SlideShare a Scribd company logo
1 of 57
TRUY N THÔNG SỀ Ố
DIGITAL COMMUNICATION
Tu n 5ầ
1
Reference
• “Digital communications: Fundamentals and
Applications” by Bernard Sklar
• Catharina Logothetis’s Lecture, Uppsala
University
2
Last time
• Signal space used for detection
• Signal detection in AWGN channels
– Correlator/Matched-filter Demodulator
– Maximum likelihood
• The techniques to reduce ISI
– Pulse shaping
– Equalization
3
Today: BANDPASS MODULATION
• Các cách đi u ch d i qua (bandpass modulationề ế ả
schemes)
– M-PAM, M-PSK, M-FSK, M-QAM
• Tách sóng t i đ u thu (detect the transmittedạ ầ
information at the receiver)
– Coherent detection
– Non-coherent detection
• Tính xác su t l i trung bình (the average probability ofấ ỗ
symbol error) c a các d ng đi u chủ ạ ề ế
• So sánh các d ng đi u chạ ề ế
4
5
Block diagram of a DCS
Format
Source
encode
Format
Source
decode
Channel
encode
Pulse
modulate
Bandpass
modulate
Channel
decode
Demod.
SampleDetect
Channel
Digital modulation
Digital demodulation
6
Bandpass modulation (đi u ch d i qua)ề ế ả
• Bandpass modulation:
– Là quá trình bi n tín hi u d li u thành d ng sóng sin cóế ệ ữ ệ ạ
biên đ / pha / t n s ho c k t h p thay đ i theo tín hi uộ ầ ố ặ ế ợ ổ ệ
đó.
– The process of converting data signal to a sinusoidal
waveform where its amplitude, phase or frequency, or a
combination of them, is varied in accordance with the
transmitting data.
7
Bandpass modulation (đi u ch d i qua)ề ế ả
• Bandpass signal:
là xung d i g c (baseband pulse shape), có năng l ngả ố ượ
• Gi đ nh:ả ị
– là d ng xung ch nh t, năng l ng đ n v (rectangular pulseạ ữ ậ ượ ơ ị
shape with unit energy).
– Gray coding is used for mapping bits to symbols.
– denotes average symbol energy given by
( ) Ttttit
T
E
tgts ic
i
Ti ≤≤+∆−+= 0)()1(cos
2
)()( φωω
)(tgT
)(tgT gE
sE ∑=
=
M
i is E
M
E 1
1
8
Remind: Gray code
Dec Gray Binary
0 000 000
1 001 001
2 011 010
3 010 011
4 110 100
5 111 101
6 101 110
7 100 111
9
Demodulation and detection
(gi i đi u ch và dò tìm/tách sóng)ả ề ế
• Demodulation (gi i đi u ch ):ả ề ế Tín hi u nh n đ c sệ ậ ượ ẽ
đ c chuy n sang tín hi u d i g c, l c và l y m u.ượ ể ệ ả ố ọ ấ ẫ
• Detection (dò tìm/tách sóng): Các m u này đ c dùng đẫ ượ ể
dò tìm các giá tr đã g i đi theo các quy lu t, ví d MLị ở ậ ụ
detection rule.










Nz
z

1
z=
∫
T
0
)(1 tψ
∫
T
0
)(tNψ
)(tr
1z
Nz
z Decision
circuits
(ML detector)
mˆ
10
Coherent and nonconherent detections
• Coherent detection (s tách tín hi u đ ng b /nh t quán)ự ệ ồ ộ ấ
– dùng pha c a sóng mang (carrier’s phase) đ tách tín hi u +ủ ể ệ
dùng c l ng pha (phase estimation) đ u thu.ướ ượ ở ầ
• Noncoherent detection (s tách tín hi u không đ ng b ).ự ệ ồ ộ
– không dùng pha c a tín hi u nên không c n c l ng phaủ ệ ầ ướ ượ
(phase estimation) đ u thu.ở ầ
– Ưu đi m: gi m đ ph c t p so v i coherent detectionể ả ộ ứ ạ ớ
– Khuy t: Xác su t l i l n h n coherent detection.ế ấ ỗ ớ ơ
11
Coherent and nonconherent detections
12
Coherent detections
• Các v n đ đ u thu gây ra b i:ấ ề ở ầ ở (Source of carrier-phase
mismatch at the receiver):
– S tr / trì hoãn (Propagation delay).ự ễ
– Các dao đ ng n i c a đ u thu (The oscillators at the receiverộ ộ ủ ầ
which generate the carrier signal, are not usually phased locked
to the transmitted carrier).
13
Coherent detection ..
– Circuits such as Phase-Locked-Loop (PLL) are
implemented at the receiver for carrier phase
estimation ( ).
PLL
Oscillator 90 deg.
( ) )()(cos
2
)()( tntt
T
E
tgtr ii
i
T +++= αφω ( )αω ˆcos
2
+t
T
c
( )αω ˆsin
2
+t
T
c
Used by
correlators
αα ˆ≈
I branch
Q branch
14
Bandpass Modulation Schemes
• One dimensional waveforms
– Amplitude Shift Keying (ASK)
– M-ary Pulse Amplitude Modulation (M-PAM)
• Two dimensional waveforms
– M-ary Phase Shift Keying (M-PSK)
– M-ary Quadrature Amplitude Modulation (M-
QAM)
• Multidimensional waveforms
– M-ary Frequency Shift Keying (M-FSK)
15
One dimensional modulation, demodulation
and detection
• Amplitude Shift Keying (ASK) modulation:
( )φω += t
T
E
ts c
i
i cos
2
)(
( )cos
2
)(
,,1)()(
1
1
ii
c
ii
Ea
t
T
t
Mitats
=
+=
==
φωψ
ψ 
)(1 tψ
1s2s
0 1E
“0” “1”
On-off keying (M=2):
16
One dimensional mod.,…
• M-ary Pulse Amplitude modulation (M-PAM)
( )t
T
ats cii ωcos
2
)( =
( )
( )
gs
gii
gi
c
ii
E
M
E
MiEE
EMia
t
T
t
Mitats
3
)1(
12
)12(
cos
2
)(
,,1)()(
2
22
1
1
−
=
−−==
−−=
=
==
s
ωψ
ψ 
4-PAM:
)(1 tψ
2s1s
0gE3−
“00” “01”
4s3s
“11” “10”
gE− gE gE3
17
• Coherent detection of M-PAM
∫
T
0
)(1 tψ
ML detector
(Compare with M-1 thresholds)
)(tr
1z
mˆ
One dimensional mod.,...–cont’d
18
Two dimensional modulation, demodulation and
detection (M-PSK)
• M-ary Phase Shift Keying (M-PSK)






