
0 0.000E+00 0.000E+00 ? 4 0 M_b[35]=M_f-M_f*(1-(1-y)^(35))
0 0.000E+00 0.000E+00 ? 4 0 B[35]=M_f-Di[35]
0 0.000E+00 0.000E+00 ? 4 0 Di[36]=M_f*(1-(1-y)^(36))
0 0.000E+00 0.000E+00 ? 4 0 M_b[36]=M_f-M_f*(1-(1-y)^(36))
0 0.000E+00 0.000E+00 ? 4 0 B[36]=M_f-Di[36]
0 0.000E+00 0.000E+00 ? 4 0 Di[37]=M_f*(1-(1-y)^(37))
0 0.000E+00 0.000E+00 ? 4 0 M_b[37]=M_f-M_f*(1-(1-y)^(37))
0 0.000E+00 0.000E+00 ? 4 0 B[37]=M_f-Di[37]
0 0.000E+00 0.000E+00 ? 4 0 Di[38]=M_f*(1-(1-y)^(38))
0 0.000E+00 0.000E+00 ? 4 0 M_b[38]=M_f-M_f*(1-(1-y)^(38))
0 0.000E+00 0.000E+00 ? 4 0 B[38]=M_f-Di[38]
0 0.000E+00 0.000E+00 ? 4 0 Di[39]=M_f*(1-(1-y)^(39))
0 0.000E+00 0.000E+00 ? 4 0 M_b[39]=M_f-M_f*(1-(1-y)^(39))
0 0.000E+00 0.000E+00 ? 4 0 B[39]=M_f-Di[39]
0 0.000E+00 0.000E+00 ? 4 0 Di[40]=M_f*(1-(1-y)^(40))
0 0.000E+00 0.000E+00 ? 4 0 M_b[40]=M_f-M_f*(1-(1-y)^(40))
0 0.000E+00 0.000E+00 ? 4 0 B[40]=M_f-Di[40]
0 0.000E+00 0.000E+00 ? 4 0 Di[41]=M_f*(1-(1-y)^(41))
0 0.000E+00 0.000E+00 ? 4 0 M_b[41]=M_f-M_f*(1-(1-y)^(41))
0 0.000E+00 0.000E+00 ? 4 0 B[41]=M_f-Di[41]
0 0.000E+00 0.000E+00 ? 4 0 Di[42]=M_f*(1-(1-y)^(42))
0 0.000E+00 0.000E+00 ? 4 0 M_b[42]=M_f-M_f*(1-(1-y)^(42))
0 0.000E+00 0.000E+00 ? 4 0 B[42]=M_f-Di[42]
0 0.000E+00 0.000E+00 ? 4 0 W=(M_f/V_b)
0 0.000E+00 0.000E+00 OK 4 0 PR=M_d/M_steam
0 0.000E+00 0.000E+00 ? 4 0 Q=M_steam*h_fg_steam
0 5.979E-20 3.469E-18 ? 4 0 m_steam=800*b_ex
0 0.000E+00 0.000E+00 OK 4 0 A_b=M_steam*h_fg_steam/(U_b*T_lmtd_b)
0 0.000E+00 0.000E+00 OK 4 0 B_1=M_f-D_1
0 0.000E+00 0.000E+00 ? 4 0 X[1]=(M_f*X_f)/B[1]
0 0.000E+00 0.000E+00 ? 4 0 X[2]=(M_f*X_f)/B[2]
0 0.000E+00 0.000E+00 ? 4 0 X[3]=(M_f*X_f)/B[3]
File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:32 PM Page 9
EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals
0 0.000E+00 0.000E+00 ? 4 0 X[4]=(M_f*X_f)/B[4]
0 0.000E+00 0.000E+00 ? 4 0 X[5]=(M_f*X_f)/B[5]
0 0.000E+00 0.000E+00 ? 4 0 X[6]=(M_f*X_f)/B[6]
0 0.000E+00 0.000E+00 ? 4 0 X[7]=(M_f*X_f)/B[7]
0 0.000E+00 0.000E+00 ? 4 0 X[8]=(M_f*X_f)/B[8]
0 0.000E+00 0.000E+00 ? 4 0 X[9]=(M_f*X_f)/B[9]
0 0.000E+00 0.000E+00 ? 4 0 X[10]=(M_f*X_f)/B[10]
0 0.000E+00 0.000E+00 ? 4 0 X[11]=(M_f*X_f)/B[11]
0 0.000E+00 0.000E+00 ? 4 0 X[12]=(M_f*X_f)/B[12]
0 0.000E+00 0.000E+00 ? 4 0 X[13]=(M_f*X_f)/B[13]
0 0.000E+00 0.000E+00 ? 4 0 X[14]=(M_f*X_f)/B[14]
0 0.000E+00 0.000E+00 ? 4 0 X[15]=(M_f*X_f)/B[15]
0 0.000E+00 0.000E+00 ? 4 0 X[16]=(M_f*X_f)/B[16]
0 0.000E+00 0.000E+00 ? 4 0 X[17]=(M_f*X_f)/B[17]
0 0.000E+00 0.000E+00 ? 4 0 X[18]=(M_f*X_f)/B[18]
0 0.000E+00 0.000E+00 ? 4 0 X[19]=(M_f*X_f)/B[19]
0 0.000E+00 0.000E+00 ? 4 0 X[20]=(M_f*X_f)/B[20]
0 0.000E+00 0.000E+00 ? 4 0 X[21]=(M_f*X_f)/B[21]
0 0.000E+00 0.000E+00 ? 4 0 X[22]=(M_f*X_f)/B[22]
0 0.000E+00 0.000E+00 ? 4 0 X[23]=(M_f*X_f)/B[23]
0 0.000E+00 0.000E+00 ? 4 0 X[24]=(M_f*X_f)/B[24]
0 0.000E+00 0.000E+00 ? 4 0 X[25]=(M_f*X_f)/B[25]
0 0.000E+00 0.000E+00 ? 4 0 X[26]=(M_f*X_f)/B[26]
0 0.000E+00 0.000E+00 ? 4 0 X[27]=(M_f*X_f)/B[27]
0 0.000E+00 0.000E+00 ? 4 0 X[28]=(M_f*X_f)/B[28]
0 0.000E+00 0.000E+00 ? 4 0 X[29]=(M_f*X_f)/B[29]
0 0.000E+00 0.000E+00 ? 4 0 X[30]=(M_f*X_f)/B[30]
0 0.000E+00 0.000E+00 ? 4 0 X[31]=(M_f*X_f)/B[31]
0 0.000E+00 0.000E+00 ? 4 0 X[32]=(M_f*X_f)/B[32]
0 0.000E+00 0.000E+00 ? 4 0 X[33]=(M_f*X_f)/B[33]
0 0.000E+00 0.000E+00 ? 4 0 X[34]=(M_f*X_f)/B[34]
0 0.000E+00 0.000E+00 ? 4 0 X[35]=(M_f*X_f)/B[35]
0 0.000E+00 0.000E+00 ? 4 0 X[36]=(M_f*X_f)/B[36]
0 0.000E+00 0.000E+00 ? 4 0 X[37]=(M_f*X_f)/B[37]
0 0.000E+00 0.000E+00 ? 4 0 X[38]=(M_f*X_f)/B[38]
0 0.000E+00 0.000E+00 ? 4 0 X[39]=(M_f*X_f)/B[39]
0 0.000E+00 0.000E+00 ? 4 0 X[40]=(M_f*X_f)/B[40]
0 0.000E+00 0.000E+00 ? 4 0 X[41]=(M_f*X_f)/B[41]
0 0.000E+00 0.000E+00 ? 4 0 X[42]=(M_f*X_f)/B[42]
0 0.000E+00 0.000E+00 ? 4 0 GH_1=(M_f*(2*DELTA_bi*DELTA_Pi)^(-0.5))/(C_d*W)
0 0.000E+00 0.000E+00 ? 4 0 H_1=0.2+GH_1
0 0.000E+00 0.000E+00 ? 4 0 X_1=(M_f*X_f)/B_1
0 0.000E+00 0.000E+00 ? 4 0 NEA_1=(0.9784^T_o)*(15.7378^H_1)*(1.3777^(V_b*10^(-6)))
0 0.000E+00 0.000E+00 ? 4 0 BPE_1=X_1*(B+X_1*C)*10^(-3)
0 0.000E+00 0.000E+00 OK 4 0 T_v_1=T_i-BPE_1-NEA_1-DELTA_T1
0 0.000E+00 0.000E+00 OK 4 0 T_lmtd_c=((T_v_1-T_1)-(T_v_1-T_2))/ln((T_v_1-T_1)/(T_v_1-T_2))
0 0.000E+00 0.000E+00 ? 4 0 U_c=1.7194+(3.2063*10^(-3))*T_v_1+(1.5971*10^(-5))*(T_v_1)^2-(1.9918*10^(-7
0 0.000E+00 0.000E+00 OK 4 0 A_c=(M_f*C_p*(T_1-T_2))/(U_c*T_lmtd_c)
0 0.000E+00 0.000E+00 OK 4 0 A=n*A_c+A_b
ME	412	|	Balancing	of	water	VS	Electricity	generation	(Rankine-MSF)	
	
37	
	
Our	Contacts:	
Name:			 Alkathiri,	Ali	Ahmed	
Mobile:	 0544662184	
Email:	 	 Ali.alkthiri@hotmail.com	
	
Name:			 AL-HUJAILI,	AMJAD	AYMAN	
Mobile:	 0545906048	
Email:	 	 Amjadhuj@gmail.com	
	
Name:			 JULAIDAN,	MOHAMMED	ABDULLAH	
Mobile:	 0548218777	
Email:	 	 Mohammed.julaidan@gmail.com

More Related Content

Similar to Final report 412

Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
Six Sigma DMADV Approach for Conceptual Design Synthesis of Car DashboardSix Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
Jayesh Sarode
 
IRJET- Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
IRJET-  	  Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...IRJET-  	  Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
IRJET- Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
IRJET Journal
 
Karan Mandokar
Karan MandokarKaran Mandokar
Karan Mandokar
Karan Mandokar
 
Giri Rao CV-Mech Design engineer
Giri Rao CV-Mech Design engineerGiri Rao CV-Mech Design engineer
Giri Rao CV-Mech Design engineer
Giri Rao
 
updated
updatedupdated
Design practice
Design practiceDesign practice
Design practice
Suryansh Dhawan
 
causes and implication of delay in construction
causes and implication of delay in constructioncauses and implication of delay in construction
causes and implication of delay in construction
sudinak
 
Process engineering
Process engineeringProcess engineering
Process engineering
Suvidya Institute of Technology
 
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
IRJET Journal
 
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
Jayesh Sarode
 
Karan-CV -
Karan-CV -Karan-CV -
Karan-CV -
Karan Mandokar
 
Documentation
DocumentationDocumentation
Documentation
PranavAutomation
 
Presentation
PresentationPresentation
Presentation
TomBuchmiller
 
Presentation
PresentationPresentation
Presentation
TomBuchmiller
 
Resume_Ling_Nie
Resume_Ling_NieResume_Ling_Nie
Resume_Ling_Nie
Ling Nie
 
caddcentre_certificate
caddcentre_certificatecaddcentre_certificate
caddcentre_certificate
Kashish Goyal
 
Session 25 - Documentation
Session 25 - DocumentationSession 25 - Documentation
Session 25 - Documentation
VidyaIA
 
Cv padmanabh
Cv padmanabhCv padmanabh
Cv padmanabh
Padmanabh Dhobale
 
Resume_Latest
Resume_LatestResume_Latest
Resume_Latest
kolaparthi
 
Lire fv
Lire fvLire fv

Similar to Final report 412 (20)

Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
Six Sigma DMADV Approach for Conceptual Design Synthesis of Car DashboardSix Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Dashboard
 
IRJET- Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
IRJET-  	  Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...IRJET-  	  Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
IRJET- Six Sigma DMADV Approach for Conceptual Design Synthesis of Car Da...
 
Karan Mandokar
Karan MandokarKaran Mandokar
Karan Mandokar
 
Giri Rao CV-Mech Design engineer
Giri Rao CV-Mech Design engineerGiri Rao CV-Mech Design engineer
Giri Rao CV-Mech Design engineer
 
updated
updatedupdated
updated
 
Design practice
Design practiceDesign practice
Design practice
 
causes and implication of delay in construction
causes and implication of delay in constructioncauses and implication of delay in construction
causes and implication of delay in construction
 
Process engineering
Process engineeringProcess engineering
Process engineering
 
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
IRJET- Concept Validation and Design Synthesis of Car Dashboard as Per Plasti...
 
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
“CONCEPT VALIDATION AND DESIGN SYNTHESIS OF CAR DASHBOARD AS PER PLASTIC TRIM...
 
