SlideShare a Scribd company logo
1 of 3
Download to read offline
What is Earthing
NOVEMBER 27, 2011 70 COMMENTS
Introduction:
The main reason for doing earthing in electrical network is for the safety. When all metallic parts in electrical equipments are grounded then if the
insulation inside the equipments fails there are no dangerous voltages present in the equipment case. If the live wire touches the grounded case then
the circuit is effectively shorted and fuse will immediately blow. When the fuse is blown then the dangerous voltages are away.
Purpose of Earthing:
(1) Safety for Human life/ Building/Equipments:
To save human life from danger of electrical shock or death by blowing a fuse i.e. To provide an alternative path for the fault current to flow so that it
will not endanger the user
To protect buildings, machinery & appliances under fault conditions.
To ensure that all exposed conductive parts do not reach a dangerous potential.
To provide safe path to dissipate lightning and short circuit currents.
To provide stable platform for operation of sensitive electronic equipments i.e. To maintain the voltage at any part of an electrical system at a
known value so as to prevent over current or excessive voltage on the appliances or equipment .
(2) Over voltage protection:
Lightning, line surges or unintentional contact with higher voltage lines can cause dangerously high voltages to the electrical distribution system.
Earthing provides an alternative path around the electrical system to minimize damages in the System.
(3) Voltage stabilization:
There are many sources of electricity. Every transformer can be considered a separate source. If there were not a common reference point for all
these voltage sources it would be extremely difficult to calculate their relationships to each other. The earth is the most omnipresent conductive
surface, and so it was adopted in the very beginnings of electrical distribution systems as a nearly universal standard for all electric systems.
Conventional methods of earthing:
(1) Plate type Earthing:
Generally for plate type earthing normal Practice is to use
Cast iron plate of size 600 mm x600 mm x12 mm. OR
Galvanized iron plate of size 600 mm x600 mm x6 mm. OR
Copper plate of size 600 mm * 600 mm * 3.15 mm
Plate burred at the depth of 8 feet in the vertical position and GI strip of size 50 mmx6 mm bolted with the plate is brought up to the ground level.
These types of earth pit are generally filled with alternate layer of charcoal & salt up to 4 feet from the bottom of the pit.
(2) Pipe type Earthing:
For Pipe type earthing normal practice is to use
GI pipe [C-class] of 75 mm diameter, 10 feet long welded with 75 mm diameter GI flange having 6 numbers of holes for the connection of earth wires
and inserted in ground by auger method.
These types of earth pit are generally filled with alternate layer of charcoal & salt or earth reactivation compound.
Method for Construction of Earthing Pit (Indian Electricity Board):
Excavation on earth for a normal earth Pit size is 1.5M X 1.5M X 3.0 M.
Use 500 mm X 500 mm X 10 mm GI Plate or Bigger Size for more Contact of Earth and reduce Earth Resistance.
Make a mixture of Wood Coal Powder Salt & Sand all in equal part
Wood Coal Powder use as good conductor of electricity, anti corrosive, rust proves for GI Plate for long life.
The purpose of coal and salt is to keep wet the soil permanently.
The salt percolates and coal absorbs water keeping the soil wet.
Care should always be taken by watering the earth pits in summer so that the pit soil will be wet.
Coal is made of carbon which is good conductor minimizing the earth resistant.
Salt use as electrolyte to form conductivity between GI Plate Coal and Earth with humidity.
Sand has used to form porosity to cycle water & humidity around the mixture.
Put GI Plate (EARTH PLATE) of size 500 mm X 500 mm X 10 mm in the mid of mixture.
Use Double GI Strip size 30 mm X 10 mm to connect GI Plate to System Earthling.
It will be better to use GI Pipe of size 2.5″ diameter with a Flange on the top of GI Pipe to cover GI Strip from EARTH PLATE to Top Flange.
Cover Top of GI pipe with a T joint to avoid jamming of pipe with dust & mud and also use water time to time through this pipe to bottom of earth
plate.
Maintain less than one Ohm Resistance from EARTH PIT conductor to a distance of 15 Meters around the EARTH PIT with another conductor dip
on the Earth at least 500 mm deep.
Check Voltage between Earth Pit conductors to Neutral of Mains Supply 220V AC 50 Hz it should be less than 2.0 Volts.
Factors affecting on Earth resistivity:
(1) Soil Resistivity:
It is the resistance of soil to the passage of electric current. The earth resistance value (ohmic value) of an earth pit depends on soil resistivity. It is
the resistance of the soil to the passage of electric current.
It varies from soil to soil. It depends on the physical composition of the soil, moisture, dissolved salts, grain size and distribution, seasonal variation,
current magnitude etc.
In depends on the composition of soil, Moisture content, Dissolved salts, grain size and its distribution, seasonal variation, current magnitude.
(2) Soil Condition:
Different soil conditions give different soil resistivity. Most of the soils are very poor conductors of electricity when they are completely dry. Soil