+=
M
i
t
T
E
ts c
s
i
π
ω
2
cos
2
)(
( ) ( )
2
21
21
2211
2
sin
2
cos
sin
2
)(cos
2
)(
,,1)()()(
iis
sisi
cc
iii
EE
M
i
Ea
M
i
Ea
t
T
tt
T
t
Mitatats
s==






=





=
−==
=+=
ππ
ωψωψ
ψψ 
19
Two dimensional mod.,… (MPSK)
)(1 tψ
2s1s
bE
“0” “1”
bE−
)(2 tψ
3s
7s
“110”
)(1 tψ
4s 2s
sE
“000”
)(2 tψ
6s 8s
1s
5s
“001”
“011”
“010”
“101”
“111” “100”
)(1 tψ
2s 1s
sE
“00”
“11”
)(2 tψ
3s 4s“10”
“01”
QPSK (M=4)
BPSK (M=2)
8PSK (M=8)
20
Two dimensional mod.,…(MPSK)
• Coherent detection of MPSK
Compute Choose
smallest2
1
arctan
z
z φˆ
|ˆ| φφ −i
∫
T
0
)(1 tψ
∫
T
0
)(2 tψ
)(tr
1z
2z
mˆ
21
Two dimensional mod.,… (M-QAM)
• M-ary Quadrature Amplitude Mod. (M-QAM)
( )ic
i
i t
T
E
ts ϕω += cos
2
)(
( ) ( )
3
)1(2
andsymbolsPAMareandwhere
sin
2
)(cos
2
)(
,,1)()()(
21
21
2211
−
=
==
=+=
M
Eaa
t
T
tt
T
t
Mitatats
sii
cc
iii
ωψωψ
ψψ 
( )














+−−+−+−+−+−
−−−+−−+−
−−−+−−+−
=
)1,1()1,3()1,1(
)3,1()3,3()3,1(
)1,1()1,3()1,1(
, 21
MMMMMM
MMMMMM
MMMMMM
aa ii




22
Two dimensional mod.,… (M-QAM)
)(1 tψ
)(2 tψ
2s1s 3s 4s
“0000” “0001” “0011” “0010”
6s5s 7s 8s
10s9s 11s 12s
14s13s 15s 16s
1 3-1-3
“1000” “1001” “1011” “1010”
“1100” “1101” “1111” “1110”
“0100” “0101” “0111” “0110”
1
3
-1
-3
16-QAM
23
Two dimensional mod.,… (M-QAM)
• Coherent detection of M-QAM
∫
T
0
)(1 tψ
ML detector1z
∫
T
0
)(2 tψ
ML detector
)(tr
2z
mˆParallel-to-serial
converter
s)threshold1with(Compare −M
s)threshold1with(Compare −M
24
Multi-dimentional modulation, demodulation &
detection
• M-ary Frequency Shift keying (M-FSK)
( ) ( )
T
f
tit
T
E
t
T
E
ts c
s
i
s
i
2
1
2
)1(cos
2
cos
2
)(
=
∆
=∆
∆−+==
π
ω
ωωω
( )
2
1
0
cos
2
)(
,,1)()(
iis
s
ijii
M
j
jiji
EE
ji
jiE
at
T
t
Mitats
s==



≠
=
==
== ∑=
ωψ
ψ 
)(1 tψ
2s
1s
3s
)(3 tψ
)(2 tψ
sE
sE
sE
25
Multi-dimensional mod.,…(M-FSK)










Mz
z

1
z=
∫
T
0
)(1 tψ
∫
T
0
)(tMψ
)(tr
1z
Mz
z
ML detector:
Choose
the largest element
in the observed vector
mˆ
26
27
Today
• Các cách đi u ch d i qua (bandpass modulationề ế ả
schemes)
– M-PAM, M-PSK, M-FSK, M-QAM
• Tách sóng t i đ u thu (detect the transmittedạ ầ
information at the receiver)
– Coherent detection
– Non-coherent detection
• Tính xác su t l i trung bình (the average probability ofấ ỗ
symbol error) c a các d ng đi u chủ ạ ề ế
• So sánh các d ng đi u chạ ề ế
28
Eb/N0 figure of merit in digital communications
• SNR or S/N là công su t tín hi u trung bình trênấ ệ
công su t nhi u trung bình. SNR đ c tính b ngấ ễ ượ ằ
bit-energy:
b
bb
R
W
N
S
WN
ST
N
E
==
/0
bR
W
: Bit rate
: Bandwidth
29
S: công suất tín hiệu trung bình (average signal power)
N: công suất nhiễu trung bình (average noise power)
Eb: năng lượng bit
Tb = 1/Rb
Example of Symbol error prob. For PAM signals
)(1 tψ
0
1s2s
bEbE−
Binary PAM
)(1 tψ0
2s3s
5
2 bE
5
6 bE
5
6 bE
−
5
2 bE
−
4s 1s
4-ary PAM
T t
)(1 tψ
T
1
0
30
Error probability of bandpass modulation
• Before evaluating the error probability, it is important to
remember that:
– Type of modulation and detection ( coherent or non-coherent),
determines the structure of the decision circuits and hence the
decision variable, denoted by z.
– The decision variable, z, is compared with M-1 thresholds,
corresponding to M decision regions for detection purposes.