Karan-CV -
Karan-CV -Karan-CV -
Karan-CV -
 
Documentation
DocumentationDocumentation
Documentation
 
Presentation
PresentationPresentation
Presentation
 
Presentation
PresentationPresentation
Presentation
 
Resume_Ling_Nie
Resume_Ling_NieResume_Ling_Nie
Resume_Ling_Nie
 
caddcentre_certificate
caddcentre_certificatecaddcentre_certificate
caddcentre_certificate
 
Session 25 - Documentation
Session 25 - DocumentationSession 25 - Documentation
Session 25 - Documentation
 
Cv padmanabh
Cv padmanabhCv padmanabh
Cv padmanabh
 
Resume_Latest
Resume_LatestResume_Latest
Resume_Latest
 
Lire fv
Lire fvLire fv
Lire fv
 

Final report 412

  • 1. KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Mechanical Engineering Department (152) Senior Design Project Design Project ME 412/416 Balancing of water VS Electricity generation (Rankine-MSF) Name: Alkathiri, Ali Ahmed ID# 201158730 Name: Julaidan, Mohammed ID# 201168370 Name: Alhujaili, Amjad ID# 201050560 Name: ID# Name: ID# Advisor Name: MOHAMMED A. ANTAR Coordinator Name: 26/04/2016
  • 2. ii EVALUATION SHEET Editorial Structural Criteria Evaluation Criteria Evaluation Criteria Evaluation Criteria Evaluation Cover page* Introduction Overview Final Design Overall description Conclusion & Recommendation Conclusion* Title* Problem definition* Detailed design description Recommendation* Abstract* Objectives* Analysis & results* Appendices Decision matrix Table of contents* Project management* Material selection Gantt chart* List of figures Background Existing product Cost analysis Final drawing List of table Market research Drawings List of vendors, contact information and pricing Heading Technical data* Product Realization Manufacturing processes Specification for supplied materials Language Patent search Prototype verses planned design Detailed supporting analysis Figure/table Design & Development Conceptual design Manufacturing processes Captions List of constraints* Future manufacturing recommendation Final Report Score List of standards* Figure/table citation Concept selection Design verification Test description References Preliminary analysis* Detailed results Proof of concept Specification verification list Items in (red) with asterisks (*) are mandatory.
  • 3. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 1 Table of Contents List of tables: ..................................................................................................................... 2 List of figures: .................................................................................................................... 2 Chapter 1: ......................................................................................................................... 3 Introduction: ..................................................................................................................... 3 1.1 Power Plant: .................................................................................................................... 3 Classification of power station: ................................................................................................... 3 1.1.1 By heat source: [1] .......................................................................................................... 3 1.1.2 By prime mover: ............................................................................................................. 3 1.1.3 By duty (scheduled): ....................................................................................................... 4 1.2 Desalination Plant: .......................................................................................................... 5 1.2.1 Types of distillation process: .......................................................................................... 5 1.2.2 How it works: .................................................................................................................. 6 1.2.3 Challenges: ..................................................................................................................... 7 1.3 Objective: ........................................................................................................................ 7 Chapter 2: ......................................................................................................................... 8 2.1 Power Plant: .................................................................................................................... 8 2.1.1 Boiler: ........................................................................................................................... 10 2.1.2 High Pressure Turbine: ................................................................................................. 10 2.1.3 Low Pressure Turbine: .................................................................................................. 11 2.1.4 Condenser: ................................................................................................................... 12 2.1.5 Open Feed Water Heater: ............................................................................................ 12 2.1.6 Closed Feed Water Heater 2: ....................................................................................... 13 2.1.7 Closed Feed Water Heater 1: ....................................................................................... 14 2.2 Desalination Plant: ........................................................................................................ 15 2.1.1 Mass balance modeling: ............................................................................................... 17 2.1.2 Temperature Drop Modeling: ...................................................................................... 18 2.1.3 The Temperature at each Stage: .................................................................................. 18 2.1.4 Heat transfer areas: ...................................................................................................... 18 2.1.5 Flashing Stage Dimensions Modeling: .......................................................................... 20 2.1.6 Performance Modeling: ................................................................................................ 20 Chapter 3: ....................................................................................................................... 21 Results and discussion: .................................................................................................... 21 3.1 Power plant ................................................................................................................... 21 3.1.1 The optimum pressure: ................................................................................................ 21 3.1.2 The effect of mass extraction from power plant to MSF plant .................................... 22 3.1.3 The effect of the condition of the extraction mass ...................................................... 24 3.1.4 Make up water for the power plant: ............................................................................ 25 3.1.5 Comparison between data: .......................................................................................... 26 3.2 MSF Plant ...................................................................................................................... 29 3.2.1 The effect of condition of the steam ............................................................................ 29 3.2.2 Extraction “b” from power plant to the MSF ............................................................... 32
  • 4. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 2 Chapter 4: ....................................................................................................................... 33 Conclusion ....................................................................................................................... 33 References: ..................................................................................................................... 34 Appendix A: ..................................................................................................................... 35 Appendix B: ..................................................................................................................... 36 List of tables: Table 1: Reheat pressure ...................................................................................................................... 21 Table 2: optimum pressure for P [12] ................................................................................................... 22 Table 3: Mass extraction and effect on efficiency ................................................................................ 23 Table4 : effect of the condition of the extraction ................................................................................. 24 Table 5: Efficiency with returning water from MSF .............................................................................. 25 Table 6: Efficiency with returning water 25 C ....................................................................................... 26 Table 7: pressure and its temperatures ................................................................................................ 29 Table 8: steam temperature and its effect on Q and number of stages ............................................... 29 Table 9: table show how much “b” we need to satisfy the MSF at different top brine temperature .... 32 List of figures: Figure 1: Schematic of a 'once-through' multi-stage flash desalinates: ................................................. 6 Figure 2: Power plant in Saudi Arabia (Qurrayyah)[2] ........................................................................... 8 Figure 3: Power Plant schematic diagram .............................................................................................. 9 Figure 4 : Once through Multi-Stage Flash Distillation System ............................................................ 16 Figure 4: preheat/Boiler Vs eff .................................................................................................................... 21 Figure 5: Effincy Vs Extraction fraction ................................................................................................. 23 Figure 6: : T-S diagram shows how hfg increase as pressure decreases ................................................ 24 Figure 7: Efficiency Vs Pbrine ................................................................................................................... 24 Figure 9: the effect of make water in Efficiency ................................................................................... 27 Figure 10: The effect of make water in Work net ................................................................................. 28 Figure 11: number of stage Vs Top brine temperature ........................................................................ 30 Figure 12: Msteam Vs Top brine temperature ......................................................................................... 31 Figure 13: performance ratio Vs Top brine temperature ..................................................................... 31