resistivity is measured in ohm-meters or ohm-cm.
Soil plays a significant role in determining the performance of Electrode.
Soil with low resistivity is highly corrosive. If soil is dry then soil resistivity value will be very high.
If soil resistivity is high, earth resistance of electrode will also be high.
(3) Moisture:
Moisture has a great influence on resistivity value of soil. The resistivity of a soil can be determined by the quantity of water held by the soil and
resistivity of the water itself. Conduction of electricity in soil is through water.
The resistance drops quickly to a more or less steady minimum value of about 15% moisture. And further increase of moisture level in soil will have
little effect on soil resistivity. In many locations water table goes down in dry weather conditions. Therefore, it is essential to pour water in and around
the earth pit to maintain moisture in dry weather conditions. Moisture significantly influences soil resistivity
(4) Dissolved salts:
Pure water is poor conductor of electricity.
Resistivity of soil depends on resistivity of water which in turn depends on the amount and nature of salts dissolved in it.
Small quantity of salts in water reduces soil resistivity by 80%. common salt is most effective in improving conductivity of soil. But it corrodes metal
and hence discouraged.
(5) Climate Condition:
Increase or decrease of moisture content determines the increase or decrease of soil resistivity.
Thus in dry whether resistivity will be very high and in monsoon months the resistivity will be low.
(6) Physical Composition:
Different soil composition gives different average resistivity. Based on the type of soil, the resistivity of clay soil may be in the range of 4 – 150 ohm-
meter, whereas for rocky or gravel soils, the same may be well above 1000 ohm-meter.
(7) Location of Earth Pit :
The location also contributes to resistivity to a great extent. In a sloping landscape, or in a land with made up of soil, or areas which are hilly, rocky or
sandy, water runs off and in dry weather conditions water table goes down very fast. In such situation Back fill Compound will not be able to attract
moisture, as the soil around the pit would be dry. The earth pits located in such areas must be watered at frequent intervals, particularly during dry
weather conditions.
Though back fill compound retains moisture under normal conditions, it gives off moisture during dry weather to the dry soil around the electrode,
and in the process loses moisture over a period of time. Therefore, choose a site that is naturally not well drained.
(8) Effect of grain size and its distribution:
Grain size, its distribution and closeness of packing are also contributory factors, since they control the manner in which the moisture is held in the
soil.
Effect of seasonal variation on soil resistivity: Increase or decrease of moisture content in soil determines decrease or increase of soil resistivity.
Thus in dry weather resistivity will be very high and during rainy season the resistivity will be low.
(9) Effect of current magnitude:
Soil resistivity in the vicinity of ground electrode may be affected by current flowing from the electrode into the surrounding soil.
The thermal characteristics and the moisture content of the soil will determine if a current of a given magnitude and duration will cause significant
drying and thus increase the effect of soil resistivity
(10) Area Available:
Single electrode rod or strip or plate will not achieve the desired resistance alone.
If a number of electrodes could be installed and interconnected the desired resistance could be achieved. The distance between the electrodes
must be equal to the driven depth to avoid overlapping of area of influence. Each electrode, therefore, must be outside the resistance area of the
other.
(11) Obstructions:
The soil may look good on the surface but there may be obstructions below a few feet like virgin rock. In that event resistivity will be affected.
Obstructions like concrete structure near about the pits will affect resistivity. If the earth pits are close by, the resistance value will be high.
(12) Current Magnitude:
A current of significant magnitude and duration will cause significant drying condition in soil and thus increase the soil resistivity.
Measurement of Earth Resistance by use of Earth Tester:
For measuring soil resistivity Earth Tester is used. It is also called the “MEGGER”.
It has a voltage source, a meter to measure Resistance in ohms, switches to change instrument range, Wires to connect terminal to Earth Electrode
and Spikes.
It is measured by using Four Terminal Earth Tester Instrument. The terminals are connected by wires as in illustration.
P=Potential Spike and C=Current Spike. The distance between the spikes may be 1M, 2M, 5M, 10M, 35M, and 50M.
All spikes are equidistant and in straight line to maintain electrical continuity. Take measurement in different directions.
Soil resistivity =2πLR.
R= Value of Earth resistance in ohm.
Distance between the spikes in cm.
π = 3.14
P = Earth resistivity ohm-cm.
Earth resistance value is directly proportional to Soil resistivity value
Measurement of Earth Resistance (Three point method):