Nr
r

1
r=
∫
T
0
)(1 tψ
∫
T
0
)(tNψ
)(tr
1r
Nr
r
Decision
Circuits
Compare z
with threshold.
mˆ
31
Error probability …
• AWGN channel model:
– Signal vector is deterministic (xác đ nh).ị
– Noise vector có thành ph n là các bi n ng uầ ế ẫ
nhiên Gaussian, tr trung bình = 0 (zero-mean) và bi n trị ế ị
(variance) là . The noise vector pdf:
– Observed vector có thành ph n là các bi nầ ế
ng u nhiên không ph thu c hàm Gaussian (independentẫ ụ ộ
Gaussian random variables). pdf :
),...,,( 21 iNiii aaa=s
),...,,( 21 Nrrr=r
),...,,( 21 Nnnn=n
nsr += i
2/0N
( ) 







−=
0
2
2/
0
exp
1
)(
NN
p N
n
nn
π
( ) 






 −
−=
0
2
2/
0
exp
1
)|(
NN
p i
Ni
sr
srr
π
32
Error probability …
• BPSK and BFSK with coherent detection:
)(1 tψ
2s1s
bE
“0” “1”
bE−
)(2 tψ
bE221 =−ss
)(1 tψ
2s
1s
)(2 tψ
bE
bE
bE221 =−ss“0”
“1”
BPSK BFSK
2
0








=
N
E
QP b
B
2/
2/
0
21







 −
=
N
QPB
ss
0








=
N
E
QP b
B
33
Remind
• Q(x) = complementary error function = co-
error function
34
• Coherent detection of M-PAM
– Decision variable:
∫
T
0
)(1 tψ
ML detector
(Compare with M-1 thresholds)
)(tr
1r
mˆ
Error probability ….
)(1 tψ
2s1s
0gE3−
“00” “01”
4s3s
“11” “10”
gE− gE gE3
4-PAM
1rz =
35
Error probability ….
• Coherent detection of M-PAM ….
• Error happens if the noise, , exceeds in amplitude one-half
of the distance between adjacent symbols. For symbols on the
border, error can happen only in one direction. Hence:
( )
( ) ( )gMMege
gmme
ErnPErnP
MmErnP
−<−==>−==
<<>−==
ssss
ss
111111
11
Pr)(andPr)(
;1for||||Pr)(








−
−
=
0
2
2
1
log6)1(2
)(
N
E
M
M
Q
M
M
MP b
E
gbs E
M
EME
3
)1(
)(log
2
2
−
==
mrn s−= 11
Gaussian pdf with
zero mean and variance 2/0N
( ) ( ) ( )
( ) 






−
=
−
=>
−
=
−<+>+>
−
==
∫
∑
∞
=
0
1
111
1
2)1(2
)(
)1(2
Pr
)1(2
Pr
M
1
Pr
M
1
||Pr
2
)(
1
)(
1
N
E
Q
M
M
dnnp
M
M
En
M
M
EnEnEn
M
M
P
M
MP
g
E
ng
ggg
M
m
meE
g
s
36
Error probability …
• Coherent detection
of M-QAM
∫
T
0
)(1 tψ
ML detector1r
∫
T
0
)(2 tψ
ML detector
)(tr
2r
mˆParallel-to-serial
converter
s)threshold1with(Compare −M
s)threshold1with(Compare −M
)(1 tψ
)(2 tψ
2s1s 3s 4s“0000” “0001” “0011” “0010”
6s5s 7s 8s
10s9s 11s 12s
14s13s 15s 16s
“1000” “1001” “1011” “1010”
“1100” “1101” “1111” “1110”
“0100” “0101” “0111” “0110”
16-QAM
37
Error probability …
• Coherent detection of M-QAM …
• M-QAM can be viewed as the combination of two
modulations on I and Q branches, respectively.
• No error occurs if no error is detected on either I and Q branches.
Hence:
• Considering the symmetry of the signal space and orthogonality of I
and Q branches:
PAM−M
branches)QandIondetectederrornoPr(1)(1)( −=−= MPMP CE
( )( )22
1I)onerrorPr(no
Q)onerrorI)Pr(noonerrorPr(nobranches)QandIondetectederrornoPr(
MPE−==
=








−






−=
0
2
1
log31
14)(
N
E
M
M
Q
M
MP b
E Average probability of
symbol error for PAM−M
38
Error probability …
• Coherent detection
of MPSK
Compute Choose
smallest2
1
arctan
r
r φˆ
|ˆ| φφ −i
∫
T
0
)(1 tψ
∫
T
0
)(2 tψ
)(tr
1r
2r
mˆ
3s
7s
“110” )(1 tψ
4s 2s
sE
“000”
)(2 tψ
6s 8s
1s
5s
“001”
“011”
“010”
“101”
“111” “100”
8-PSK
Decision variable
r∠== φˆz
39
Error probability …
• Coherent detection of MPSK …
• The detector compares the phase of observation vector to M-1
thresholds.
• Due to the circular symmetry of the signal space, we have:
where
• It can be shown that
φφ
π
π φ
dpPP
M
MPMP
M
M
c
M
m
mcCE )(1)(1)(
1
1)(1)(
/
/
ˆ1
1
∫∑ −
=
−=−=−=−= ss














≈
MN
E
QMP s
E
π
sin
2
2)(
0
( )














≈
MN
EM
QMP b
E
π
sin
log2
2)(
0
2
or
2
||;sinexp)cos(
2
)( 2
00
ˆ
π
φφφ
π
φφ
≤





−≈
N
E
N
E
p ss
40
Error probability …
• Coherent detection of M-FSK










Mr
r

1
r=
∫
T
0
)(1 tψ
∫
T
0
)(tMψ
)(tr
1r
Mr
r
ML detector:
Choose
the largest element
in the observed vector
mˆ
41
Error probability …
• Coherent detection of M-FSK …
• The dimensionality of signal space is M. An upper bound
for average symbol error probability can be obtained by
using union bound. Hence
or, equivalently
( ) 







−≤
0
1)(
N
E
QMMP s
E
( ) ( )