  • 5. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 3 Chapter 1: Introduction: Water desalination is one of the most important facilities in Saudi Arabia since Saudi Arabia does not have a natural resource for water. So, we need to save any amount of energy with increasing the efficiency of the factory. Our problem is how to increase the efficiency and consume some power. 1.1 Power Plant: Power plant is a facility that used to generate electrical power. Here in Saudi Arabia we have Gazlan power plant that has power capacity of 2400 MW. Classification of power station: 1.1.1 By heat source: [1] o Fossil-fuel power stations may also use a steam turbine generator or in the case of natural gas-fired plants may use a combustion turbine. The steam drives a steam turbine and generator that then produces electricity o Nuclear power plants use a nuclear reactor's heat that is transferred to steam which then operates a steam turbine and generator. About 20 percent of electric generation in the USA is produced by nuclear power plants. o Geothermal power plants use steam extracted from hot underground rocks. o Biomass-fuelled power plants may be fuelled by waste from sugar cane, municipal solid waste, landfill methane, or other forms of biomass. o Waste heat from industrial processes is occasionally concentrated enough to use for power generation, usually in a steam boiler and turbine. o Solar thermal electric plants use sunlight to boil water and produce steam which turns the generator. 1.1.2 By prime mover: o Steam turbine plants use the dynamic pressure generated by expanding steam to turn the blades of a turbine. Almost all large non-hydro plants use this system. About 90 percent of all
  • 6. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 4 electric power produced in the world is through use of steam turbines. o Gas turbine plants use the dynamic pressure from flowing gases (air and combustion products) to directly operate the turbine. Natural-gas fuelled (and oil fueled) combustion turbine plants can start rapidly and so are used to supply "peak" energy during periods of high demand, though at higher cost than base-loaded plants. These may be comparatively small units, and sometimes completely unmanned, being remotely operated. This type was pioneered by the UK, Princetown being the world's first, commissioned in 1959. o Combined cycle plants have both a gas turbine fired by natural gas, and a steam boiler and steam turbine which use the hot exhaust gas from the gas turbine to produce electricity. This greatly increases the overall efficiency of the plant, and many new baseload power plants are combined cycle plants fired by natural gas. o Internal combustion reciprocating engines are used to provide power for isolated communities and are frequently used for small cogeneration plants. Hospitals, office buildings, industrial plants, and other critical facilities also use them to provide backup power in case of a power outage. These are usually fuelled by diesel oil, heavy oil, natural gas, and landfill gas. o Microturbines, Stirling engine and internal combustion reciprocating engines are low-cost solutions for using opportunity fuels, such as landfill gas, digester gas from water treatment plants and waste gas from oil production. 1.1.3 By duty (scheduled): o Base load power plants run nearly continually to provide that component of system load that doesn't vary during a day or week. Baseload plants can be highly optimized for low fuel cost, but may not start or stop quickly during changes in system load. Examples of base-load plants would include large modern
  • 7. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 5 coal-fired and nuclear generating stations, or hydro plants with a predictable supply of water. o Peaking power plants meet the daily peak load, which may only be for one or two hours each day. While their incremental operating cost is always higher than base load plants, they are required to ensure security of the system during load peaks. Peaking plants include simple cycle gas turbines and sometimes reciprocating internal combustion engines, which can be started up rapidly when system peaks are predicted. Hydroelectric plants may also be designed for peaking use. o Load following power plants can economically follow the variations in the daily and weekly load, at lower cost than peaking plants and with more flexibility than baseload plants. 1.2 Desalination Plant: Desalination is a process that removes minerals from saline water. More generally, desalination may also refer to the removal of salts and minerals, as in soil desalination, which also happens to be a major issue for agricultural production. 1.2.1 Types of distillation process: a. Multi-Stage flash distillation. b. Multiple-effect distillation. c. Vapor-Compression.
  • 8. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 6 1.2.1 Multi-Stage flash distillation [1]: Multi-stage flash distillation is a water distillation process that distills seawater by flashing a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers. 1.2.2 How it works: The plant has a series of spaces called stages, each containing a heat exchanger and a condensate collector. The sequence has a cold end and a hot end while intermediate stages have intermediate temperatures. The stages have different pressures corresponding to the boiling points of water at the stage temperatures. After the hot end there is a container called the brine heater. Figure 1: Schematic of a 'once-through' multi-stage flash desalinates: A - Steam in B - Seawater in C - Potable water out D - Waste out E - Steam out F - Heat exchange G - Condensation collection H - Brine heater
  • 9. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 7 1. The cold water pumped from the sea through a heat exchanger and it warms it up. (with each stage, the temperature of sea water increase). 2. Then, when it reaches the brine heater, it already had got nearly the maximum temperature. 3. The water enters the brine heater and some heat is added. 4. After the heater, the water flows through valves back into the stages that have ever lower pressure and temperature. The water now called brine. 5. The brine enters each stage at temperature higher than the boiling temperature. As a result, small fraction of brine flashes to steam until its temperature reduce to equilibrium. Then enters the next stage. 6. The steam cools and condense against the heat exchanger tube, and it heats up the water coming from the sea. 7. At the final stage, the temperature in nearly same as the inlet temperature. 1.2.3 Challenges: There is a maximum temperature of brine heater that the water can’t be heated above 120, because this will result in corrode the heat exchanger as well as scale formation, which is the salt from sea. It can be avoided by adding Nano filters, so the water is out of Mg and Na. Also, another challenge is about how to balance the heat used in brine heater, that it gives the best performance with low energy lost. 1.3 Objective: Our objective is to find a balance between the power plant and the desalination plant so that we get the optimum performance for both systems.
  • 12. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 10 2.1.1 Boiler: in the boiler, we increase the water temperature up to 500 C with pressure of 6000 KPa. Also, there is a reheat part that comes out from the high pressure turbine. Here is the energy balance equation representing the heat added to the water as well as the heat added to Z-extraction (reheat): !"# = &'() ℎ 11 − ℎ 10 + / ℎ 15 − ℎ 14 (1) where: § h[11] represent the enthalpy for the whole steam coming out of the boiler to the high pressure turbine. § h[10] represent the enthalpy for the whole water coming into of the boiler. § h[15] represent the enthalpy for the Z- fraction of steam coming out of the boiler to the low pressure turbine. § h[14] represent the enthalpy for the Z- fraction of steam coming out of the high pressure turbine to the reheat. § mdot represent the mass flow rate for the whole system. § Z represent the fraction that is going to the reheat and the low pressure turbine. 2.1.2 High Pressure Turbine: In the high pressure turbine, we have three fractions being extracted at different pressure and the first one is going to the closed feed water heater 1, and the other one is going to the closed feed water heater 2, and the third one is going to the reheat, and then to the low pressure turbine. The high pressure turbine has isentropic efficiency of 80% and here is the energy balance equation for the high pressure turbine: 2345 = &'() 6 ℎ 11 − ℎ 12 + 8 ℎ 11 − ℎ 13 + / ℎ 11 − ℎ 14 (2)
  • 13. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 11 here is the mass flow rate fraction balance: 1 = 6 + 8 + / (3) where: § h[12] represents the enthalpy of X-fraction of steam from the high pressure turbine at P[12] and T[12]. § h[13] represents the enthalpy of Y-fraction of steam from the high pressure turbine at P[13] and T[13]. § h[14] represents the enthalpy of Z-fraction of steam from the high pressure turbine at P[14] and T[14]. 2.1.3 Low Pressure Turbine: In the low pressure turbine, we have three fractions being extracted at different pressure and the first one is going to the open feed water heater, and the other one is going to the MSF-OT plant, and the third one is going to the condenser. The low pressure turbine has isentropic efficiency of 85% and here is the energy balance equation for the low pressure turbine: 2:45 = &'() /×ℎ 15 − &×ℎ 16 − =×ℎ 17 − ?× ℎ@A"#B[18] (4) here is the mass flow rate fraction balance: / = & + = + ? (5) where: § h[15] represents the enthalpy of Z-fraction of steam from the reheat at P[15] and T[15] to the low pressure turbine. § h[16] represent the enthalpy of m-fraction of steam from the low pressure turbine at P[16] and T[16] and going to the open feed water heater. § h[17] represents the enthalpy of n-fraction of steam from the low pressure turbine at Pcondenser and T[17] going to the condenser. § hbrine[18] represents the enthalpy of b-fraction of steam from the reheat at Pbrine[18] and Tbrine[18] and going to the MSF.
  • 14. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 12 § m represents the fraction of steam that is going to the open feed water heater. § n represents the fraction of steam that is going to the condenser. § b represents the fraction of steam that is going to the MSF brine heater. 2.1.4 Condenser: In the condenser, the water enters the condenser at Pcondenser and the water gets out with zero quality. Here is the energy balance equation for the condenser: !(F) = &'() = ℎ 17 − ℎ 1 (7) where: § h[1] represents the enthalpy of n-fraction of water from the condenser at Pcondenser and T[1] to pump 1. 2.1.5 Open Feed Water Heater: In the open feed water heater, n-fraction after pump 1, m- fraction from low pressure turbine, b-fraction from MSF. Here is the energy balance equation for the open feed water heater: ℎ 2 × = + ℎ 16 × & + ℎ 6 × 6 + 8 + ?×ℎ 20 = ℎ 3 (8) here is the mass flow rate fraction balance equation: ? + 6 + 8 + & = 1 (9) where: § h[2] represents the enthalpy of n-fraction of water from the condenser at P[2] and T[2] and going to the open feed water heater. § h[6] represents the enthalpy of (x&y)-fraction of steam from trap 2 at P[6] and T[6] and going to the open feed water heater. § h[20] represents the enthalpy of b-fraction of steam from MSF at Pbrine and Tbrine[18] and going to the open feed water heater.
  • 15. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 13 § h[3] represents the enthalpy of whole mass fraction of steam from open feed water heater and going to pump 2, which increase the water pressure up to Pboiler. 2.1.6 Closed Feed Water Heater 2: In the closed feed water heater 2, we have three lines entering the heat exchanger: y-fraction coming from the high pressure turbine, whole mass from pump 2 and x-fraction from trap 1. Also, we have two lines going out from the heat exchanger: one is going to the closed feed water heater 1 and the other going trap 2. Here is the energy balance equation for the closed feed water heater with effectiveness of 0.8 : 8×GH 13 × I 13 − IJK) 13 + 8×ℎLM 13 + ℎ 4 + ℎ 9 ×6 = 6 + 8 ×ℎ 5 + ℎ 7 (10) where: § Cp[13] represents the specific heat of y-fraction of water from the high pressure turbine at P[13] and T[13] and going to the closed feed water heater 2. § hfg[13] represents the vaporization enthalpy of y-fraction of steam from high pressure turbine at P[13] and T[13] and going to the closed feed water heater 2. § h[4] represents the enthalpy of whole mass fraction of water from pump 2 at P[4] and T[4] and going to the closed feed water heater 2. § h[9] represents the enthalpy of x-fraction of water from trap 1 and going to the closed feed water heater 2. § h[7] represents the enthalpy of whole mass fraction of water from closed feed water 2 and going to the closed feed water heater 1.