More Related Content

Similar to What is Earthing: Safety, Protection and Factors Affecting Earth Resistance

Sarvayogam corp presentation on chemical earthing
Sarvayogam corp  presentation on chemical earthingSarvayogam corp  presentation on chemical earthing
Sarvayogam corp presentation on chemical earthingShrikant Iyer
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Earthing in electrical power systems
Earthing in electrical power systemsEarthing in electrical power systems
Earthing in electrical power systemsRahaf Waheep
 
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).ppt
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).pptWael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).ppt
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).pptDKChaitanyarajSingh
 
EARTHING SYSTEM_Trinayan Chetia.pptx
EARTHING SYSTEM_Trinayan Chetia.pptxEARTHING SYSTEM_Trinayan Chetia.pptx
EARTHING SYSTEM_Trinayan Chetia.pptxTrinayanChetia3
 
Principles & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground ResistancePrinciples & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground ResistancePower System Operation
 
Electrical grounding and earthing
Electrical grounding and earthingElectrical grounding and earthing
Electrical grounding and earthingNitesh Dash
 
Electrical grounding and earthing
Electrical grounding and earthingElectrical grounding and earthing
Electrical grounding and earthingNitesh Dash
 
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, Maharashtra
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, MaharashtraElectrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, Maharashtra
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, MaharashtraIndiaMART InterMESH Limited
 
Earthing Concepts
Earthing ConceptsEarthing Concepts
Earthing Conceptsmvrkprasad
 
Power system earthing
Power system earthingPower system earthing
Power system earthingNisarg Amin
 

Similar to What is Earthing: Safety, Protection and Factors Affecting Earth Resistance (20)

Sarvayogam corp presentation on chemical earthing
Sarvayogam corp  presentation on chemical earthingSarvayogam corp  presentation on chemical earthing
Sarvayogam corp presentation on chemical earthing
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Earthing.ppt
Earthing.pptEarthing.ppt
Earthing.ppt
 
Earthing in electrical power systems
Earthing in electrical power systemsEarthing in electrical power systems
Earthing in electrical power systems
 
Maintenance free earth electrode
Maintenance free earth electrodeMaintenance free earth electrode
Maintenance free earth electrode
 
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).ppt
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).pptWael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).ppt
Wael Abdel-Rahman Mohamed Ahmed_Grounding_lecture(L5).ppt
 
Grounding.ppt
Grounding.pptGrounding.ppt
Grounding.ppt
 
EARTHING SYSTEM_Trinayan Chetia.pptx
EARTHING SYSTEM_Trinayan Chetia.pptxEARTHING SYSTEM_Trinayan Chetia.pptx
EARTHING SYSTEM_Trinayan Chetia.pptx
 
INFLUENCE OF EFFECT OF CLIMATIC CONDITIONS ON CORROSION OF EARTH ELECTRODES ...
INFLUENCE OF  EFFECT OF CLIMATIC CONDITIONS ON CORROSION OF EARTH ELECTRODES ...INFLUENCE OF  EFFECT OF CLIMATIC CONDITIONS ON CORROSION OF EARTH ELECTRODES ...
INFLUENCE OF EFFECT OF CLIMATIC CONDITIONS ON CORROSION OF EARTH ELECTRODES ...
 
Grounding1
Grounding1Grounding1
Grounding1
 
Principles & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground ResistancePrinciples & Testing Methods Of Earth Ground Resistance
Principles & Testing Methods Of Earth Ground Resistance
 
Earthing.ppt
Earthing.pptEarthing.ppt
Earthing.ppt
 
Electrical grounding and earthing
Electrical grounding and earthingElectrical grounding and earthing
Electrical grounding and earthing
 
Electrical grounding and earthing
Electrical grounding and earthingElectrical grounding and earthing
Electrical grounding and earthing
 
Earth pit
Earth pitEarth pit
Earth pit
 
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, Maharashtra
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, MaharashtraElectrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, Maharashtra
Electrical Services & Cast Iron Earthing Pipe By Vaidehi E. Link, Maharashtra
 
Earthing Concepts
Earthing ConceptsEarthing Concepts
Earthing Concepts
 
Earthing
EarthingEarthing
Earthing
 
Power system earthing
Power system earthingPower system earthing
Power system earthing
 
