SlideShare a Scribd company logo
1 of 9
Download to read offline
ICARO Srl Via Principe Pignatelli 13, 65012 Villanova di Cepagatti (PE) www.icaro-srl.eu
Biomasse
Idrogeno da Biomasse: La Reformazione a Stadi
La Reformazione a Stadi è
stata sviluppata per produrre,
in modo semplice ed economico,
gas pregiato, non diluito,
con alto contenuto di idrogeno,
(> 50%vol) da Biomasse e scarti
di poca rilevanza economica.
In questo modo è possibile,
non solo produrre energia elettrica
con massima efficienza tramite
motori a gas, ma bensì
anche un gas di sintesi per
l‘alimentazione di Fuel Cells
del tipo MCFC o addirittura
puro idrogeno per Fuel Cells PI/PAFC.
La Reformazione a Stadi è un
processo a due stadi che lavora a
pressione atmosferica, dove le Biomasse vengono prima gassificate.
Successivamente il gas di pirolisi viene reformato insieme al vapore in gas
con alto contenuto di idrogeno. Il calore necessario è fornito dalla
combustione del carbone di pirolisi.
Una gestione con scarico acque zero è possibile.
A Herten (Germania) è stato installato un‘impianto pilota da 1 MWtermico, dove
sono possibile effettuare prove di combustione.
Materiali Input
COMBUSTIBILE PROVENIENZA/CARATTERISTICHE PREVALENTI UMIDITA'
MEDIA
1 Potature Provengono da: 20-40%
a) oliveti
b) frutteti
e) Aree a verde
d) Pulizia alvei
2 Graspi E' previsto un pretrattamento prima dell'avvio alla centrale
(spremitura)
60%
3 Farina di vinaccioli Viene utilizzata tal quale 15%
4 Scarti Industria del legno Sono costituiti da:
a) Rifili 20-35%
b) Polverino (dim <0,5 mm) 10%
5 Cippati forestali Provengono dal taglio dei cedui e dai diradamenti di
rimboschimenti.
30-40%
Le specie prevalenti sono:
a) Faggi
b) Pioppo
C) Abeti
d) Pino
e) Roverella
6 Bucce di arancio / noccioli Provengono dall'industria conserviera 10-30%
7 Sanse esauste Viene utilizzata tal quale 10- 15%
8 Sanse vergini Viene utilizzata tal quale 40-50%
9 Vinacce Viene utilizzata tal quale 40-50%
10 Coltivazioni energetiche Sono costituite da: 30-50%
a) Canna comune
b) Kenaf
C) Canapa
d) Sorgo zuccherino
e) Vetiver
f) Pioppo
g) Paulonia
h) Altre di cui alla sperimentazione
11 Polpe esauste di barbabietola essiccate 20-40%
12 Polverino di legno trattato Industria dei legno - Contenuto di formaldeide < 2% 10%
13 Polverino di mais Dimensioni < 0,5 mm 10%
14 Paglia, Fieno
15 Pulper di cartiera applicando le direttive su termodistruttori (inceneritori) 50%
16 Farine animali applicando le direttive su termodistruttori (inceneritori) 25%
17 Scarti tessili applicando le direttive su termodistruttori (inceneritori) 10%
18 Oli vegetali applicando le direttive su termodistruttori (inceneritori)
19 Grassi vegetali applicando le direttive su termodistruttori (inceneritori)
20 CDR applicando le direttive su termodistruttori (inceneritori)
21 FLUFF applicando le direttive su termodistruttori (inceneritori)
22 Pneumatici esausti applicando le direttive su termodistruttori (inceneritori)
1
Syngas e Idrogeno dal processo Blue Tower
Il Syngas prodotto tramite il processo Blue Tower è ottenuto da un processo di gassificazione delle
biomasse. Il gas così ottenuto riceve un trattamento di reforming con aggiunta di H2O in stato vaporoso.