  • 16. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 14 2.1.7 Closed Feed Water Heater 1: In the closed feed water heater 1, we have two fractions going to the heat exchanger: one from the closed feed water 2 and the other from the high pressure turbine. Also, we have two fractions going out from the heat exchanger: one is going to the boiler and the other is going to trap 1. Here is the energy balance equation for the closed feed water heater 1: 6×GH 12 × I 12 − IJK)[12] + 6×ℎLM[12] + ℎ 7 = ℎ 8 ×6 + ℎ 10 (11) where: § Cp[12] represents the specific heat of x-fraction of water from the high pressure turbine at P[12] and T[12] and going to the closed feed water heater 1. § hfg[12] represents the vaporization enthalpy of x-fraction of steam from high pressure turbine at P[12] and T[12] and going to the closed feed water heater 1. § h[8] represents the enthalpy of x-fraction of steam from closed feed water 1 and going to trap 1. § h[10] represents the enthalpy of whole mass fraction of water from closed feed water 1 and going to the boiler.
  • 17. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 15 2.2 Desalination Plant: We chose to work on a once through multi-stage flash distillation system consists of two basic sections, a heat addition section and a heat recovery section as can be seen in the Fig.4, in the next page. The heat recovery section consists of a condenser, the distillate collection trays and the flashing chamber. On the other hand, the heat addition section consists mainly of a brine heater. (See Appendix B for the EES code)
  • 18. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 16 Figure 4 : Once through Multi-Stage Flash Distillation System
  • 20. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 18 2.1.2 Temperature Drop Modeling: As we assumed that the temperature drop in every stage is constant, so the equation will be: (17) Where: To: Temperature of seawater leaving the brine heater, the top brine temperature. Tn: Temperature of brine leaving the last stage of the flashing chamber. n: the number of flashing stages. 2.1.3 The Temperature at each Stage: (18) Where i represents the stage number. 2.1.4 Heat transfer areas: The equation of the brine heat transfer area required Ab is: (19) Where Ub and Tlmtd,b are: Also, the condenser heat transfer area in the first stage is: (20) Where Tlmtd,c and Uc are:
  • 22. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 20 2.1.5 Flashing Stage Dimensions Modeling: The gate height at each stage, GH is: (22) And the brine pool height, H: (23) Also, the width of each chamber is calculated by: (24) 2.1.6 Performance Modeling: The performance of the desalination plants is expressed as the performance ratio, PR, which defined as the amount of distillate produced per unit of steam consumption. And is calculated by: (25)
  • 23. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 21 Chapter 3: Results and discussion: 3.1 Power plant 3.1.1 The optimum pressure: The optimum pressure in the power plant in boiler, reheat and extraction line from turbines to feed water. All following pressure calculate at extraction equal 0. 3.1.1.1 Boiler pressure The pressure of the boiler is the maximum pressure in the power plant. The pressure set it to be 12MPa and all following pressure will depends on this pressure. We use 12 MPa. As we increase the pressure of the boiler, the efficiency of the cycle will increase but this increase should have some constrain. 3.1.1.2 Reheat pressure The best condition of the reheat pressure is to be 20-25 % of the boiler pressure, which is equal to 2400 KPa. We can see that from the following graph and table. Table 1: Reheat pressure Wnet (KW) Efficiency (%) Pressure (KPa) 71119236.197000 71739036.296500 72376936.386000 73034636.475500 73714536.555000 74419236.634500 75151436.74000 75914636.763500 76712236.83000 77547736.822500 77719536.822400 78422236.82000 Figure 5: preheat/Boiler Vs eff
  • 24. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 22 3.1.1.3 Extraction pressure p [12] The extraction pressure from the HPT to CFWH1. We can see P = 2500 KPa is the best condition. This pressure cannot be lower than the pressure of reheat. 3.1.2 The effect of mass extraction from power plant to MSF plant Here in this part, we want to see the effect of the amount of mass that extract form the power plant to the MSF plant. As we can see from the figure and the table, the effect of the extraction is not going to effect the power plant. If we say that we need to extract 10 % of the mass flow rate of the power plant, we will loss 0.43% from the efficiency and if we compare this loss to how much are we going to produce water, that loss will be nothing. The value of extraction represent how much do we take from the power plant to the MSF. The following table shows extraction value starts from 0% to 34% of the mass flow rate of the power plant. The following data are at 700 KPa and we will discuss latter why we choose this pressure for the extraction. Wnet (KW) Efficiency (%) Pressure (KPa) 59678031.715000 63562733.044500 67334834.214000 71041835.253500 74734736.173000 78474936.972500 Table 2: optimum pressure for P [12]
  • 25. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 23 Table 3: Mass extraction and effect on efficiency Wnet (KW) Efficiency (%) Extraction fraction 77719536.820 77629836.780.01 77540036.730.02 77450236.690.03 77360536.650.04 77270736.610.05 77181036.560.06 77091236.520.07 77001436.480.08 76911736.440.09 76821936.390.1 76373136.180.15 75924335.970.2 75475535.760.25 75026735.540.3 74667635.370.34 Figure 6: Effincy Vs Extraction fraction
  • 26. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 24 3.1.3 The effect of the condition of the extraction mass Here we are going to see, how the condition of the extraction can effect on the power plant system. The following result is when we extract 10 % of the mass flow rate of the power plant. As we can see, decreasing the pressure will lead to decrease the value of hg . However, hfg will increase because as we decrease the pressure hfg increase from the T-S diagram. From here we can calculate the amount of heat that will be delivered to the MSF plant which equal to = m*hfg.. From here, we can control the condition of the pressure of extraction based on the needed heat in the MSF plant. Table4 : effect of the condition of the extraction Q Desalination (KJ) Wnet (KW) Efficiency (%) hg (KJ/Kg) Pressure (KPa) 15883476857736.4127841200 15997176847536.4127811100 16116976838536.427781000 16243976831036.42774900 16379676825336.42769800 16526176821936.392763700 16686376821636.392757600 16864376825536.42749500 17067476835536.42739400 17307976855136.412725300 17612476891936.432707200 18059876969836.462675100 Figure 8: Efficiency Vs Pbrine Figure 7: : T-S diagram shows how hfg increase as pressure decreases
  • 27. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 25 3.1.4 Make up water for the power plant: The losses in the mass flow rate from the power plant during the extraction to the MSF plant should be compensating. Usually the makeup water that for the power plant is water at 25 Co . in this project we tried to see how we could use the same water that used in the MSF plant. Water that come back again will have less energy than that delivered to MSF because the energy used to heat up the see water temperature. 1- Using the water from the MSF: Steam that used in MSF plant will have hg at the extraction pressure. The outlet of the brine heater will have hf at the extraction pressure. In this case, we can use this water and pump it back to the open feed eater at the same pressure of the OFWH. This water will be the makeup water for the power plant. We can see from the table 5, how the efficiency will be if we return the water from MSF plant. Table 5: Efficiency with returning water from MSF Wnet (KW) Efficiency (%) b 77719536.820 77629836.780.01 77540036.730.02 77450236.690.03 77360536.650.04 77270736.610.05 77181036.560.06 77091236.520.07 77001436.480.08 76911736.440.09
  • 28. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 26 2- Using water at 25Co As we extract steam from power plant we should have make up water to complete the cycle. In this case we will have makeup water in 25 C. we will pump this water to same pressure of OFWH. The flowing data are at 700 KPa for the make water and its efficiency. Table 6: Efficiency with returning water 25 C Wnet (KW) Efficiency (%) b 77719536.820 77557136.740.01 77394636.650.02 77232136.570.03 77069736.490.04 76907236.410.05 76744736.320.06 76582336.240.07 76419836.160.08 76257336.070.09 3.1.5 Comparison between data: This table will show how much is the difference in efficiency and Wnet between make up water from MSF or at 25 C Defiance (KW) Wnet (KW) Wnet (KW) Defiance (%) Efficiency (%) Efficiency (%) b 0777195777195036.8236.820 7277755717762980.0436.7436.780.01 14547739467754000.0836.6536.730.02 21817723217745020.1236.5736.690.03 29087706977736050.1636.4936.650.04 36357690727727070.236.4136.610.05 43637674477718100.2436.3236.560.06 50897658237709120.2836.2436.520.07 58167641987700140.3236.1636.480.08 65447625737691170.3736.0736.440.09
  • 29. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 27 Figure 9: the effect of make water in Efficiency 36 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 0 0.02 0.04 0.06 0.08 0.1 b Vs Efficiency Back from MSF at 25 C
  • 30. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 28 Figure 10: The effect of make water in Work net 760000 762000 764000 766000 768000 770000 772000 774000 776000 778000 0 0.02 0.04 0.06 0.08 0.1 b Vs Wnet Back from MSF At 25 C
  • 31. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 29 3.2 MSF Plant In MSF plant, we are going to see how much steam do we need from the power plant to produce 378.8 Kg/s of desalt water. Also, how can the temperature of the steam can affect the performance ration of the MSF. 3.2.1 The effect of condition of the steam As we see previously how the extraction condition can effect on the power plant. It is also effect on MSF. As we increase the pressure of extraction, the temperature of the steam will increase. Therefore, the temperature of top brine will increase also. We can see how temperature will be difference with pressure in the following table. Table 7: pressure and its temperatures TsatPextraction 1881200 184.11100 179.91000 175.4900 170.4800 165700 158.9600 151.9500 143.6400 133.6300 120.2200 99.63100 Increasing the pressure of extraction will led to increase in performance ratio and increasing in number of stages. In addition, it will led to decrease the amount of steam that need in MSF plant. The following table shows how temperature will effect in the energy needed (Q) and number of stages. Table 8: steam temperature and its effect on Q and number of stages MsteamQ (KJ)PR∆T (Co )nTn (Co )To (Co ) 95.70492118373.9582.752440106 90.839332000254.172.82540110 80.819291756904.6872.7586212940120 73.099191567515.1822.81253240130 66.996821416115.6542.7777783640140 62.067841292236.1032.754040150 58.026961188926.5282.7906984340160 54.692461101556.9262.7659574740170