−≤
0
2log
1)(
N
EM
QMMP b
E
42
Bit error probability và symbol error probability
• S bit/symbolố
• For orthogonal M-ary signaling (M-FSK)
• For M-PSK, M-PAM and M-QAM
2
1
lim
1
2/
12
2 1
=
−
=
−
=
∞→
−
E
B
k
k
k
E
B
P
P
M
M
P
P
Mk 2log=
1for <<≈ E
E
B P
k
P
P
43
44
Error probability …
• Non-coherent detection of BFSK
∫
T
0
)cos(/2 1tT ω
∫
T
0)(tr
11r
12r
∫
T
0
∫
T
0
21r
22r
Decision rule:
)cos(/2 2tT ω
)sin(/2 2tT ω
)sin(/2 1tT ω
( )2
( )2
( )2
( )2
+
-
z
0ˆ,0)(if
1ˆ,0)(if
=<
=>
mTz
mTz
mˆ
2
12
2
111 rrz +=
2
22
2
212 rrz +=
21 zzz −=
Decision variable:
Difference of envelopes
45
Error probability – cont’d
• Non-coherent detection of BFSK …
• Non-coherent detection of DBPSK
[ ]
∫ ∫∫
∞ ∞∞



=>=
>=>=
>+>=
0
222121
0
2222221
2221221
112221
)|()|()|(),|Pr(
),|Pr()|Pr(
)|Pr(
2
1
)|Pr(
2
1
2
dzzpdzzpdzzpzzz
zzzEzz
zzzzP
z
B
ssss
ss
ss






−=
02
exp
2
1
N
E
P b
B






−=
0
exp
2
1
N
E
P b
B
Rayleigh pdf Rician pdf
46
Summary
47
Probability of symbol error for binary modulation
EP
dB/ 0NEb
Note!
• “The same average symbol
energy for different sizes of
signal space”
48
Probability of symbol error for M-PSK
EP
dB/ 0NEb
Note!
• “The same average symbol
energy for different sizes of
signal space”
49
Probability of symbol error for M-FSK
EP
dB/ 0NEb
Note!
• “The same average symbol
energy for different sizes of
signal space”
50
Probability of symbol error for M-PAM
EP
dB/ 0NEb
Note!
• “The same average symbol
energy for different sizes of
signal space”
51
Probability of symbol error for M-QAM
EP
dB/ 0NEb
Note!
• “The same average symbol
energy for different sizes of
signal space”
52
Example of samples of matched filter output for
some bandpass modulation schemes
53
Bài t pậ
T c đ bit (data rate) = 5000 bit/s.ố ộ
Tìm xác su t l i bit trung bình Pấ ỗ B khi bi t đ u thu dùng coherentế ầ
BPSK đ tách sóngể
HzWNmVA
tAtstAts
/10;1
)cos()();cos()(
11
0
0201
−
==
−== ωωCho
54
Bài t pậ
Cho 1 h th ng coherent BPSK có t c đ l i trung bình làệ ố ố ộ ỗ
100 l i/ngày v i t c đ data rate = 1000 bits/s, côngỗ ớ ố ộ
su t nhi uấ ễ
a) Tìm xác su t l i bit trung bìnhấ ỗ
b) N u ch nh công su t tín hi u nh n đ c trung bình là Sế ỉ ấ ệ ậ ượ
= 10-6
W thì xác su t l i bit trung bình là bao nhiêu?ấ ỗ
HzWN /10 10
0
−
=
55
Bài t p n p cho GVậ ộ
• Cách 1: n p tr c ti p cho GV (sau m i bu i h c)ộ ự ế ỗ ổ ọ
• Cách 2: g i email t i:ử ớ truyenthongsodtvt@gmail.com
• Th i h n n p bài: th ba ngày 3 tháng 5 (bu i h cờ ạ ộ ứ ổ ọ
cu i)ố
• Trong email và file n p ghi rõ h tên và mã s SVộ ọ ố
• Đi m bài t p: 30% t ng đi mể ậ ổ ể
56
Bài t p n p cho GVậ ộ
Ch n 1 trong các bài sau:ọ
1. Tìm hi u v Non-coherent detection (DPSK,ể ề
BDPSK, FSK)
2. Dùng Matlab mô ph ng đ so sánh s khácỏ ể ự
nhau c a các ki u đi u ch (v SNR vs Pủ ể ề ế ẽ E
ho c SNR vs BER)ặ
57

More Related Content

What's hot

Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,nahrain university
 
Ec8352 signals and systems 2 marks with answers
Ec8352 signals and systems   2 marks with answersEc8352 signals and systems   2 marks with answers
Ec8352 signals and systems 2 marks with answersGayathri Krishnamoorthy
 
Lecture2 Signal and Systems
Lecture2 Signal and SystemsLecture2 Signal and Systems
Lecture2 Signal and Systemsbabak danyal
 
DSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
DSP_FOEHU - Lec 03 - Sampling of Continuous Time SignalsDSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
DSP_FOEHU - Lec 03 - Sampling of Continuous Time SignalsAmr E. Mohamed
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systemsbabak danyal
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and SystemAttaporn Ninsuwan
 
Lecture1 Intro To Signa
Lecture1 Intro To SignaLecture1 Intro To Signa
Lecture1 Intro To Signababak danyal
 
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMYInstrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMYklirantga
 
Introduction to Communication Systems 2
Introduction to Communication Systems 2Introduction to Communication Systems 2
Introduction to Communication Systems 2slmnsvn
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
3.Properties of signals
3.Properties of signals3.Properties of signals
3.Properties of signalsINDIAN NAVY
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONSmihir jain
 
Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Vinod Sharma
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier TransformWaqas Afzal
 
Signals and systems( chapter 1)
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)Fariza Zahari
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systemsrbatec
 

What's hot (20)

Chapter 2 signals and spectra,
Chapter 2   signals and spectra,Chapter 2   signals and spectra,
Chapter 2 signals and spectra,
 
Ec8352 signals and systems 2 marks with answers
Ec8352 signals and systems   2 marks with answersEc8352 signals and systems   2 marks with answers
Ec8352 signals and systems 2 marks with answers
 
Lecture2 Signal and Systems
Lecture2 Signal and SystemsLecture2 Signal and Systems
Lecture2 Signal and Systems
 
DSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
DSP_FOEHU - Lec 03 - Sampling of Continuous Time SignalsDSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
DSP_FOEHU - Lec 03 - Sampling of Continuous Time Signals
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
 
Lecture123
Lecture123Lecture123
Lecture123
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and System
 
Lecture1 Intro To Signa
Lecture1 Intro To SignaLecture1 Intro To Signa
Lecture1 Intro To Signa
 
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMYInstrumentation Engineering : Signals & systems, THE GATE ACADEMY
Instrumentation Engineering : Signals & systems, THE GATE ACADEMY
 
Introduction to Communication Systems 2
Introduction to Communication Systems 2Introduction to Communication Systems 2
Introduction to Communication Systems 2
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
signals and system
signals and systemsignals and system
signals and system
 
3.Properties of signals
3.Properties of signals3.Properties of signals
3.Properties of signals
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
 
Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...Convolution discrete and continuous time-difference equaion and system proper...
Convolution discrete and continuous time-difference equaion and system proper...
 