Earthing
EarthingEarthing
Earthing
 

What is Earthing: Safety, Protection and Factors Affecting Earth Resistance

  • 1. What is Earthing NOVEMBER 27, 2011 70 COMMENTS Introduction: The main reason for doing earthing in electrical network is for the safety. When all metallic parts in electrical equipments are grounded then if the insulation inside the equipments fails there are no dangerous voltages present in the equipment case. If the live wire touches the grounded case then the circuit is effectively shorted and fuse will immediately blow. When the fuse is blown then the dangerous voltages are away. Purpose of Earthing: (1) Safety for Human life/ Building/Equipments: To save human life from danger of electrical shock or death by blowing a fuse i.e. To provide an alternative path for the fault current to flow so that it will not endanger the user To protect buildings, machinery & appliances under fault conditions. To ensure that all exposed conductive parts do not reach a dangerous potential. To provide safe path to dissipate lightning and short circuit currents. To provide stable platform for operation of sensitive electronic equipments i.e. To maintain the voltage at any part of an electrical system at a known value so as to prevent over current or excessive voltage on the appliances or equipment . (2) Over voltage protection: Lightning, line surges or unintentional contact with higher voltage lines can cause dangerously high voltages to the electrical distribution system. Earthing provides an alternative path around the electrical system to minimize damages in the System. (3) Voltage stabilization: There are many sources of electricity. Every transformer can be considered a separate source. If there were not a common reference point for all these voltage sources it would be extremely difficult to calculate their relationships to each other. The earth is the most omnipresent conductive surface, and so it was adopted in the very beginnings of electrical distribution systems as a nearly universal standard for all electric systems. Conventional methods of earthing: (1) Plate type Earthing: Generally for plate type earthing normal Practice is to use Cast iron plate of size 600 mm x600 mm x12 mm. OR Galvanized iron plate of size 600 mm x600 mm x6 mm. OR Copper plate of size 600 mm * 600 mm * 3.15 mm Plate burred at the depth of 8 feet in the vertical position and GI strip of size 50 mmx6 mm bolted with the plate is brought up to the ground level. These types of earth pit are generally filled with alternate layer of charcoal & salt up to 4 feet from the bottom of the pit. (2) Pipe type Earthing: For Pipe type earthing normal practice is to use GI pipe [C-class] of 75 mm diameter, 10 feet long welded with 75 mm diameter GI flange having 6 numbers of holes for the connection of earth wires and inserted in ground by auger method. These types of earth pit are generally filled with alternate layer of charcoal & salt or earth reactivation compound. Method for Construction of Earthing Pit (Indian Electricity Board): Excavation on earth for a normal earth Pit size is 1.5M X 1.5M X 3.0 M. Use 500 mm X 500 mm X 10 mm GI Plate or Bigger Size for more Contact of Earth and reduce Earth Resistance. Make a mixture of Wood Coal Powder Salt & Sand all in equal part Wood Coal Powder use as good conductor of electricity, anti corrosive, rust proves for GI Plate for long life. The purpose of coal and salt is to keep wet the soil permanently. The salt percolates and coal absorbs water keeping the soil wet. Care should always be taken by watering the earth pits in summer so that the pit soil will be wet. Coal is made of carbon which is good conductor minimizing the earth resistant. Salt use as electrolyte to form conductivity between GI Plate Coal and Earth with humidity. Sand has used to form porosity to cycle water & humidity around the mixture.
  • 2. Put GI Plate (EARTH PLATE) of size 500 mm X 500 mm X 10 mm in the mid of mixture. Use Double GI Strip size 30 mm X 10 mm to connect GI Plate to System Earthling. It will be better to use GI Pipe of size 2.5″ diameter with a Flange on the top of GI Pipe to cover GI Strip from EARTH PLATE to Top Flange. Cover Top of GI pipe with a T joint to avoid jamming of pipe with dust & mud and also use water time to time through this pipe to bottom of earth plate. Maintain less than one Ohm Resistance from EARTH PIT conductor to a distance of 15 Meters around the EARTH PIT with another conductor dip on the Earth at least 500 mm deep. Check Voltage between Earth Pit conductors to Neutral of Mains Supply 220V AC 50 Hz it should be less than 2.0 Volts. Factors affecting on Earth resistivity: (1) Soil Resistivity: It is the resistance of soil to the passage of electric current. The earth resistance value (ohmic value) of an earth pit depends on soil resistivity. It is the resistance of the soil to the passage of electric current. It varies from soil to soil. It depends on the physical composition of the soil, moisture, dissolved salts, grain size and distribution, seasonal variation, current magnitude etc. In depends on the composition of soil, Moisture content, Dissolved salts, grain size and its distribution, seasonal variation, current magnitude. (2) Soil Condition: Different soil conditions give different soil resistivity. Most