  • 32. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 30 Tn: Brine Temperature in last stage To: Top brine temperature n: Total number of stages ∆T: The temperature drop per stage PR: performance ratio Q: heat need in brine heater In figure 11, we can see the relation between the top brine temperature, which is (Tsat – 10), and the number of stages. As we increases number of stages the performance ratio will increases. Figure 11: number of stage Vs Top brine temperature y = 0.3613x - 14.543 20 25 30 35 40 45 50 100 110 120 130 140 150 160 170
  • 33. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 31 The following figure shows, what is the relation between the top brine temperature and mass flow rate of the steam. As we increase temperature of the steam we will need less mass flow rate so less amount of extraction from the power plant. Figure 12: Msteam Vs Top brine temperature We can see from the following graph how performance ratio will effect by increasing the top brine temperature. Actually increasing the temperature led to increase number of stage which is going to increase the performance ratio. Figure 13: performance ratio Vs Top brine temperature 40 50 60 70 80 90 100 100 110 120 130 140 150 160 170 y = 0.0455x - 0.7828 1 2 3 4 5 6 7 8 100 110 120 130 140 150 160 170
  • 34. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 32 3.2.2 Extraction “b” from power plant to the MSF b = ms / mp ms: mass of steam required in MSF mp: mass flow rate of water in power plant, which is 800 Kg/s The following table show how much “b” we need to satisfy the MSF at different top brine temperature. Table 9: table show how much “b” we need to satisfy the MSF at different top brine temperature bmsteam (Kg/s) Q (KJ) To (Co ) 0.11963195.7049211837106 0.11354990.83933200025110 0.10102480.81929175690120 0.09137473.09919156751130 0.08374666.99682141611140 0.07758562.06784129223150 0.07253458.02696118892160 0.06836654.69246110155170
  • 35. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 33 Chapter 4: Conclusion To sum up, we focused on this project to find the optimum performance ratio by combining the steam power plant with the MSF distillation plant. First, we worked on the power plant and we found out the best reheat pressure to be 2400 kPa. Then, we looked on the effect of the extraction, which is going to supply steam to the MSF plant, on the efficiency of the power plant and we found out that if we take 8% of the mass in the power plant the efficiency will decrease by 1% which is very small compared to what we will get in the MSF. After that, we found that the best pressure of the extraction to be 700 kPa and we looked on the effect of the makeup mass to the power plant. If the makeup was water at temperature of 165 C or water at 25 C and we found that the efficiency will decrease by 0.36% if we put a makeup water at 25 C. Then, we looked at the MSF and see the effect of the increasing the temperature of the supplied steam. As we increase the steam temperature, the number of stages increase which will lead us to an increase in the performance ratio. If we increase the steam temperature from 106 C to 170 C, the performance ratio will increase by almost 100%. These changes caused big improvement on the combination of the power plant and MSF which will save a lot of money.
  • 39. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 1 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Knowen information Pboiler = 12000 P12 = 2600 P13 = 2500 Preheat = 2400 P16 = 900 Pcond = 7.5 T11 = 565 T15 = 550 HPT = 0.8 LPT = 0.85 b = 0.07254 Pbrine,18 = 700 rat = Preheat Pboiler Qdesel = b · M · hbrinefg,18 M = 800 CFWH1 = CFWH2 CFWH2 = 0.4 massdes = M · b Heat Transfer Coefficient of steam at Steam Temperature hbrinefg,18 = Enthalpyvaporization SteamIAPWS , P = Pbrine,18 HPT h11 = h Steam , T = T11 , P = Pboiler s11 = s Steam , T = T11 , P = Pboiler Isontropic turbine s11 = s12 s11 = s13 s11 = s14 hiso,12 = h Steam , s = s12 , P = P12 hiso,13 = h Steam , s = s13 , P = P13
  • 40. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 2 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals hiso,14 = h Steam , s = s14 , P = Preheat HPT = h11 – h12 h11 – hiso,12 HPT = h11 – h13 h11 – hiso,13 HPT = h11 – h14 h11 – hiso,14 T12 = T Steam , s = s12 , P = P12 T13 = T Steam , s = s13 , P = P13 T14 = T Steam , s = s14 , P = Preheat 1 Mass balance 1 = z + x + y WHPT = M · x · h11 – h12 + y · h11 – h13 + z · h11 – h14 LPT h15 = h Steam , T = T15 , P = Preheat s15 = s Steam , T = T15 , P = Preheat Isontropic turbine s15 = s16 s15 = s17 hiso,16 = h Steam , s = s16 , P = P16 hiso,17 = h Steam , s = s17 , P = Pcond LPT = h15 – h16 h15 – hiso,16 LPT = h15 – h17 h15 – hiso,17 T16 = T Steam , s = s16 , P = P16 T17 = T Steam , s = s17 , P = Pcond 2 Mass Balance z = m + n + b hbrine,18 = h Steam , x = 1 , P = Pbrine,18
  • 41. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:25 PM Page 3 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals WLPT = M · z · h15 – m · h16 – n · h17 – b · hbrine,18 Condencer h1 = h water , P = Pcond , x = 0 To calculate the work in pump 1 v1 = v water , P = Pcond , x = 0 Qout = M · n · h17 – h1 Pump 1 P2 = P16 P1 = Pcond Wp1 = M · n · v1 · P2 – P1 M · n · h2 – h1 = Wp1 OFWH 3 h2 · n + h16 · m + h6 · x + y + b · h20 = h3 Hrecovery = M · n · h2 + h16 · m + h6 · x + y + b · h20 hnew,3 = Hrecovery M h21 = h water , T = 25 , P = 101 h3 = h water , P = P16 , x = 0 To calculate the work in pump 2 v3 = v water , P = P16 , x = 0 T3 = T water , P = P16 , h = hnew,3 T2 = T water , P = P16 , h = h2 T6 = T water , P = P16 , h = h6 Pump 2 P4 = Pboiler P3 = P16 Wp2 = M · v3 · P4 – P3 M · h4 – hnew,3 = Wp2 T4 = T3 pump 3
  • 42. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 4 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals P16 = P20 v19 = v water , P = Pbrine,18 , x = 0 WP3 = M · b · P20 – Pbrine,18 · v19 WP3 = M · b · h20 – h19 h19 = h water , P = Pbrine,18 , x = 0 CFWH 2 4 y · Cp13 · T13 – Tsat,13 + y · hfg,13 + h4 + h9 · x = x + y · h5 + h7 Tsat,13 = Tsat water , P = P13 Tavg,13 = T13 + Tsat,13 2 Cp13 = Cp water , T = Tavg,13 , P = P13 hfg,13 = Enthalpyvaporization Steam , P = P13 T7 – T4 T13 – T4 = CFWH2 T5 = T water , P = P13 , x = 0 h7 = h water , T = T7 , P = P4 Trap 2 h5 = h6 h5 = h water , P = P13 , x = 0 CFWH 1 5 x · Cp12 · T12 – Tsat,12 + x · hfg,12 + h7 = h8 · x + h10 Tsat,12 = Tsat water , P = P12 Tavg,12 = T12 + Tsat,12 2 Cp12 = Cp water , T = Tavg,12 , P = P12 hfg,12 = Enthalpyvaporization Steam , P = P12 h8 = h water , P = P12 , x = 0 T10 – T7 T12 – T7 = CFWH1
  • 43. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 5 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals T8 = T water , P = P12 , x = 0 h10 = h water , T = T10 , P = P4 Trap 1 h8 = h9 Boiler Qin = M · h11 – h10 + z · h15 – h14 The System effecince Wtotal,pump = Wp1 + Wp2 + WP3 Wnet = WLPT + WHPT – Wp1 – Wp2 – WP3 sys,new = Wnet Qin · 100 HC,2 = M · n · h2 HC,4 = M · h4 HC,5 = M · x + y · h5 HC,6 = M · x + y · h6 HC,7 = M · h7 HC,8 = M · x · h8 HC,9 = M · x · h9 HC,10 = M · h10 HC,11 = M · h11 HC,12 = M · x · h12 HC,13 = M · y · h13 HC,14 = M · z · h14 HC,15 = M · z · h15 HC,16 = M · m · h16 HC,17 = M · n · h17 HC,18 = M · b · hbrine,18 SOLUTION Unit Settings: SI C kPa kJ mass deg b = 0.07254 CFWH1 = 0.4 CFWH2 = 0.4 HPT = 0.8
  • 44. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 6 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals LPT = 0.85 sys,new = 36.51sys,new = 36.51 Hrecovery = 594343 m = 0.07824 massdes = 58.03 M = 800 n = 0.4825 Pboiler = 12000 Pcond = 7.5 Preheat = 2400 Qdesel = 119881 Qin = 2.111E+06 Qout = 907519 rat = 0.2 WHPT = 309122 WLPT = 471878 Wnet = 770684 Wp1 = 347.3 Wp2 = 9956 WP3 = 12.86 Wtotal,pump = 10316 x = 0.1523 y = 0.2144 z = 0.6333 38 potential unit problems were detected. Arrays Table: Main Cpi hi hbrine,i HC,i hfg,i hiso,i hnew,i Pi Pbrine,i si 1 168.8 7.5 2 169.7 65487 900 3 742.9 742.9 900 4 755.4 604299 12000 5 962 282218 6 962 282218 7 995.3 796218 8 971.7 118388 9 971.7 118388 10 1163 930464 11 3519 2.815E+06 6.699 12 2.612 3145 383111 1831 3051 2600 6.699 13 2.605 3137 538036 1840 3041 2500 6.699 14 3128 1.585E+06 3031 6.699 15 3575 1.811E+06 7.483 16 3294 206156 3244 900 7.483 17 2520 972659 2334 7.483 18 2763 160361 700 19 697.4 20 697.6 900 21 104.8 Arrays Table: Main Ti Tavg,i Tsat,i vi hbrinefg,i 1 0.001008 2 40.33 3 175.4 0.001121 4 175.4 5 224 6 175.4 7 230.7 8 226.1 9 10 266 11 565 12 319 272.6 226.1 13 313.7 268.8 224 14 308.2 15 550
  • 45. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 7 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Arrays Table: Main Ti Tavg,i Tsat,i vi hbrinefg,i 16 389.9 17 40.3 18 2066 19 0.001108 20 21 There are a total of 114 equations in the Main program. Block Rel. Res. Abs. Res. Units Calls Time(ms) Equations 0 0.000E+00 0.000E+00 OK 1 0 P_boiler=12000 0 0.000E+00 0.000E+00 OK 1 0 P[12]=2600 0 0.000E+00 0.000E+00 OK 1 0 P[13]=2500 0 0.000E+00 0.000E+00 OK 1 0 P_reheat=2400 0 0.000E+00 0.000E+00 OK 1 0 P[16]=900 0 0.000E+00 0.000E+00 OK 1 0 P_cond=7.5 0 0.000E+00 0.000E+00 OK 1 0 T[11]=565 0 0.000E+00 0.000E+00 OK 1 0 T[15]=550 0 0.000E+00 0.000E+00 OK 1 0 Eta_HPT=0.8 0 0.000E+00 0.000E+00 OK 1 0 Eta_LPT=0.85 0 0.000E+00 0.000E+00 OK 1 0 b=.07254 0 0.000E+00 0.000E+00 OK 1 0 P_brine[18]=700 0 0.000E+00 0.000E+00 OK 1 0 M_dot=800 0 0.000E+00 0.000E+00 OK 1 0 epsilon_CFWH2=0.4 0 0.000E+00 0.000E+00 OK 4 0 rat=P_reheat/P_boiler 0 0.000E+00 0.000E+00 OK 4 0 mass_des=M_dot*b 0 0.000E+00 0.000E+00 ? 4 0 h_brinefg[18]=Enthalpy_vaporization(Steam_IAPWS,P=P_brine[18]) 0 0.000E+00 0.000E+00 ? 4 0 h[11]=Enthalpy(Steam,T=T[11],P=P_boiler) 0 0.000E+00 0.000E+00 ? 4 0 s[11]=Entropy(Steam,T=T[11],P=P_boiler) 0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[12] 0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[13] 0 0.000E+00 0.000E+00 OK 4 0 s[11]=s[14] 0 0.000E+00 0.000E+00 ? 4 0 h_iso[12]=Enthalpy(Steam,S=S[12],P=P[12]) 0 0.000E+00 0.000E+00 ? 4 0 h_iso[13]=Enthalpy(Steam,S=S[13],P=P[13]) 0 0.000E+00 0.000E+00 ? 4 0 h_iso[14]=Enthalpy(Steam,S=S[14],P=P_reheat) 0 1.355E-19 -5.073E-17 OK 4 0 Eta_HPT=(h[11]-h[12])/(h[11]-h_iso[12]) 0 1.355E-19 5.182E-17 OK 4 0 Eta_HPT=(h[11]-h[13])/(h[11]-h_iso[13]) 0 2.033E-19 -7.942E-17 OK 4 0 Eta_HPT=(h[11]-h[14])/(h[11]-h_iso[14]) 0 0.000E+00 0.000E+00 ? 4 0 T[12]=Temperature(Steam,S=S[12],P=P[12]) 0 0.000E+00 0.000E+00 ? 4 0 T[13]=Temperature(Steam,S=S[13],P=P[13]) 0 0.000E+00 0.000E+00 ? 4 0 T[14]=Temperature(Steam,S=S[14],P=P_reheat) 0 0.000E+00 0.000E+00 ? 4 0 h[15]=Enthalpy(Steam,T=T[15],P=P_reheat) 0 0.000E+00 0.000E+00 ? 4 0 s[15]=Entropy(Steam,T=T[15],P=P_reheat) 0 0.000E+00 0.000E+00 OK 4 0 s[15]=s[16] 0 0.000E+00 0.000E+00 OK 4 0 s[15]=s[17] 0 0.000E+00 0.000E+00 ? 4 0 h_iso[16]=Enthalpy(Steam,S=s[16],P=P[16]) 0 0.000E+00 0.000E+00 ? 4 0 h_iso[17]=Enthalpy(Steam,S=s[17],P=P_cond) 0 1.276E-19 3.587E-17 OK 4 0 Eta_LPT=(h[15]-h[16])/(h[15]-h_iso[16]) 0 1.276E-19 1.346E-16 OK 4 0 Eta_LPT=(h[15]-h[17])/(h[15]-h_iso[17]) 0 0.000E+00 0.000E+00 ? 4 0 T[16]=Temperature(Steam,S=s[16],P=P[16]) 0 0.000E+00 0.000E+00 ? 4 0 T[17]=Temperature(Steam,S=s[17],P=P_cond) 0 0.000E+00 0.000E+00 ? 4 0 h_brine[18]=Enthalpy(Steam,x=1,P=P_brine[18]) 0 0.000E+00 0.000E+00 ? 4 0 h[1]=Enthalpy(Water,P=P_cond,x=0) 0 0.000E+00 0.000E+00 ? 4 0 v[1]=Volume(Water,P=P_cond,x=0) 0 0.000E+00 0.000E+00 OK 4 0 P[2]=P[16] 0 0.000E+00 0.000E+00 OK 4 0 P[1]=P_cond 0 0.000E+00 0.000E+00 ? 4 0 h[21]=Enthalpy(Water,T=25,P=101)