Laplace1
Laplace1Laplace1
Laplace1
 
Impulse Response ppt
Impulse Response pptImpulse Response ppt
Impulse Response ppt
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
 
Signals and systems( chapter 1)
Signals and systems( chapter 1)Signals and systems( chapter 1)
Signals and systems( chapter 1)
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systems
 

Similar to TRUYỀN THÔNG SỐ

Digital communication
Digital communicationDigital communication
Digital communicationmeashi
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMAHossam Zein
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6mwafaa_A7
 
Equalization
EqualizationEqualization
Equalizationbhabendu
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulationVishal kakade
 
Lecture intro to_wcdma
Lecture intro to_wcdmaLecture intro to_wcdma
Lecture intro to_wcdmaGurpreet Singh
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptStefan Oprea
 
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...NUI Galway
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulationavocado1111
 
Mobile antennae general Beamforming principles presentation
Mobile antennae general Beamforming principles presentationMobile antennae general Beamforming principles presentation
Mobile antennae general Beamforming principles presentationPierre LARREGLE
 

Similar to TRUYỀN THÔNG SỐ (20)

Digital communication
Digital communicationDigital communication
Digital communication
 
Spread spectrum communications and CDMA
Spread spectrum communications and CDMASpread spectrum communications and CDMA
Spread spectrum communications and CDMA
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
IARE_DSP_PPT.pptx
IARE_DSP_PPT.pptxIARE_DSP_PPT.pptx
IARE_DSP_PPT.pptx
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Mobile_Lec6
Mobile_Lec6Mobile_Lec6
Mobile_Lec6
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
 
Tdm fdm
Tdm fdmTdm fdm
Tdm fdm
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
Equalization
EqualizationEqualization
Equalization
 
Oceans13 Presentation
Oceans13 PresentationOceans13 Presentation
Oceans13 Presentation
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
 
Lecture intro to_wcdma
Lecture intro to_wcdmaLecture intro to_wcdma
Lecture intro to_wcdma
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
2013.06.18 Time Series Analysis Workshop ..Applications in Physiology, Climat...
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
t23notes
t23notest23notes
t23notes
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
Mobile antennae general Beamforming principles presentation
Mobile antennae general Beamforming principles presentationMobile antennae general Beamforming principles presentation
Mobile antennae general Beamforming principles presentation
 

More from Ivan Ivanovich Ivanov

More from Ivan Ivanovich Ivanov (6)

Ibc11 10things hybrid-radio
Ibc11 10things hybrid-radioIbc11 10things hybrid-radio
Ibc11 10things hybrid-radio
 
Hd radio how it compares to other digital radio technologies
Hd radio  how it compares to other digital radio technologiesHd radio  how it compares to other digital radio technologies
Hd radio how it compares to other digital radio technologies
 
4 digital communications_vn_compatibility_mode__9411
4 digital communications_vn_compatibility_mode__94114 digital communications_vn_compatibility_mode__9411
4 digital communications_vn_compatibility_mode__9411
 
01 introduction to_communications_0372
01 introduction to_communications_037201 introduction to_communications_0372
01 introduction to_communications_0372
 