In questo modo si ottiene una miscela di gas, simile ai gas di sintesi o di cockeria che vengono
comunemente impiegati nell'indutria, con la differenza che si tratta di un gas molto più pulito come p.e
bassissimi valori di TAR (<2g/Nm3)
Il diagramma sottostante mostra la composizione media rappresentativa per le biomasse.
Il sistema di reattori a cascata che formano la Blue Tower lavora a pressione atmosferica, leggermente
sottopresione, in questo modo si evitano fuge di gas incontrollate.
Il rack (struttura portante dei 3 reattori) è posizionato all'esterno, ben ventilato, e coperto da un telo blu che
dà il nome a questo gassificatore innovativo. Nel caso ci dovessero essere comunque delle fuoriuscite di
gas, le componenti più "pericolose" come: H2 e C0 reagiscono immediatamente con l'ossigeno
dell'atmosfera, trasformandosi in sostanze innocue come H20 e C02. Inoltre questi componenti vengono
rilevati in continuo tramite rilevatori posizionati opportunamente; eventuali segnalazioni fanno scattare
allarmi del sistema di gestione che a sua volta attiva tutte le procedure di avaria e spegnimento impianto
previste dal programma operativo.
Il reattore di pirolisi è costantemente riempito con biomasse e vettore termico ceramico, pertanto il gas
grezzo, contenuto nel reattore, non ha molto spazio di espansione e pertanto non esiste pericolo di
esplosione del reattore. Lo stesso vale anche per il reattore di reforming.
Il gas grezzo dal gassificatore subisce una serie di processi di condizionamento e purificazione per renderlo
sufficientemente puro per essere combusto in motori a gas.
A monte dei motori, il gas raffinato viene "stoccato" per smorzare eventuali picchi di pressione derivati da
un'adduzzione del combustibile (biomasse) non perfettamente omogenea.
Questo "serbatoio" consiste in un allargamento della sezione delle tubazioni che portano ai motori per
permettere una giacenza max di 5 sec. I motori necessitano ca. 2-3 sec. per passare in automatico da
syngas a gas metano.
In caso di avaria dei motori che causa lo spegnimento degli stessi, il sistema
produce ancora per ca. 20 min. gas di sintesi, nonostante che il sistema di adduzione biomasse è fermo. Lo
stop dei motori fà attivare in modo automatico la valvola by-pass che devia tutto il syngas dal gassificatore al
forno di combustione carbone e lì bruciato; contemporaneamente va a ridursi la quantità di coke al forno.
CopyrightbyDEG-EngineeringGmbH
Deposito Rifiuti
ca.1200 m2 H = 8m aperto
Capacità 1 settimana
Torre Blu
H=ca.33m
Legenda
1 - Trasportatore a Tazze
2 - Trasportatore a Nastro
3 - Silo di processo (3-4 ore)
4 - Silo calce con contenitore
5 - Filtro a secco
6 - Lavaggio Gas
7 - Precipitatore Elettrico
8 - Filtro di sicurezza
9 - Economizer
10 - Camera di Combustione Carbone con Setaccio
11 - Contenitore Ceneri
12 - Ventilatore
13 - Scambiatore per produzione vapore
14 - Evaporizzatore con Pompe
15 - Serbatoio Gas Prodotto
16 - Motore a Gas
17 - PSA (Pressure Swing Absorption) + Desulfurisation OPTIONAL
18 - Serbatoio Idrogeno OPTIONAL
19 - Compressore OPTIONAL
20 - Essicatore OPTIONAL
21 - Fuel Cell MCFC OPTIONAL
2
6
7
14
Bilancia (OPTIONAL)
N.B. Le posizioni dei singoli componenti sono soggetti a variazione
A - Accettazione & Sorveglianza
B - Ufficio / Sala Riunioni
C - Sala Controllo