  • 46. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 8 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 ? 4 0 h[3]=Enthalpy(Water,P=P[16],x=0) 0 0.000E+00 0.000E+00 ? 4 0 v[3]=Volume(Water,P=P[16],x=0) 0 0.000E+00 0.000E+00 OK 4 0 P[4]=P_boiler 0 0.000E+00 0.000E+00 OK 4 0 P[3]=P[16] 0 0.000E+00 0.000E+00 OK 4 0 W_p2=m_dot*v[3]*(P[4]-P[3]) 0 0.000E+00 0.000E+00 OK 4 0 P[16]=P[20] 0 0.000E+00 0.000E+00 ? 4 0 v[19]=Volume(Water,P=P_brine[18],x=0) 0 0.000E+00 0.000E+00 OK 4 0 W_P3=m_dot*b*(P[20]-P_brine[18])*v[19] 0 0.000E+00 0.000E+00 ? 4 0 h[19]=Enthalpy(Water,P=P_brine[18],x=0) 0 0.000E+00 0.000E+00 ? 4 0 T_sat[13]=T_sat(Water,P=P[13]) 0 0.000E+00 0.000E+00 OK 4 0 T_avg[13]=((T[13]+T_sat[13])/2) 0 0.000E+00 0.000E+00 ? 4 0 Cp[13]=Cp(Water,T=T_avg[13],P=P[13]) 0 0.000E+00 0.000E+00 ? 4 15 h_fg[13]=Enthalpy_vaporization(Steam,P=P[13]) 0 0.000E+00 0.000E+00 ? 4 0 T[5]=Temperature(Water,P=P[13],x=0) 0 0.000E+00 0.000E+00 ? 4 0 h[5]=Enthalpy(Water,P=P[13],x=0) 0 0.000E+00 0.000E+00 ? 4 0 T_sat[12]=T_sat(Water,P=P[12]) 0 0.000E+00 0.000E+00 OK 4 0 T_avg[12]=((T[12]+T_sat[12])/2) 0 0.000E+00 0.000E+00 ? 4 0 Cp[12]=Cp(Water,T=T_avg[12],P=P[12]) 0 0.000E+00 0.000E+00 ? 4 16 h_fg[12]=Enthalpy_vaporization(Steam,P=P[12]) 0 0.000E+00 0.000E+00 ? 4 0 h[8]=Enthalpy(Water,P=P[12],x=0) 0 0.000E+00 0.000E+00 ? 4 0 T[8]=Temperature(Water,P=P[12],x=0) 0 0.000E+00 0.000E+00 OK 4 0 h[8]=h[9] 0 0.000E+00 0.000E+00 OK 4 0 H_C[11]=m_dot*h[11] 0 0.000E+00 0.000E+00 OK 4 0 H_C[18]=m_dot*(b)*h_brine[18] 0 0.000E+00 0.000E+00 OK 4 0 Q_desel=b*M_dot*h_brinefg[18] 0 0.000E+00 0.000E+00 OK 4 0 epsilon_CFWH1=epsilon_CFWH2 0 1.087E-16 -1.398E-15 OK 4 0 W_P3=m_dot*b*(h[20]-h[19]) 0 0.000E+00 0.000E+00 OK 4 0 h[5]=h[6] 0 0.000E+00 0.000E+00 ? 4 0 T[6]=Temperature(Water,P=P[16],h=h[6]) 1 0.000E+00 0.000E+00 OK 48 0 1=(z+x+y) 1 0.000E+00 0.000E+00 OK 48 0 z=(m+n+b) 1 0.000E+00 0.000E+00 OK 40 0 W_p1=m_dot*(n*v[1]*(P[2]-P[1])) 1 1.919E-08 -6.663E-06 OK 48 0 m_dot*(n)*(h[2]-h[1])=W_p1 1 1.121E-11 -8.325E-09 OK 64 0 h[2]*(n)+h[16]*m+h[6]*(x+y)+b*h[20]=h[3] 1 1.121E-11 6.662E-06 OK 72 0 H_recovery=m_dot*(n*h[2]+h[16]*m+h[6]*(x+y)+b*h[20]) 1 0.000E+00 0.000E+00 OK 40 0 h_new[3]=H_recovery/m_dot 1 2.002E-14 3.512E-12 ? 82 109 T[3]=Temperature(Water,P=P[16],h=h_new[3]) 1 6.245E-19 -6.217E-15 OK 40 0 m_dot*(h[4]-h_new[3])=W_p2 1 0.000E+00 0.000E+00 OK 40 0 T[4]=T[3] 1 0.000E+00 0.000E+00 OK 56 0 y*Cp[13]*(T[13]-T_sat[13])+y*h_fg[13]+h[4]+h[9]*x=(x+y)*h[5]+h[7] 1 1.152E-18 4.608E-19 OK 40 0 (T[7]-T[4])/(T[13]-T[4])=epsilon_CFWH2 1 1.104E-16 -1.099E-13 ? 40 0 h[7]=Enthalpy(Water,T=T[7],P=P[4]) 1 8.468E-20 1.110E-16 OK 48 0 x*Cp[12]*(T[12]-T_sat[12])+x*h_fg[12]+h[7]=h[8]*x+h[10] 1 1.897E-18 7.589E-19 OK 40 0 (T[10]-T[7])/(T[12]-T[7])=epsilon_CFWH1 1 2.148E-17 -2.498E-14 ? 40 0 h[10]=Enthalpy(Water,T=T[10],P=P[4]) 2 3.174E-10 -9.812E-05 OK 3 0 W_HPT=m_dot*(x*(h[11]-h[12])+y*(h[11]-h[13])+z*(h[11]-h[14])) 3 3.174E-10 -1.498E-04 OK 3 0 W_LPT=m_dot*(z*h[15]-m*h[16]-n*h[17]-b*h_brine[18]) 4 2.525E-09 2.291E-03 OK 3 0 Q_out=m_dot*(n*(h[17]-h[1])) 5 4.229E-14 1.705E-12 ? 3 16 T[2]=Temperature(Water,P=P[16],h=h[2]) 6 2.525E-09 5.329E-03 OK 3 0 Q_in=m_dot*(h[11]-h[10]+z*(h[15]-h[14])) 7 3.786E-11 3.905E-07 OK 3 0 W_total_pump=W_p1+W_p2+W_p3 8 2.525E-09 1.946E-03 OK 3 0 W_net=W_LPT+W_HPT-W_p1-W_p2-W_p3 9 4.218E-14 1.540E-12 OK 3 0 Eta_sys_new=(W_net/q_in)*100 10 3.786E-11 2.479E-06 OK 3 0 H_C[2]=m_dot*n*h[2] 11 2.525E-09 1.526E-03 OK 3 0 H_C[4]=m_dot*h[4] 12 3.174E-10 -8.958E-05 OK 3 0 H_C[5]=m_dot*(x+y)*h[5] 13 3.174E-10 -8.958E-05 OK 3 0 H_C[6]=m_dot*(x+y)*h[6] 14 2.525E-09 2.010E-03 OK 3 0 H_C[7]=m_dot*h[7] 15 3.174E-10 -3.758E-05 OK 3 0 H_C[8]=m_dot*(x)*h[8]
  • 47. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 9 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 16 3.174E-10 -3.758E-05 OK 3 0 H_C[9]=m_dot*(x)*h[9] 17 2.525E-09 2.349E-03 OK 3 0 H_C[10]=m_dot*h[10] 18 3.174E-10 -1.216E-04 OK 3 0 H_C[12]=m_dot*x*h[12] 19 2.525E-09 1.358E-03 OK 3 0 H_C[13]=m_dot*(y)*h[13] 20 2.525E-09 4.001E-03 OK 3 0 H_C[14]=m_dot*(z)*h[14] 21 2.525E-09 4.572E-03 OK 3 0 H_C[15]=m_dot*(z)*h[15] 22 3.174E-10 -6.544E-05 OK 3 0 H_C[16]=m_dot*(m)*h[16] 23 2.525E-09 2.456E-03 OK 3 0 H_C[17]=m_dot*(n)*h[17] Parametric Table: overall viwe b T10 sys,new Wnet T3 hnew,3 x y z n Run 1 0 266 36.82 777195 175.4 742.9 0.1523 0.2144 0.6333 0.5428 Run 2 0.01 266 36.78 776298 175.4 742.9 0.1523 0.2144 0.6333 0.5345 Run 3 0.02 266 36.73 775400 175.4 742.9 0.1523 0.2144 0.6333 0.5262 Run 4 0.03 266 36.69 774502 175.4 742.9 0.1523 0.2144 0.6333 0.5179 Run 5 0.04 266 36.65 773605 175.4 742.9 0.1523 0.2144 0.6333 0.5095 Run 6 0.05 266 36.61 772707 175.4 742.9 0.1523 0.2144 0.6333 0.5012 Run 7 0.06 266 36.56 771810 175.4 742.9 0.1523 0.2144 0.6333 0.4929 Run 8 0.07 266 36.52 770912 175.4 742.9 0.1523 0.2144 0.6333 0.4846 Run 9 0.08 266 36.48 770014 175.4 742.9 0.1523 0.2144 0.6333 0.4763 Run 10 0.09 266 36.44 769117 175.4 742.9 0.1523 0.2144 0.6333 0.468 Run 11 0.1 266 36.39 768219 175.4 742.9 0.1523 0.2144 0.6333 0.4597 Run 12 0.11 266 36.35 767321 175.4 742.9 0.1523 0.2144 0.6333 0.4514 Run 13 0.12 266 36.31 766424 175.4 742.9 0.1523 0.2144 0.6333 0.4431 Run 14 0.13 266 36.27 765526 175.4 742.9 0.1523 0.2144 0.6333 0.4347 Run 15 0.14 266 36.22 764629 175.4 742.9 0.1523 0.2144 0.6333 0.4264 Run 16 0.15 266 36.18 763731 175.4 742.9 0.1523 0.2144 0.6333 0.4181 Run 17 0.16 266 36.14 762833 175.4 742.9 0.1523 0.2144 0.6333 0.4098 Run 18 0.17 266 36.1 761936 175.4 742.9 0.1523 0.2144 0.6333 0.4015 Run 19 0.18 266 36.05 761038 175.4 742.9 0.1523 0.2144 0.6333 0.3932 Run 20 0.19 266 36.01 760140 175.4 742.9 0.1523 0.2144 0.6333 0.3849 Run 21 0.2 266 35.97 759243 175.4 742.9 0.1523 0.2144 0.6333 0.3766 Run 22 0.21 266 35.93 758345 175.4 742.9 0.1523 0.2144 0.6333 0.3683 Run 23 0.22 266 35.88 757448 175.4 742.9 0.1523 0.2144 0.6333 0.36 Run 24 0.23 266 35.84 756550 175.4 742.9 0.1523 0.2144 0.6333 0.3516 Run 25 0.24 266 35.8 755652 175.4 742.9 0.1523 0.2144 0.6333 0.3433 Run 26 0.25 266 35.76 754755 175.4 742.9 0.1523 0.2144 0.6333 0.335 Run 27 0.26 266 35.71 753857 175.4 742.9 0.1523 0.2144 0.6333 0.3267 Run 28 0.27 266 35.67 752959 175.4 742.9 0.1523 0.2144 0.6333 0.3184 Run 29 0.28 266 35.63 752062 175.4 742.9 0.1523 0.2144 0.6333 0.3101 Run 30 0.29 266 35.59 751164 175.4 742.9 0.1523 0.2144 0.6333 0.3018 Run 31 0.3 266 35.54 750267 175.4 742.9 0.1523 0.2144 0.6333 0.2935 Run 32 0.31 266 35.5 749369 175.4 742.9 0.1523 0.2144 0.6333 0.2852 Run 33 0.32 266 35.46 748471 175.4 742.9 0.1523 0.2144 0.6333 0.2769 Run 34 0.33 266 35.42 747574 175.4 742.9 0.1523 0.2144 0.6333 0.2685 Run 35 0.34 266 35.37 746676 175.4 742.9 0.1523 0.2144 0.6333 0.2602 Parametric Table: overall viwe m Run 1 0.0905 Run 2 0.08881 Run 3 0.08712 Run 4 0.08543 Run 5 0.08374 Run 6 0.08205
  • 48. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 10 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Parametric Table: overall viwe m Run 7 0.08036 Run 8 0.07867 Run 9 0.07698 Run 10 0.07529 Run 11 0.0736 Run 12 0.07191 Run 13 0.07022 Run 14 0.06853 Run 15 0.06684 Run 16 0.06515 Run 17 0.06346 Run 18 0.06177 Run 19 0.06008 Run 20 0.05839 Run 21 0.0567 Run 22 0.05501 Run 23 0.05332 Run 24 0.05163 Run 25 0.04994 Run 26 0.04825 Run 27 0.04656 Run 28 0.04487 Run 29 0.04318 Run 30 0.04149 Run 31 0.0398 Run 32 0.03811 Run 33 0.03642 Run 34 0.03473 Run 35 0.03304 Parametric Table: O.P for P_12 P12 sys,new Wnet x z y m n Run 1 5000 31.71 596780 0.4112 0.4441 0.1447 0.04252 0.4016 Run 2 4500 33.04 635627 0.3552 0.4801 0.1647 0.05165 0.4285 Run 3 4000 34.21 673348 0.301 0.5171 0.1819 0.06104 0.4561 Run 4 3500 35.25 710418 0.2479 0.5559 0.1962 0.07088 0.485 Run 5 3000 36.17 747347 0.195 0.5973 0.2076 0.08139 0.516 Run 6 2500 36.97 784749 0.1415 0.6428 0.2158 0.09291 0.5499 Parametric Table: O.P for P_13 P13 sys,new Wnet x z y m n Run 1 2000 36.88 796997 0.2084 0.6563 0.1353 0.09147 0.4923 Run 2 1900 37.01 803773 0.2123 0.6664 0.1213 0.09493 0.4989 Run 3 1800 37.14 810485 0.2163 0.6766 0.1071 0.09839 0.5057 Run 4 1700 37.25 817126 0.2205 0.687 0.09246 0.1019 0.5126 Run 5 1600 37.35 823694 0.2249 0.6976 0.07744 0.1054 0.5198 Run 6 1500 37.44 830179 0.2295 0.7085 0.06195 0.1089 0.5271 Run 7 1400 37.51 836574 0.2343 0.7197 0.04595 0.1124 0.5348 Run 8 1300 37.57 842866 0.2394 0.7312 0.02936 0.116 0.5427
  • 49. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 11 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Parametric Table: O.P for P_reheat Preheat rat sys,new Wnet x z y m n Run 1 7000 0.5833 36.19 711192 0.1523 0.6333 0.2144 0.09917 0.5341 Run 2 6500 0.5417 36.29 717390 0.1523 0.6333 0.2144 0.09855 0.5347 Run 3 6000 0.5 36.38 723769 0.1523 0.6333 0.2144 0.09789 0.5354 Run 4 5500 0.4583 36.47 730346 0.1523 0.6333 0.2144 0.09717 0.5361 Run 5 5000 0.4167 36.55 737145 0.1523 0.6333 0.2144 0.09639 0.5369 Run 6 4500 0.375 36.63 744192 0.1523 0.6333 0.2144 0.09554 0.5377 Run 7 4000 0.3333 36.7 751514 0.1523 0.6333 0.2144 0.09459 0.5387 Run 8 3500 0.2917 36.76 759146 0.1523 0.6333 0.2144 0.09351 0.5398 Run 9 3000 0.25 36.8 767122 0.1523 0.6333 0.2144 0.09228 0.541 Run 10 2500 0.2083 36.82 775477 0.1523 0.6333 0.2144 0.09083 0.5425 Run 11 2400 0.2 36.82 777195 0.1523 0.6333 0.2144 0.0905 0.5428 Run 12 2000 0.1667 36.8 784222 0.1523 0.6333 0.2144 0.08905 0.5442 Parametric Table: P_brine Pbrine,18 hbrine,18 b Wnet sys,new T3 Qdesel T10 Run 1 1200 2784 0.1 768577 36.41 175.4 158834 266 Run 2 1100 2781 0.1 768475 36.41 175.4 159971 266 Run 3 1000 2778 0.1 768385 36.4 175.4 161169 266 Run 4 900 2774 0.1 768310 36.4 175.4 162439 266 Run 5 800 2769 0.1 768253 36.4 175.4 163796 266 Run 6 700 2763 0.1 768219 36.39 175.4 165261 266 Run 7 600 2757 0.1 768216 36.39 175.4 166863 266 Run 8 500 2749 0.1 768255 36.4 175.4 168643 266 Run 9 400 2739 0.1 768355 36.4 175.4 170674 266 Run 10 300 2725 0.1 768551 36.41 175.4 173079 266 Run 11 200 2707 0.1 768919 36.43 175.4 176124 266 Run 12 100 2675 0.1 769698 36.46 175.4 180598 266 Parametric Table: 1234 b T10 sys,new Wnet T3 hnew,3 x y z n Run 1 0 263.4 37.14 822747 179.9 762.9 0.2505 0.04243 0.7071 0.586 Run 2 0.01 263.4 37.13 822602 179.9 762.9 0.2505 0.04243 0.7071 0.5776 Run 3 0.02 263.4 37.12 822456 179.9 762.9 0.2505 0.04243 0.7071 0.5692 Run 4 0.03 263.4 37.12 822311 179.9 762.9 0.2505 0.04243 0.7071 0.5608 Run 5 0.04 263.4 37.11 822165 179.9 762.9 0.2505 0.04243 0.7071 0.5524 Run 6 0.05 263.4 37.1 822019 179.9 762.9 0.2505 0.04243 0.7071 0.5439 Run 7 0.06 263.4 37.1 821874 179.9 762.9 0.2505 0.04243 0.7071 0.5355 Run 8 0.07 263.4 37.09 821728 179.9 762.9 0.2505 0.04243 0.7071 0.5271 Run 9 0.08 263.4 37.08 821583 179.9 762.9 0.2505 0.04243 0.7071 0.5187 Run 10 0.09 263.4 37.08 821437 179.9 762.9 0.2505 0.04243 0.7071 0.5103 Run 11 0.1 263.4 37.07 821291 179.9 762.9 0.2505 0.04243 0.7071 0.5018 Run 12 0.11 263.4 37.06 821146 179.9 762.9 0.2505 0.04243 0.7071 0.4934 Run 13 0.12 263.4 37.06 821000 179.9 762.9 0.2505 0.04243 0.7071 0.485 Run 14 0.13 263.4 37.05 820854 179.9 762.9 0.2505 0.04243 0.7071 0.4766 Run 15 0.14 263.4 37.04 820709 179.9 762.9 0.2505 0.04243 0.7071 0.4682 Run 16 0.15 263.4 37.04 820563 179.9 762.9 0.2505 0.04243 0.7071 0.4598 Run 17 0.16 263.4 37.03 820418 179.9 762.9 0.2505 0.04243 0.7071 0.4513 Run 18 0.17 263.4 37.02 820272 179.9 762.9 0.2505 0.04243 0.7071 0.4429 Run 19 0.18 263.4 37.02 820126 179.9 762.9 0.2505 0.04243 0.7071 0.4345 Run 20 0.19 263.4 37.01 819981 179.9 762.9 0.2505 0.04243 0.7071 0.4261
  • 50. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 12 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Parametric Table: 1234 m Run 1 0.1211 Run 2 0.1195 Run 3 0.1179 Run 4 0.1163 Run 5 0.1147 Run 6 0.1132 Run 7 0.1116 Run 8 0.11 Run 9 0.1084 Run 10 0.1068 Run 11 0.1053 Run 12 0.1037 Run 13 0.1021 Run 14 0.1005 Run 15 0.09893 Run 16 0.09735 Run 17 0.09576 Run 18 0.09418 Run 19 0.0926 Run 20 0.09102 0.1 0.2 0.3 0.4 0.5 0.6 36 36.5 37 Preheat/P,boiler sys,new
  • 51. File:powerplant6 with optimum presuure.EES 4/25/2016 9:34:26 PM Page 13 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 35 35.5 36 36.5 37 37.5 38 b sys,new 0 200 400 600 800 1000 1200 36.3 36.4 36.5 Pbrine[18] sys,new