Routing
RoutingRouting
Routing
 
Multicast eng
Multicast engMulticast eng
Multicast eng
 

TRUYỀN THÔNG SỐ

  • 1. TRUY N THÔNG SỀ Ố DIGITAL COMMUNICATION Tu n 5ầ 1
  • 2. Reference • “Digital communications: Fundamentals and Applications” by Bernard Sklar • Catharina Logothetis’s Lecture, Uppsala University 2
  • 3. Last time • Signal space used for detection • Signal detection in AWGN channels – Correlator/Matched-filter Demodulator – Maximum likelihood • The techniques to reduce ISI – Pulse shaping – Equalization 3
  • 4. Today: BANDPASS MODULATION • Các cách đi u ch d i qua (bandpass modulationề ế ả schemes) – M-PAM, M-PSK, M-FSK, M-QAM • Tách sóng t i đ u thu (detect the transmittedạ ầ information at the receiver) – Coherent detection – Non-coherent detection • Tính xác su t l i trung bình (the average probability ofấ ỗ symbol error) c a các d ng đi u chủ ạ ề ế • So sánh các d ng đi u chạ ề ế 4
  • 5. 5
  • 6. Block diagram of a DCS Format Source encode Format Source decode Channel encode Pulse modulate Bandpass modulate Channel decode Demod. SampleDetect Channel Digital modulation Digital demodulation 6
  • 7. Bandpass modulation (đi u ch d i qua)ề ế ả • Bandpass modulation: – Là quá trình bi n tín hi u d li u thành d ng sóng sin cóế ệ ữ ệ ạ biên đ / pha / t n s ho c k t h p thay đ i theo tín hi uộ ầ ố ặ ế ợ ổ ệ đó. – The process of converting data signal to a sinusoidal waveform where its amplitude, phase or frequency, or a combination of them, is varied in accordance with the transmitting data. 7
  • 8. Bandpass modulation (đi u ch d i qua)ề ế ả • Bandpass signal: là xung d i g c (baseband pulse shape), có năng l ngả ố ượ • Gi đ nh:ả ị – là d ng xung ch nh t, năng l ng đ n v (rectangular pulseạ ữ ậ ượ ơ ị shape with unit energy). – Gray coding is used for mapping bits to symbols. – denotes average symbol energy given by ( ) Ttttit T E tgts ic i Ti ≤≤+∆−+= 0)()1(cos 2 )()( φωω )(tgT )(tgT gE sE ∑= = M i is E M E 1 1 8
  • 9. Remind: Gray code Dec Gray Binary 0 000 000 1 001 001 2 011 010 3 010 011 4 110 100 5 111 101 6 101 110 7 100 111 9
  • 10. Demodulation and detection (gi i đi u ch và dò tìm/tách sóng)ả ề ế • Demodulation (gi i đi u ch ):ả ề ế Tín hi u nh n đ c sệ ậ ượ ẽ đ c chuy n sang tín hi u d i g c, l c và l y m u.ượ ể ệ ả ố ọ ấ ẫ • Detection (dò tìm/tách sóng): Các m u này đ c dùng đẫ ượ ể dò tìm các giá tr đã g i đi theo các quy lu t, ví d MLị ở ậ ụ detection rule.           Nz z  1 z= ∫ T 0 )(1 tψ ∫ T 0 )(tNψ )(tr 1z Nz z Decision circuits (ML detector) mˆ 10
  • 11. Coherent and nonconherent detections • Coherent detection (s tách tín hi u đ ng b /nh t quán)ự ệ ồ ộ ấ – dùng pha c a sóng mang (carrier’s phase) đ tách tín hi u +ủ ể ệ dùng c l ng pha (phase estimation) đ u thu.ướ ượ ở ầ • Noncoherent detection (s tách tín hi u không đ ng b ).ự ệ ồ ộ – không dùng pha c a tín hi u nên không c n c l ng phaủ ệ ầ ướ ượ (phase estimation) đ u thu.ở ầ – Ưu đi m: gi m đ ph c t p so v i coherent detectionể ả ộ ứ ạ ớ – Khuy t: Xác su t l i l n h n coherent detection.ế ấ ỗ ớ ơ 11
  • 12. Coherent and nonconherent detections 12
  • 13. Coherent detections • Các v n đ đ u thu gây ra b i:ấ ề ở ầ ở (Source of carrier-phase mismatch at the receiver): – S tr / trì hoãn (Propagation delay).ự ễ – Các dao đ ng n i c a đ u thu (The oscillators at the receiverộ ộ ủ ầ which generate the carrier signal, are not usually phased locked to the transmitted carrier). 13
  • 14. Coherent detection .. – Circuits such as Phase-Locked-Loop (PLL) are implemented at the receiver for carrier phase estimation ( ). PLL Oscillator 90 deg. ( ) )()(cos 2 )()( tntt T E tgtr ii i T +++= αφω ( )αω ˆcos 2 +t T c ( )αω ˆsin 2 +t T c Used by correlators αα ˆ≈ I branch Q branch 14
  • 15. Bandpass Modulation Schemes • One dimensional waveforms – Amplitude Shift Keying (ASK) – M-ary Pulse Amplitude Modulation (M-PAM) • Two dimensional waveforms – M-ary Phase Shift Keying (M-PSK) – M-ary Quadrature Amplitude Modulation (M- QAM) • Multidimensional waveforms – M-ary Frequency Shift Keying (M-FSK) 15
  • 16. One dimensional modulation, demodulation and detection • Amplitude Shift Keying (ASK) modulation: ( )φω += t T E ts c i i cos 2 )( ( )cos 2 )( ,,1)()( 1 1 ii c ii Ea t T t Mitats = += == φωψ ψ  )(1 tψ 1s2s 0 1E “0” “1” On-off keying (M=2): 16
  • 17. One dimensional mod.,… • M-ary Pulse Amplitude modulation (M-PAM) ( )t T ats cii ωcos 2 )( = ( ) ( ) gs gii gi c ii E M E MiEE EMia t T t Mitats 3 )1( 12 )12( cos 2 )( ,,1)()( 2 22 1 1 − = −−== −−= = == s ωψ ψ  4-PAM: )(1 tψ 2s1s 0gE3− “00” “01” 4s3s “11” “10” gE− gE gE3 17
  • 18. • Coherent detection of M-PAM ∫ T 0 )(1 tψ ML detector (Compare with M-1 thresholds) )(tr 1z mˆ One dimensional mod.,...–cont’d 18
  • 19. Two dimensional modulation, demodulation and detection (M-PSK) • M-ary Phase Shift Keying (M-PSK)       += M i t T E ts c s i π ω 2 cos 2 )( ( ) ( ) 2 21 21 2211 2 sin 2 cos sin 2 )(cos 2 )( ,,1)()()( iis sisi cc iii EE M i Ea M i Ea t T tt T t Mitatats s==       =      = −== =+= ππ ωψωψ ψψ  19