of the soils are very poor conductors of electricity when they are completely dry. Soil resistivity is measured in ohm-meters or ohm-cm. Soil plays a significant role in determining the performance of Electrode. Soil with low resistivity is highly corrosive. If soil is dry then soil resistivity value will be very high. If soil resistivity is high, earth resistance of electrode will also be high. (3) Moisture: Moisture has a great influence on resistivity value of soil. The resistivity of a soil can be determined by the quantity of water held by the soil and resistivity of the water itself. Conduction of electricity in soil is through water. The resistance drops quickly to a more or less steady minimum value of about 15% moisture. And further increase of moisture level in soil will have little effect on soil resistivity. In many locations water table goes down in dry weather conditions. Therefore, it is essential to pour water in and around the earth pit to maintain moisture in dry weather conditions. Moisture significantly influences soil resistivity (4) Dissolved salts: Pure water is poor conductor of electricity. Resistivity of soil depends on resistivity of water which in turn depends on the amount and nature of salts dissolved in it. Small quantity of salts in water reduces soil resistivity by 80%. common salt is most effective in improving conductivity of soil. But it corrodes metal and hence discouraged. (5) Climate Condition: Increase or decrease of moisture content determines the increase or decrease of soil resistivity. Thus in dry whether resistivity will be very high and in monsoon months the resistivity will be low. (6) Physical Composition: Different soil composition gives different average resistivity. Based on the type of soil, the resistivity of clay soil may be in the range of 4 – 150 ohm- meter, whereas for rocky or gravel soils, the same may be well above 1000 ohm-meter. (7) Location of Earth Pit : The location also contributes to resistivity to a great extent. In a sloping landscape, or in a land with made up of soil, or areas which are hilly, rocky or sandy, water runs off and in dry weather conditions water table goes down very fast. In such situation Back fill Compound will not be able to attract moisture, as the soil around the pit would be dry. The earth pits located in such areas must be watered at frequent intervals, particularly during dry weather conditions. Though back fill compound retains moisture under normal conditions, it gives off moisture during dry weather to the dry soil around the electrode, and in the process loses moisture over a period of time. Therefore, choose a site that is naturally not well drained. (8) Effect of grain size and its distribution: Grain size, its distribution and closeness of packing are also contributory factors, since they control the manner in which the moisture is held in the soil.
  • 3. Effect of seasonal variation on soil resistivity: Increase or decrease of moisture content in soil determines decrease or increase of soil resistivity. Thus in dry weather resistivity will be very high and during rainy season the resistivity will be low. (9) Effect of current magnitude: Soil resistivity in the vicinity of ground electrode may be affected by current flowing from the electrode into the surrounding soil. The thermal characteristics and the moisture content of the soil will determine if a current of a given magnitude and duration will cause significant drying and thus increase the effect of soil resistivity (10) Area Available: Single electrode rod or strip or plate will not achieve the desired resistance alone. If a number of electrodes could be installed and interconnected the desired resistance could be achieved. The distance between the electrodes must be equal to the driven depth to avoid overlapping of area of influence. Each electrode, therefore, must be outside the resistance area of the other. (11) Obstructions: The soil may look good on the surface but there may be obstructions below a few feet like virgin rock. In that event resistivity will be affected. Obstructions like concrete structure near about the pits will affect resistivity. If the earth pits are close by, the resistance value will be high. (12) Current Magnitude: A current of significant magnitude and duration will cause significant drying condition in soil and thus increase the soil resistivity. Measurement of Earth Resistance by use of Earth Tester: For measuring soil resistivity Earth Tester is used. It is also called the “MEGGER”. It has a voltage source, a meter to measure Resistance in ohms, switches to change instrument range, Wires to connect terminal to Earth Electrode and Spikes. It is measured by using Four Terminal Earth Tester Instrument. The terminals are connected by wires as in illustration. P=Potential Spike and C=Current Spike. The distance between the spikes may be 1M, 2M, 5M, 10M, 35M, and 50M. All spikes are equidistant and in straight line to maintain electrical continuity. Take measurement in different directions. Soil resistivity =2πLR. R= Value of Earth resistance in ohm. Distance between the spikes in cm. π = 3.14 P = Earth resistivity ohm-cm. Earth resistance value is directly proportional to Soil resistivity value Measurement of Earth Resistance (Three point method):