  • 53. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 1 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Inputs Md = 378.8 Total Distillate Flow Rate n = 42 Total Number of Stages Tf = 25 [C] Feed Seawater Temperature To = 160 [C] Top Brine Temperature Tsteam = 170 [C] Steam Temperature Tn = 40 [C] Brine Temperature In Last Stage Xf = 42000 [ppm] Salinity of Feed Seawater Cp = Cp water , T = Tf , x = 0 Heat Capacity of Liquid Streams Cd = 0.5 Weir Friction Cofficient Vvn = 6 [m/s] Vapor Velocity in the last Stage Vb = 180 [Kg/ms] Brine Mass Flow Rate Per Stage Width Temprutres Calcution Tavg = To + Tn 2 Avrege Temperature of Brine Seawater hfg,av = Enthalpyvaporization SteamIAPWS , T = Tavg Heat Transfer Coefficient of Braine at Avrege Temperature hfg,steam = Enthalpyvaporization SteamIAPWS , T = Tsteam Heat Transfer Coefficient of steam at Steam Temperature T = To – Tn n The Temperature Drop Per Stage Ti = To – T Temperature at i Stage Tii,DELTA,T = To – T · i for i = 1 to n T1 = Tf + n · T Seawater Temperature leavs the first stage of the condenser T2 = T1 – T Seawater Temperature leavs the second stage of the condenser i = Tf + n – i – 1 · T for i = 1 to n xi=Ti flow rate for first stage y = Cp · T hfg,av specific ratio of Sensible Heat Md = Mf · 1 – 1 – y n Mb = Mf – Md Rejected Brine Mass Flow Rate Xf · Mf = Xb · Mb X is Salt Concentration
  • 54. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 2 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Msteam = Mf · Cp · To – T1 hfg,steam Steam Flow Rate Heat transfer Area Ab = Msteam · hfg,steam Ub · Tlmtd,b Area of Brine Preheater Ub = 1.7194 + 3.2063 · 10 – 3 · Tsteam + 1.5971 · 10 – 5 · Tsteam 2 – 1.9918 · 10 – 7 · Tsteam 3 Tlmtd,b = Tsteam – To – Tsteam – T1 ln Tsteam – To Tsteam – T1 Logarithmic Mean Temperature Ac = Mf · Cp · T1 – T2 Uc · Tlmtd,c Area of Condenser Uc = 1.7194 + 3.2063 · 10 – 3 · Tv,1 + 1.5971 · 10 – 5 · Tv,1 2 – 1.9918 · 10 – 7 · Tv,1 3 Tv,1 = Ti – BPE1 – NEA1 – T1 Vapor Temperature BPE1 = X1 · B + X1 · C · 10 – 3 Boiling Point Elevation X1 = Mf · Xf B1 B1 = Mf – D1 D1 = y · Mf Amount of Flashing Vapor Formed in First Stage B = 6.71 + 6.34 · 10 – 2 · Ti + 9.74 · 10 – 5 · Ti 2 · 10 – 3 C = 22.238 + 9.59 · 10 – 3 · Ti + 9.42 · 10 – 5 · Ti 2 · 10 – 8 NEA1 = 0.9784 To · 15.7378 H1 · 1.3777 Vb · 10 – 6 Non-Equilibrium Allawnce T1 = 0 Tlmtd,c = Tv,1 – T1 – Tv,1 – T2 ln Tv,1 – T1 Tv,1 – T2 A = n · Ac + Ab Dii = Mf · 1 – 1 – y i for i = 1 to n Md in each stage + all stages before Mb,i = Mf – Mf · 1 – 1 – y i for i = 1 to n R = Mb Xi = Mf · Xf Bi for i = 1 to n Bi = Mf – Dii for i = 1 to n stage Diamentions GH1 = Mf · 2 · bi · Pi – 0.5 Cd · W Gate Height bi = 1002
  • 55. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 3 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Pi = 10490 Presure in each Stage GH : gate height dP : stage pressure drop db : brine density Cd : weir friction coeff. W : stage width H1 = 0.2 + GH1 W = Mf Vb Width of the Stage PR = Md Msteam Performance Q = Msteam · hfg,steam Msteam = 800 · bex Bex : the extraxtion fraction of mass flow rate SOLUTION Unit Settings: SI C kPa kJ mass deg A = 46290 [m2 ] Ab = 4156 [m2 ] Ac = 1003 [m2 ] B = 0.01908 BPE1 = 1.27 [C] B1 = 1885 [Kg/s] bex = 0.07253 C = 2.607E-07 Cd = 0.5 Cp = 4.183 [Kj/Kg-C] bi = 1002 Pi = 10490 T = 2.857 [C] T1 = 0 [C] D1 = 10.04 [Kg/s] GH1 = 0.07852 [m] H1 = 0.2785 [m] hfg,av = 2256 [Kj/Kg] hfg,steam = 2049 [Kj/Kg] Mb = 1516 [Kg/s] Md = 378.8 [Kg/s] Mf = 1895 [Kg/s] Msteam = 58.03 [Kg/s] n = 42 NEA1 = 0.06547 [C] PR = 6.528 Q = 118885 T1 = 145 [C] T2 = 142.1 [C] Tavg = 100 [C] Tf = 25 [C] Ti = 157.1 [C] Tlmtd,b = 16.37 [C] Tlmtd,c = 12.18 [C] Tn = 40 [C] To = 160 [C] Tsteam = 170 [C] Tv,1 = 155.8 [C] Ub = 1.747 [Kw/m2 -C] Uc = 1.853 [Kw/m2 -C] Vb = 180 [Kg/ms] Vvn = 6 [m/s] W = 10.53 [m] X1 = 42224 Xb = 52496 [ppm] Xf = 42000 [ppm] y = 0.005297 264 potential unit problems were detected. Arrays Table: Main i Dii Bi Xi Mb,i Tii,3 1 145 10.04 1885 42224 1885 157.1 2 142.1 20.02 1875 42449 1875 154.3 3 139.3 29.95 1865 42675 1865 151.4
  • 56. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 4 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals Arrays Table: Main i Dii Bi Xi Mb,i Tii,3 4 136.4 39.82 1855 42902 1855 148.6 5 133.6 49.65 1845 43130 1845 145.7 6 130.7 59.42 1835 43360 1835 142.9 7 127.9 69.14 1825 43591 1825 140 8 125 78.81 1816 43823 1816 137.1 9 122.1 88.43 1806 44056 1806 134.3 10 119.3 98 1797 44291 1797 131.4 11 116.4 107.5 1787 44527 1787 128.6 12 113.6 117 1778 44764 1778 125.7 13 110.7 126.4 1768 45002 1768 122.9 14 107.9 135.8 1759 45242 1759 120 15 105 145.1 1749 45483 1749 117.1 16 102.1 154.3 1740 45725 1740 114.3 17 99.29 163.6 1731 45969 1731 111.4 18 96.43 172.7 1722 46213 1722 108.6 19 93.57 181.9 1713 46460 1713 105.7 20 90.71 190.9 1704 46707 1704 102.9 21 87.86 200 1695 46956 1695 100 22 85 208.9 1686 47206 1686 97.14 23 82.14 217.9 1677 47457 1677 94.29 24 79.29 226.7 1668 47710 1668 91.43 25 76.43 235.6 1659 47964 1659 88.57 26 73.57 244.4 1650 48219 1650 85.71 27 70.71 253.1 1641 48476 1641 82.86 28 67.86 261.8 1633 48734 1633 80 29 65 270.4 1624 48994 1624 77.14 30 62.14 279 1616 49255 1616 74.29 31 59.29 287.6 1607 49517 1607 71.43 32 56.43 296.1 1598 49781 1598 68.57 33 53.57 304.6 1590 50046 1590 65.71 34 50.71 313 1582 50312 1582 62.86 35 47.86 321.4 1573 50580 1573 60 36 45 329.7 1565 50850 1565 57.14 37 42.14 338 1557 51120 1557 54.29 38 39.29 346.3 1548 51393 1548 51.43 39 36.43 354.5 1540 51666 1540 48.57 40 33.57 362.6 1532 51941 1532 45.71 41 30.71 370.7 1524 52218 1524 42.86 42 27.86 378.8 1516 52496 1516 40 There are a total of 299 equations in the Main program. Block Rel. Res. Abs. Res. Units Calls Time(ms) Equations 0 0.000E+00 0.000E+00 OK 1 0 M_d=378.8 0 0.000E+00 0.000E+00 OK 1 0 n=42 0 0.000E+00 0.000E+00 OK 1 0 T_f=25[C] 0 0.000E+00 0.000E+00 OK 1 0 T_o=160[C] 0 0.000E+00 0.000E+00 OK 1 0 T_steam=170[C] 0 0.000E+00 0.000E+00 OK 1 0 T_n=40[C] 0 0.000E+00 0.000E+00 OK 1 0 X_f=42000[ppm] 0 0.000E+00 0.000E+00 OK 1 0 C_d=0.5 0 0.000E+00 0.000E+00 OK 1 0 V_vn=6[m/s] 0 0.000E+00 0.000E+00 OK 1 0 V_b=180[Kg/ms] 0 0.000E+00 0.000E+00 OK 1 0 DELTA_T1=0 0 0.000E+00 0.000E+00 OK 1 0 DELTA_bi=1002 0 0.000E+00 0.000E+00 OK 1 0 DELTA_Pi=10490 0 0.000E+00 0.000E+00 OK 4 0 C_p=Cp(Water,T=T_f,x=0)
  • 57. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 5 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 OK 4 0 T_avg=(T_o+T_n)/2 0 0.000E+00 0.000E+00 OK 4 0 h_fg_av=Enthalpy_vaporization(Steam_IAPWS,T=T_avg) 0 0.000E+00 0.000E+00 OK 4 0 h_fg_steam=Enthalpy_vaporization(Steam_IAPWS,T=T_steam) 0 0.000E+00 0.000E+00 OK 4 0 DELTA_T=(T_o-T_n)/n 0 0.000E+00 0.000E+00 OK 4 0 T_i=T_o-DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 Ti[1,3]=T_o-DELTA_T*1 0 0.000E+00 0.000E+00 ? 4 0 Ti[2,3]=T_o-DELTA_T*2 0 0.000E+00 0.000E+00 ? 4 0 Ti[3,3]=T_o-DELTA_T*3 0 0.000E+00 0.000E+00 ? 4 0 Ti[4,3]=T_o-DELTA_T*4 0 0.000E+00 0.000E+00 ? 4 0 Ti[5,3]=T_o-DELTA_T*5 0 0.000E+00 0.000E+00 ? 4 0 Ti[6,3]=T_o-DELTA_T*6 0 0.000E+00 0.000E+00 ? 4 0 Ti[7,3]=T_o-DELTA_T*7 0 0.000E+00 0.000E+00 ? 4 0 Ti[8,3]=T_o-DELTA_T*8 0 0.000E+00 0.000E+00 ? 4 0 Ti[9,3]=T_o-DELTA_T*9 0 0.000E+00 0.000E+00 ? 4 0 Ti[10,3]=T_o-DELTA_T*10 0 0.000E+00 0.000E+00 ? 4 0 Ti[11,3]=T_o-DELTA_T*11 0 0.000E+00 0.000E+00 ? 4 0 Ti[12,3]=T_o-DELTA_T*12 0 0.000E+00 0.000E+00 ? 4 0 Ti[13,3]=T_o-DELTA_T*13 0 0.000E+00 0.000E+00 ? 4 0 Ti[14,3]=T_o-DELTA_T*14 0 0.000E+00 0.000E+00 ? 4 0 Ti[15,3]=T_o-DELTA_T*15 0 0.000E+00 0.000E+00 ? 4 0 Ti[16,3]=T_o-DELTA_T*16 0 0.000E+00 0.000E+00 ? 4 0 Ti[17,3]=T_o-DELTA_T*17 0 0.000E+00 0.000E+00 ? 4 0 Ti[18,3]=T_o-DELTA_T*18 0 0.000E+00 0.000E+00 ? 4 0 Ti[19,3]=T_o-DELTA_T*19 0 0.000E+00 0.000E+00 ? 4 0 Ti[20,3]=T_o-DELTA_T*20 0 0.000E+00 0.000E+00 ? 4 0 Ti[21,3]=T_o-DELTA_T*21 0 0.000E+00 0.000E+00 ? 4 0 Ti[22,3]=T_o-DELTA_T*22 0 0.000E+00 0.000E+00 ? 4 0 Ti[23,3]=T_o-DELTA_T*23 0 0.000E+00 0.000E+00 ? 4 0 Ti[24,3]=T_o-DELTA_T*24 0 0.000E+00 0.000E+00 ? 4 0 Ti[25,3]=T_o-DELTA_T*25 0 0.000E+00 0.000E+00 ? 4 0 Ti[26,3]=T_o-DELTA_T*26 0 0.000E+00 0.000E+00 ? 4 0 Ti[27,3]=T_o-DELTA_T*27 0 0.000E+00 0.000E+00 ? 4 0 Ti[28,3]=T_o-DELTA_T*28 0 0.000E+00 0.000E+00 ? 4 0 Ti[29,3]=T_o-DELTA_T*29 0 0.000E+00 0.000E+00 ? 4 0 Ti[30,3]=T_o-DELTA_T*30 0 0.000E+00 0.000E+00 ? 4 0 Ti[31,3]=T_o-DELTA_T*31 0 0.000E+00 0.000E+00 ? 4 0 Ti[32,3]=T_o-DELTA_T*32 0 0.000E+00 0.000E+00 ? 4 0 Ti[33,3]=T_o-DELTA_T*33 0 0.000E+00 0.000E+00 ? 4 0 Ti[34,3]=T_o-DELTA_T*34 0 0.000E+00 0.000E+00 ? 4 0 Ti[35,3]=T_o-DELTA_T*35 0 0.000E+00 0.000E+00 ? 4 0 Ti[36,3]=T_o-DELTA_T*36 0 0.000E+00 0.000E+00 ? 4 0 Ti[37,3]=T_o-DELTA_T*37 0 0.000E+00 0.000E+00 ? 4 0 Ti[38,3]=T_o-DELTA_T*38 0 0.000E+00 0.000E+00 ? 4 0 Ti[39,3]=T_o-DELTA_T*39 0 0.000E+00 0.000E+00 ? 4 0 Ti[40,3]=T_o-DELTA_T*40 0 0.000E+00 0.000E+00 ? 4 0 Ti[41,3]=T_o-DELTA_T*41 0 0.000E+00 0.000E+00 ? 4 0 Ti[42,3]=T_o-DELTA_T*42 0 0.000E+00 0.000E+00 OK 4 0 T_1=T_f+n*DELTA_T 0 0.000E+00 0.000E+00 OK 4 0 T_2=T_1-DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[1]=T_f+(n-(1-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[2]=T_f+(n-(2-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[3]=T_f+(n-(3-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[4]=T_f+(n-(4-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[5]=T_f+(n-(5-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[6]=T_f+(n-(6-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[7]=T_f+(n-(7-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[8]=T_f+(n-(8-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[9]=T_f+(n-(9-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[10]=T_f+(n-(10-1))*DELTA_T
  • 58. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 6 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 ? 4 0 xi[11]=T_f+(n-(11-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[12]=T_f+(n-(12-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[13]=T_f+(n-(13-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[14]=T_f+(n-(14-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[15]=T_f+(n-(15-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[16]=T_f+(n-(16-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[17]=T_f+(n-(17-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[18]=T_f+(n-(18-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[19]=T_f+(n-(19-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[20]=T_f+(n-(20-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[21]=T_f+(n-(21-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[22]=T_f+(n-(22-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[23]=T_f+(n-(23-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[24]=T_f+(n-(24-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[25]=T_f+(n-(25-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[26]=T_f+(n-(26-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[27]=T_f+(n-(27-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[28]=T_f+(n-(28-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[29]=T_f+(n-(29-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[30]=T_f+(n-(30-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[31]=T_f+(n-(31-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[32]=T_f+(n-(32-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[33]=T_f+(n-(33-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[34]=T_f+(n-(34-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[35]=T_f+(n-(35-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[36]=T_f+(n-(36-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[37]=T_f+(n-(37-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[38]=T_f+(n-(38-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[39]=T_f+(n-(39-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[40]=T_f+(n-(40-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[41]=T_f+(n-(41-1))*DELTA_T 0 0.000E+00 0.000E+00 ? 4 0 xi[42]=T_f+(n-(42-1))*DELTA_T 0 0.000E+00 0.000E+00 OK 4 0 y=C_p*DELTA_T/h_fg_av 0 7.327E-20 2.776E-17 OK 4 0 M_d=M_f*(1-(1-y)^n) 0 0.000E+00 0.000E+00 OK 4 0 M_b=M_f-M_d 0 0.000E+00 0.000E+00 OK 4 0 X_f*M_f=X_b*M_b 0 0.000E+00 0.000E+00 OK 4 0 M_steam=M_f*C_p*(T_o-T_1)/h_fg_steam 0 0.000E+00 0.000E+00 ? 4 0 U_b=1.7194+(3.2063*10^(-3))*T_steam+1.5971*10^(-5)*T_steam^2-1.9918*10^( 0 0.000E+00 0.000E+00 OK 4 0 T_lmtd_b=((T_steam-T_o)-(T_steam-T_1))/ln((T_steam-T_o)/(T_steam-T_1)) 0 0.000E+00 0.000E+00 OK 4 0 D_1=y*M_f 0 0.000E+00 0.000E+00 ? 4 0 B=(6.71+6.34*(10^(-2))*T_i+(9.74*10^(-5))*(T_i^2))*10^(-3) 0 0.000E+00 0.000E+00 ? 4 0 C=(22.238+9.59*10^(-3)*T_i+9.42*10^(-5)*T_i^2)*10^(-8) 0 0.000E+00 0.000E+00 ? 4 0 Di[1]=M_f*(1-(1-y)^(1)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[1]=M_f-M_f*(1-(1-y)^(1)) 0 0.000E+00 0.000E+00 ? 4 0 B[1]=M_f-Di[1] 0 0.000E+00 0.000E+00 ? 4 0 Di[2]=M_f*(1-(1-y)^(2)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[2]=M_f-M_f*(1-(1-y)^(2)) 0 0.000E+00 0.000E+00 ? 4 0 B[2]=M_f-Di[2] 0 0.000E+00 0.000E+00 ? 4 0 Di[3]=M_f*(1-(1-y)^(3)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[3]=M_f-M_f*(1-(1-y)^(3)) 0 0.000E+00 0.000E+00 ? 4 0 B[3]=M_f-Di[3] 0 0.000E+00 0.000E+00 ? 4 0 Di[4]=M_f*(1-(1-y)^(4)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[4]=M_f-M_f*(1-(1-y)^(4)) 0 0.000E+00 0.000E+00 ? 4 0 B[4]=M_f-Di[4] 0 0.000E+00 0.000E+00 ? 4 0 Di[5]=M_f*(1-(1-y)^(5)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[5]=M_f-M_f*(1-(1-y)^(5)) 0 0.000E+00 0.000E+00 ? 4 0 B[5]=M_f-Di[5] 0 0.000E+00 0.000E+00 ? 4 0 Di[6]=M_f*(1-(1-y)^(6)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[6]=M_f-M_f*(1-(1-y)^(6))