  • 20. Two dimensional mod.,… (MPSK) )(1 tψ 2s1s bE “0” “1” bE− )(2 tψ 3s 7s “110” )(1 tψ 4s 2s sE “000” )(2 tψ 6s 8s 1s 5s “001” “011” “010” “101” “111” “100” )(1 tψ 2s 1s sE “00” “11” )(2 tψ 3s 4s“10” “01” QPSK (M=4) BPSK (M=2) 8PSK (M=8) 20
  • 21. Two dimensional mod.,…(MPSK) • Coherent detection of MPSK Compute Choose smallest2 1 arctan z z φˆ |ˆ| φφ −i ∫ T 0 )(1 tψ ∫ T 0 )(2 tψ )(tr 1z 2z mˆ 21
  • 22. Two dimensional mod.,… (M-QAM) • M-ary Quadrature Amplitude Mod. (M-QAM) ( )ic i i t T E ts ϕω += cos 2 )( ( ) ( ) 3 )1(2 andsymbolsPAMareandwhere sin 2 )(cos 2 )( ,,1)()()( 21 21 2211 − = == =+= M Eaa t T tt T t Mitatats sii cc iii ωψωψ ψψ  ( )               +−−+−+−+−+− −−−+−−+− −−−+−−+− = )1,1()1,3()1,1( )3,1()3,3()3,1( )1,1()1,3()1,1( , 21 MMMMMM MMMMMM MMMMMM aa ii     22
  • 23. Two dimensional mod.,… (M-QAM) )(1 tψ )(2 tψ 2s1s 3s 4s “0000” “0001” “0011” “0010” 6s5s 7s 8s 10s9s 11s 12s 14s13s 15s 16s 1 3-1-3 “1000” “1001” “1011” “1010” “1100” “1101” “1111” “1110” “0100” “0101” “0111” “0110” 1 3 -1 -3 16-QAM 23
  • 24. Two dimensional mod.,… (M-QAM) • Coherent detection of M-QAM ∫ T 0 )(1 tψ ML detector1z ∫ T 0 )(2 tψ ML detector )(tr 2z mˆParallel-to-serial converter s)threshold1with(Compare −M s)threshold1with(Compare −M 24
  • 25. Multi-dimentional modulation, demodulation & detection • M-ary Frequency Shift keying (M-FSK) ( ) ( ) T f tit T E t T E ts c s i s i 2 1 2 )1(cos 2 cos 2 )( = ∆ =∆ ∆−+== π ω ωωω ( ) 2 1 0 cos 2 )( ,,1)()( iis s ijii M j jiji EE ji jiE at T t Mitats s==    ≠ = == == ∑= ωψ ψ  )(1 tψ 2s 1s 3s )(3 tψ )(2 tψ sE sE sE 25
  • 27. 27
  • 28. Today • Các cách đi u ch d i qua (bandpass modulationề ế ả schemes) – M-PAM, M-PSK, M-FSK, M-QAM • Tách sóng t i đ u thu (detect the transmittedạ ầ information at the receiver) – Coherent detection – Non-coherent detection • Tính xác su t l i trung bình (the average probability ofấ ỗ symbol error) c a các d ng đi u chủ ạ ề ế • So sánh các d ng đi u chạ ề ế 28
  • 29. Eb/N0 figure of merit in digital communications • SNR or S/N là công su t tín hi u trung bình trênấ ệ công su t nhi u trung bình. SNR đ c tính b ngấ ễ ượ ằ bit-energy: b bb R W N S WN ST N E == /0 bR W : Bit rate : Bandwidth 29 S: công suất tín hiệu trung bình (average signal power) N: công suất nhiễu trung bình (average noise power) Eb: năng lượng bit Tb = 1/Rb
  • 30. Example of Symbol error prob. For PAM signals )(1 tψ 0 1s2s bEbE− Binary PAM )(1 tψ0 2s3s 5 2 bE 5 6 bE 5 6 bE − 5 2 bE − 4s 1s 4-ary PAM T t )(1 tψ T 1 0 30
  • 31. Error probability of bandpass modulation • Before evaluating the error probability, it is important to remember that: – Type of modulation and detection ( coherent or non-coherent), determines the structure of the decision circuits and hence the decision variable, denoted by z. – The decision variable, z, is compared with M-1 thresholds, corresponding to M decision regions for detection purposes.           Nr r  1 r= ∫ T 0 )(1 tψ ∫ T 0 )(tNψ )(tr 1r Nr r Decision Circuits Compare z with threshold. mˆ 31
  • 32. Error probability … • AWGN channel model: – Signal vector is deterministic (xác đ nh).ị – Noise vector có thành ph n là các bi n ng uầ ế ẫ nhiên Gaussian, tr trung bình = 0 (zero-mean) và bi n trị ế ị (variance) là . The noise vector pdf: – Observed vector có thành ph n là các bi nầ ế ng u nhiên không ph thu c hàm Gaussian (independentẫ ụ ộ Gaussian random variables). pdf : ),...,,( 21 iNiii aaa=s ),...,,( 21 Nrrr=r ),...,,( 21 Nnnn=n nsr += i 2/0N ( )         −= 0 2 2/ 0 exp 1 )( NN p N n nn π ( )         − −= 0 2 2/ 0 exp 1 )|( NN p i Ni sr srr π 32
  • 33. Error probability … • BPSK and BFSK with coherent detection: )(1 tψ 2s1s bE “0” “1” bE− )(2 tψ bE221 =−ss )(1 tψ 2s 1s )(2 tψ bE bE bE221 =−ss“0” “1” BPSK BFSK 2 0         = N E QP b B 2/ 2/ 0 21         − = N QPB ss 0         = N E QP b B 33
  • 34. Remind • Q(x) = complementary error function = co- error function 34
  • 35. • Coherent detection of M-PAM – Decision variable: ∫ T 0 )(1 tψ ML detector (Compare with M-1 thresholds) )(tr 1r mˆ Error probability …. )(1 tψ 2s1s 0gE3− “00” “01” 4s3s “11” “10” gE− gE gE3 4-PAM 1rz = 35
  • 36. Error probability …. • Coherent detection of M-PAM …. • Error happens if the noise, , exceeds in amplitude one-half of the distance between adjacent symbols. For symbols on the border, error can happen only in one direction. Hence: ( ) ( ) ( )gMMege gmme ErnPErnP MmErnP −<−==>−== <<>−== ssss ss 111111 11 Pr)(andPr)( ;1for||||Pr)(         − − = 0 2 2 1 log6)1(2 )( N E M M Q M M MP b E gbs E M EME 3 )1( )(log 2 2 − == mrn s−= 11 Gaussian pdf with zero mean and variance 2/0N ( ) ( ) ( ) ( )        − = − => − = −<+>+> − == ∫ ∑ ∞ = 0 1 111 1 2)1(2 )( )1(2 Pr )1(2 Pr M 1 Pr M 1 ||Pr 2 )( 1 )( 1 N E Q M M dnnp M M En M M EnEnEn M M P M MP g E ng ggg M m meE g s 36
  • 37. Error probability … • Coherent detection of M-QAM ∫ T 0 )(1 tψ ML detector1r ∫ T 0 )(2 tψ ML detector )(tr 2r mˆParallel-to-serial converter s)threshold1with(Compare −M s)threshold1with(Compare −M )(1 tψ )(2 tψ 2s1s 3s 4s“0000” “0001” “0011” “0010” 6s5s 7s 8s 10s9s 11s 12s 14s13s 15s 16s “1000” “1001” “1011” “1010” “1100” “1101” “1111” “1110” “0100” “0101” “0111” “0110” 16-QAM 37
  • 38. Error probability … • Coherent detection of M-QAM … • M-QAM can be viewed as the combination of two modulations on I and Q branches, respectively. • No error occurs if no error is detected on either I and Q branches. Hence: • Considering the symmetry of the signal space and orthogonality of I and Q branches: PAM−M branches)QandIondetectederrornoPr(1)(1)( −=−= MPMP CE ( )( )22 1I)onerrorPr(no Q)onerrorI)Pr(noonerrorPr(nobranches)QandIondetectederrornoPr( MPE−== =         −       −= 0 2 1 log31 14)( N E M M Q M MP b E Average probability of symbol error for PAM−M 38
  • 39. Error probability … • Coherent detection of MPSK Compute Choose smallest2 1 arctan r r φˆ |ˆ| φφ −i ∫ T 0 )(1 tψ ∫ T 0 )(2 tψ )(tr 1r 2r mˆ 3s 7s “110” )(1 tψ 4s 2s sE “000” )(2 tψ 6s 8s 1s 5s “001” “011” “010” “101” “111” “100” 8-PSK Decision variable r∠== φˆz 39
  • 40. Error probability … • Coherent detection of MPSK … • The detector compares the phase of observation vector to M-1 thresholds. • Due to the circular symmetry of the signal space, we have: where • It can be shown that φφ π π φ dpPP M MPMP M M c M m mcCE )(1)(1)( 1 1)(1)( / / ˆ1 1 ∫∑ − = −=−=−=−= ss               ≈ MN E QMP s E π sin 2 2)( 0 ( )               ≈ MN EM QMP b E π sin log2 2)( 0 2 or 2 ||;sinexp)cos( 2 )( 2 00 ˆ π φφφ π φφ ≤      −≈ N E N E p ss 40
  • 41. Error probability … • Coherent detection of M-FSK           Mr r  1 r= ∫ T 0 )(1 tψ ∫ T 0 )(tMψ )(tr 1r Mr r ML detector: Choose the largest element in the observed vector mˆ 41
  • 42. Error probability … • Coherent detection of M-FSK … • The dimensionality of signal space is M. An upper bound for average symbol error probability can be obtained by using union bound. Hence or, equivalently ( )         −≤ 0 1)( N E QMMP s E ( ) ( )         −≤ 0 2log 1)( N EM QMMP b E 42
  • 43. Bit error probability và symbol error probability • S bit/symbolố • For orthogonal M-ary signaling (M-FSK) • For M-PSK, M-PAM and M-QAM 2 1 lim 1 2/ 12 2 1 = − = − = ∞→ − E B k k k E B P P M M P P Mk 2log= 1for <<≈ E E B P k P P 43
  • 44. 44
  • 45. Error probability … • Non-coherent detection of BFSK ∫ T 0 )cos(/2 1tT ω ∫ T 0)(tr 11r 12r ∫ T 0 ∫ T 0 21r 22r Decision rule: )cos(/2 2tT ω )sin(/2 2tT ω )sin(/2 1tT ω ( )2 ( )2 ( )2 ( )2 + - z 0ˆ,0)(if 1ˆ,0)(if =< => mTz mTz mˆ 2 12 2 111 rrz += 2 22 2 212 rrz += 21 zzz −= Decision variable: Difference of envelopes 45
  • 46. Error probability – cont’d • Non-coherent detection of BFSK … • Non-coherent detection of DBPSK [ ] ∫ ∫∫ ∞ ∞∞    =>= >=>= >+>= 0 222121 0 2222221 2221221 112221 )|()|()|(),|Pr( ),|Pr()|Pr( )|Pr( 2 1 )|Pr( 2 1 2 dzzpdzzpdzzpzzz zzzEzz zzzzP z B ssss ss ss       −= 02 exp 2 1 N E P b B       −= 0 exp 2 1 N E P b B Rayleigh pdf Rician pdf 46
  • 48. Probability of symbol error for binary modulation EP dB/ 0NEb Note! • “The same average symbol energy for different sizes of signal space” 48
  • 49. Probability of symbol error for M-PSK EP dB/ 0NEb Note! • “The same average symbol energy for different sizes of signal space” 49
  • 50. Probability of symbol error for M-FSK EP dB/ 0NEb Note! • “The same average symbol energy for different sizes of signal space” 50
  • 51. Probability of symbol error for M-PAM EP dB/ 0NEb Note! • “The same average symbol energy for different sizes of signal space” 51
  • 52. Probability of symbol error for M-QAM EP dB/ 0NEb Note! • “The same average symbol energy for different sizes of signal space” 52
  • 53. Example of samples of matched filter output for some bandpass modulation schemes 53
  • 54. Bài t pậ T c đ bit (data rate) = 5000 bit/s.ố ộ Tìm xác su t l i bit trung bình Pấ ỗ B khi bi t đ u thu dùng coherentế ầ BPSK đ tách sóngể HzWNmVA tAtstAts /10;1 )cos()();cos()( 11 0 0201 − == −== ωωCho 54
  • 55. Bài t pậ Cho 1 h th ng coherent BPSK có t c đ l i trung bình làệ ố ố ộ ỗ 100 l i/ngày v i t c đ data rate = 1000 bits/s, côngỗ ớ ố ộ su t nhi uấ ễ a) Tìm xác su t l i bit trung bìnhấ ỗ b) N u ch nh công su t tín hi u nh n đ c trung bình là Sế ỉ ấ ệ ậ ượ = 10-6 W thì xác su t l i bit trung bình là bao nhiêu?ấ ỗ HzWN /10 10 0 − = 55
  • 56. Bài t p n p cho GVậ ộ • Cách 1: n p tr c ti p cho GV (sau m i bu i h c)ộ ự ế ỗ ổ ọ • Cách 2: g i email t i:ử ớ truyenthongsodtvt@gmail.com • Th i h n n p bài: th ba ngày 3 tháng 5 (bu i h cờ ạ ộ ứ ổ ọ cu i)ố • Trong email và file n p ghi rõ h tên và mã s SVộ ọ ố • Đi m bài t p: 30% t ng đi mể ậ ổ ể 56
  • 57. Bài t p n p cho GVậ ộ Ch n 1 trong các bài sau:ọ 1. Tìm hi u v Non-coherent detection (DPSK,ể ề BDPSK, FSK) 2. Dùng Matlab mô ph ng đ so sánh s khácỏ ể ự nhau c a các ki u đi u ch (v SNR vs Pủ ể ề ế ẽ E ho c SNR vs BER)ặ 57