  • 59. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 7 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 ? 4 0 B[6]=M_f-Di[6] 0 0.000E+00 0.000E+00 ? 4 0 Di[7]=M_f*(1-(1-y)^(7)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[7]=M_f-M_f*(1-(1-y)^(7)) 0 0.000E+00 0.000E+00 ? 4 0 B[7]=M_f-Di[7] 0 0.000E+00 0.000E+00 ? 4 0 Di[8]=M_f*(1-(1-y)^(8)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[8]=M_f-M_f*(1-(1-y)^(8)) 0 0.000E+00 0.000E+00 ? 4 0 B[8]=M_f-Di[8] 0 0.000E+00 0.000E+00 ? 4 0 Di[9]=M_f*(1-(1-y)^(9)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[9]=M_f-M_f*(1-(1-y)^(9)) 0 0.000E+00 0.000E+00 ? 4 0 B[9]=M_f-Di[9] 0 0.000E+00 0.000E+00 ? 4 0 Di[10]=M_f*(1-(1-y)^(10)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[10]=M_f-M_f*(1-(1-y)^(10)) 0 0.000E+00 0.000E+00 ? 4 0 B[10]=M_f-Di[10] 0 0.000E+00 0.000E+00 ? 4 0 Di[11]=M_f*(1-(1-y)^(11)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[11]=M_f-M_f*(1-(1-y)^(11)) 0 0.000E+00 0.000E+00 ? 4 0 B[11]=M_f-Di[11] 0 0.000E+00 0.000E+00 ? 4 0 Di[12]=M_f*(1-(1-y)^(12)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[12]=M_f-M_f*(1-(1-y)^(12)) 0 0.000E+00 0.000E+00 ? 4 0 B[12]=M_f-Di[12] 0 0.000E+00 0.000E+00 ? 4 0 Di[13]=M_f*(1-(1-y)^(13)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[13]=M_f-M_f*(1-(1-y)^(13)) 0 0.000E+00 0.000E+00 ? 4 0 B[13]=M_f-Di[13] 0 0.000E+00 0.000E+00 ? 4 0 Di[14]=M_f*(1-(1-y)^(14)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[14]=M_f-M_f*(1-(1-y)^(14)) 0 0.000E+00 0.000E+00 ? 4 0 B[14]=M_f-Di[14] 0 0.000E+00 0.000E+00 ? 4 0 Di[15]=M_f*(1-(1-y)^(15)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[15]=M_f-M_f*(1-(1-y)^(15)) 0 0.000E+00 0.000E+00 ? 4 0 B[15]=M_f-Di[15] 0 0.000E+00 0.000E+00 ? 4 0 Di[16]=M_f*(1-(1-y)^(16)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[16]=M_f-M_f*(1-(1-y)^(16)) 0 0.000E+00 0.000E+00 ? 4 0 B[16]=M_f-Di[16] 0 0.000E+00 0.000E+00 ? 4 0 Di[17]=M_f*(1-(1-y)^(17)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[17]=M_f-M_f*(1-(1-y)^(17)) 0 0.000E+00 0.000E+00 ? 4 0 B[17]=M_f-Di[17] 0 0.000E+00 0.000E+00 ? 4 0 Di[18]=M_f*(1-(1-y)^(18)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[18]=M_f-M_f*(1-(1-y)^(18)) 0 0.000E+00 0.000E+00 ? 4 0 B[18]=M_f-Di[18] 0 0.000E+00 0.000E+00 ? 4 0 Di[19]=M_f*(1-(1-y)^(19)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[19]=M_f-M_f*(1-(1-y)^(19)) 0 0.000E+00 0.000E+00 ? 4 0 B[19]=M_f-Di[19] 0 0.000E+00 0.000E+00 ? 4 0 Di[20]=M_f*(1-(1-y)^(20)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[20]=M_f-M_f*(1-(1-y)^(20)) 0 0.000E+00 0.000E+00 ? 4 0 B[20]=M_f-Di[20] 0 0.000E+00 0.000E+00 ? 4 0 Di[21]=M_f*(1-(1-y)^(21)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[21]=M_f-M_f*(1-(1-y)^(21)) 0 0.000E+00 0.000E+00 ? 4 0 B[21]=M_f-Di[21] 0 0.000E+00 0.000E+00 ? 4 0 Di[22]=M_f*(1-(1-y)^(22)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[22]=M_f-M_f*(1-(1-y)^(22)) 0 0.000E+00 0.000E+00 ? 4 0 B[22]=M_f-Di[22] 0 0.000E+00 0.000E+00 ? 4 0 Di[23]=M_f*(1-(1-y)^(23)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[23]=M_f-M_f*(1-(1-y)^(23)) 0 0.000E+00 0.000E+00 ? 4 0 B[23]=M_f-Di[23] 0 0.000E+00 0.000E+00 ? 4 0 Di[24]=M_f*(1-(1-y)^(24)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[24]=M_f-M_f*(1-(1-y)^(24)) 0 0.000E+00 0.000E+00 ? 4 0 B[24]=M_f-Di[24] 0 0.000E+00 0.000E+00 ? 4 0 Di[25]=M_f*(1-(1-y)^(25)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[25]=M_f-M_f*(1-(1-y)^(25)) 0 0.000E+00 0.000E+00 ? 4 0 B[25]=M_f-Di[25] 0 0.000E+00 0.000E+00 ? 4 0 Di[26]=M_f*(1-(1-y)^(26))
  • 60. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:31 PM Page 8 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 ? 4 0 M_b[26]=M_f-M_f*(1-(1-y)^(26)) 0 0.000E+00 0.000E+00 ? 4 0 B[26]=M_f-Di[26] 0 0.000E+00 0.000E+00 ? 4 0 Di[27]=M_f*(1-(1-y)^(27)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[27]=M_f-M_f*(1-(1-y)^(27)) 0 0.000E+00 0.000E+00 ? 4 0 B[27]=M_f-Di[27] 0 0.000E+00 0.000E+00 ? 4 0 Di[28]=M_f*(1-(1-y)^(28)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[28]=M_f-M_f*(1-(1-y)^(28)) 0 0.000E+00 0.000E+00 ? 4 0 B[28]=M_f-Di[28] 0 0.000E+00 0.000E+00 ? 4 0 Di[29]=M_f*(1-(1-y)^(29)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[29]=M_f-M_f*(1-(1-y)^(29)) 0 0.000E+00 0.000E+00 ? 4 0 B[29]=M_f-Di[29] 0 0.000E+00 0.000E+00 ? 4 0 Di[30]=M_f*(1-(1-y)^(30)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[30]=M_f-M_f*(1-(1-y)^(30)) 0 0.000E+00 0.000E+00 ? 4 0 B[30]=M_f-Di[30] 0 0.000E+00 0.000E+00 ? 4 0 Di[31]=M_f*(1-(1-y)^(31)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[31]=M_f-M_f*(1-(1-y)^(31)) 0 0.000E+00 0.000E+00 ? 4 0 B[31]=M_f-Di[31] 0 0.000E+00 0.000E+00 ? 4 0 Di[32]=M_f*(1-(1-y)^(32)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[32]=M_f-M_f*(1-(1-y)^(32)) 0 0.000E+00 0.000E+00 ? 4 0 B[32]=M_f-Di[32] 0 0.000E+00 0.000E+00 ? 4 0 Di[33]=M_f*(1-(1-y)^(33)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[33]=M_f-M_f*(1-(1-y)^(33)) 0 0.000E+00 0.000E+00 ? 4 0 B[33]=M_f-Di[33] 0 0.000E+00 0.000E+00 ? 4 0 Di[34]=M_f*(1-(1-y)^(34)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[34]=M_f-M_f*(1-(1-y)^(34)) 0 0.000E+00 0.000E+00 ? 4 0 B[34]=M_f-Di[34] 0 0.000E+00 0.000E+00 ? 4 0 Di[35]=M_f*(1-(1-y)^(35)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[35]=M_f-M_f*(1-(1-y)^(35)) 0 0.000E+00 0.000E+00 ? 4 0 B[35]=M_f-Di[35] 0 0.000E+00 0.000E+00 ? 4 0 Di[36]=M_f*(1-(1-y)^(36)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[36]=M_f-M_f*(1-(1-y)^(36)) 0 0.000E+00 0.000E+00 ? 4 0 B[36]=M_f-Di[36] 0 0.000E+00 0.000E+00 ? 4 0 Di[37]=M_f*(1-(1-y)^(37)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[37]=M_f-M_f*(1-(1-y)^(37)) 0 0.000E+00 0.000E+00 ? 4 0 B[37]=M_f-Di[37] 0 0.000E+00 0.000E+00 ? 4 0 Di[38]=M_f*(1-(1-y)^(38)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[38]=M_f-M_f*(1-(1-y)^(38)) 0 0.000E+00 0.000E+00 ? 4 0 B[38]=M_f-Di[38] 0 0.000E+00 0.000E+00 ? 4 0 Di[39]=M_f*(1-(1-y)^(39)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[39]=M_f-M_f*(1-(1-y)^(39)) 0 0.000E+00 0.000E+00 ? 4 0 B[39]=M_f-Di[39] 0 0.000E+00 0.000E+00 ? 4 0 Di[40]=M_f*(1-(1-y)^(40)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[40]=M_f-M_f*(1-(1-y)^(40)) 0 0.000E+00 0.000E+00 ? 4 0 B[40]=M_f-Di[40] 0 0.000E+00 0.000E+00 ? 4 0 Di[41]=M_f*(1-(1-y)^(41)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[41]=M_f-M_f*(1-(1-y)^(41)) 0 0.000E+00 0.000E+00 ? 4 0 B[41]=M_f-Di[41] 0 0.000E+00 0.000E+00 ? 4 0 Di[42]=M_f*(1-(1-y)^(42)) 0 0.000E+00 0.000E+00 ? 4 0 M_b[42]=M_f-M_f*(1-(1-y)^(42)) 0 0.000E+00 0.000E+00 ? 4 0 B[42]=M_f-Di[42] 0 0.000E+00 0.000E+00 ? 4 0 W=(M_f/V_b) 0 0.000E+00 0.000E+00 OK 4 0 PR=M_d/M_steam 0 0.000E+00 0.000E+00 ? 4 0 Q=M_steam*h_fg_steam 0 5.979E-20 3.469E-18 ? 4 0 m_steam=800*b_ex 0 0.000E+00 0.000E+00 OK 4 0 A_b=M_steam*h_fg_steam/(U_b*T_lmtd_b) 0 0.000E+00 0.000E+00 OK 4 0 B_1=M_f-D_1 0 0.000E+00 0.000E+00 ? 4 0 X[1]=(M_f*X_f)/B[1] 0 0.000E+00 0.000E+00 ? 4 0 X[2]=(M_f*X_f)/B[2] 0 0.000E+00 0.000E+00 ? 4 0 X[3]=(M_f*X_f)/B[3]
  • 61. File:C:UsersAli AlkathiriDesktopSDPFinalMSF_32 (1).EES 4/25/2016 9:26:32 PM Page 9 EES Ver. 9.901: #1696: Department of Mechanical Engineering King Fahd University Petroleum and Minerals 0 0.000E+00 0.000E+00 ? 4 0 X[4]=(M_f*X_f)/B[4] 0 0.000E+00 0.000E+00 ? 4 0 X[5]=(M_f*X_f)/B[5] 0 0.000E+00 0.000E+00 ? 4 0 X[6]=(M_f*X_f)/B[6] 0 0.000E+00 0.000E+00 ? 4 0 X[7]=(M_f*X_f)/B[7] 0 0.000E+00 0.000E+00 ? 4 0 X[8]=(M_f*X_f)/B[8] 0 0.000E+00 0.000E+00 ? 4 0 X[9]=(M_f*X_f)/B[9] 0 0.000E+00 0.000E+00 ? 4 0 X[10]=(M_f*X_f)/B[10] 0 0.000E+00 0.000E+00 ? 4 0 X[11]=(M_f*X_f)/B[11] 0 0.000E+00 0.000E+00 ? 4 0 X[12]=(M_f*X_f)/B[12] 0 0.000E+00 0.000E+00 ? 4 0 X[13]=(M_f*X_f)/B[13] 0 0.000E+00 0.000E+00 ? 4 0 X[14]=(M_f*X_f)/B[14] 0 0.000E+00 0.000E+00 ? 4 0 X[15]=(M_f*X_f)/B[15] 0 0.000E+00 0.000E+00 ? 4 0 X[16]=(M_f*X_f)/B[16] 0 0.000E+00 0.000E+00 ? 4 0 X[17]=(M_f*X_f)/B[17] 0 0.000E+00 0.000E+00 ? 4 0 X[18]=(M_f*X_f)/B[18] 0 0.000E+00 0.000E+00 ? 4 0 X[19]=(M_f*X_f)/B[19] 0 0.000E+00 0.000E+00 ? 4 0 X[20]=(M_f*X_f)/B[20] 0 0.000E+00 0.000E+00 ? 4 0 X[21]=(M_f*X_f)/B[21] 0 0.000E+00 0.000E+00 ? 4 0 X[22]=(M_f*X_f)/B[22] 0 0.000E+00 0.000E+00 ? 4 0 X[23]=(M_f*X_f)/B[23] 0 0.000E+00 0.000E+00 ? 4 0 X[24]=(M_f*X_f)/B[24] 0 0.000E+00 0.000E+00 ? 4 0 X[25]=(M_f*X_f)/B[25] 0 0.000E+00 0.000E+00 ? 4 0 X[26]=(M_f*X_f)/B[26] 0 0.000E+00 0.000E+00 ? 4 0 X[27]=(M_f*X_f)/B[27] 0 0.000E+00 0.000E+00 ? 4 0 X[28]=(M_f*X_f)/B[28] 0 0.000E+00 0.000E+00 ? 4 0 X[29]=(M_f*X_f)/B[29] 0 0.000E+00 0.000E+00 ? 4 0 X[30]=(M_f*X_f)/B[30] 0 0.000E+00 0.000E+00 ? 4 0 X[31]=(M_f*X_f)/B[31] 0 0.000E+00 0.000E+00 ? 4 0 X[32]=(M_f*X_f)/B[32] 0 0.000E+00 0.000E+00 ? 4 0 X[33]=(M_f*X_f)/B[33] 0 0.000E+00 0.000E+00 ? 4 0 X[34]=(M_f*X_f)/B[34] 0 0.000E+00 0.000E+00 ? 4 0 X[35]=(M_f*X_f)/B[35] 0 0.000E+00 0.000E+00 ? 4 0 X[36]=(M_f*X_f)/B[36] 0 0.000E+00 0.000E+00 ? 4 0 X[37]=(M_f*X_f)/B[37] 0 0.000E+00 0.000E+00 ? 4 0 X[38]=(M_f*X_f)/B[38] 0 0.000E+00 0.000E+00 ? 4 0 X[39]=(M_f*X_f)/B[39] 0 0.000E+00 0.000E+00 ? 4 0 X[40]=(M_f*X_f)/B[40] 0 0.000E+00 0.000E+00 ? 4 0 X[41]=(M_f*X_f)/B[41] 0 0.000E+00 0.000E+00 ? 4 0 X[42]=(M_f*X_f)/B[42] 0 0.000E+00 0.000E+00 ? 4 0 GH_1=(M_f*(2*DELTA_bi*DELTA_Pi)^(-0.5))/(C_d*W) 0 0.000E+00 0.000E+00 ? 4 0 H_1=0.2+GH_1 0 0.000E+00 0.000E+00 ? 4 0 X_1=(M_f*X_f)/B_1 0 0.000E+00 0.000E+00 ? 4 0 NEA_1=(0.9784^T_o)*(15.7378^H_1)*(1.3777^(V_b*10^(-6))) 0 0.000E+00 0.000E+00 ? 4 0 BPE_1=X_1*(B+X_1*C)*10^(-3) 0 0.000E+00 0.000E+00 OK 4 0 T_v_1=T_i-BPE_1-NEA_1-DELTA_T1 0 0.000E+00 0.000E+00 OK 4 0 T_lmtd_c=((T_v_1-T_1)-(T_v_1-T_2))/ln((T_v_1-T_1)/(T_v_1-T_2)) 0 0.000E+00 0.000E+00 ? 4 0 U_c=1.7194+(3.2063*10^(-3))*T_v_1+(1.5971*10^(-5))*(T_v_1)^2-(1.9918*10^(-7 0 0.000E+00 0.000E+00 OK 4 0 A_c=(M_f*C_p*(T_1-T_2))/(U_c*T_lmtd_c) 0 0.000E+00 0.000E+00 OK 4 0 A=n*A_c+A_b
  • 62. ME 412 | Balancing of water VS Electricity generation (Rankine-MSF) 37 Our Contacts: Name: Alkathiri, Ali Ahmed Mobile: 0544662184 Email: Ali.alkthiri@hotmail.com Name: AL-HUJAILI, AMJAD AYMAN Mobile: 0545906048 Email: Amjadhuj@gmail.com Name: JULAIDAN, MOHAMMED ABDULLAH Mobile: 0548218777 Email: Mohammed.julaidan@gmail.com