D - Sala Mensa
E - Spogliatoio
F - Servizi
Superfice ca. 85 m x 46 m
9 5
12
4
8
13
10
11
1
20
Deposito Materiali
ca. 85 m
ca.46m
35,00m
3
15
Cabina
elettrica
A
C
F
16
17
19
18
BDE
34,00m
ca.18m
ca. 30 m
ca.12mH=6m
H
G
F
E
D
C
B
A
8 7 6 5 4 3 2 1
H
G
F
E
D
C
B
A
8 7 6 5 4 3 2 1
Marino
Scala:
1:250
Versione
01
DEG-Engineering
Blue Tower Unit
01003-15-000
Stabilimento di conversione
Biomasse
OPTIONAL
21
16 16
OPTIONAL
MCFC
OPTION
Fuel Cell
OPTION
PSA + Desulfurisation
for H2-Production
OPTION
Dryer Input-Material
OPTION
Organic Rankine Cycle
Gas Engine
Blue Tower Unit
DEG-Engineering GmbH Marino
INPUT
Fluegas
Dry offgas
Purification
Fluegas
Gasifyer
Carbon Filter
Heat carrier
Combustion
OPTION
Direct Gas Consumer
Combustion Air
Fresh Air
Fresh Air
1
2
3
4
5
7
8
9
Natural Gas
11
NaturalGas11
Quenche
ORCAsh
Sludge
Steam
Product Gas
Coke
PyrolisisGas
Economizer
Cooling
Water
10
Fluegas6
KatFine-Filter
DEG
Heat-Exchanger
Gas Cooling
X X
X X
X X
X X
X X
X X
Electro
Wet-Precipitator
Low Steam
Evaporator
Hot Oil
Fresh
Water
10
H2
Reformer
Heater
DESCRIZIONE DELL'IMPIANTO BLUE TOWER NEI SUOI PARTICOLARI
Tecnologia di base del processo produttivo.
L’impianto Blue Tower parte innanzitutto da un processo produttivo che basa la sua efficienza su
una tecnologia del tutto innovativa, poiché non solo procede alla gassificazione delle biomase, che di
per sè rappresenta già una metodologia innovativa di conversione energetica in quanto amplifica
l’utilizzabilità del combustibile, ma ritrova una straordinaria innovazione nel processo stesso di
gassificazione e nei suoi prodotti e cioè nella composizione dei syngas che è in grado di produrre:
volendo definire meglio la tecnologia di base del processo produttivo si deve innanzitutto partire
dalla tecnologia di gassificazione che è di tipo
• A letto fisso mobile con accumulo e trasporto di calore
• Ad atmosfera ambiente
• A due stadi
• A mezzo di gassificazione vapore
Esplicitando il tutto in modo più sintetico si può dire che si tratta di un processo di gassificazione
allotermico (indiretto) basato sulla reformazione a stadi, che vede una fase in cui avviene la pirolisi
del rifiuto ed una fase in cui i gas di pirolisi entrano in un reattore di reforming alimentato
termicamente da vapore prodotto a partire dalla combustione del coke di pirolisi che viene anche
recuperato attraverso un sitstema di accumulo e trasporto del calore che si base sulla
movimentazione di un inerte argilloso granulare.
Il recupero del calore e il processo di reforming riducono la diluizione dei gas di pirolisi rielevando il
loro contenuto energetico e producendo syngas in cui è presente idrogeno in volume pari al 60%.
Tale processo di gassificazione è sperimentato già da quattro anni in un pilota da 1500-2000 kWth
costruito ad Herten in Germania dove sta mostrando efficacemente le sue straordinari potenzialità.
I Syngas prodotti vanno incontro a tre sostanziali tipologie di utilizzazione:
v la prima, che assicura la produzione nei primi anni di esercizio, vede dei motori a gas della
Deutz o analoghi, testati in diversi contesti, dai gas di cokeria a quelli da fermentazione
alcolica dei rifiuti urbani;
v la seconda è del tutto sperimentale e vede una cella a combustibile tipo MCFC in grado di
lavorare con gas reformati senza necessità di raffinare ulteriormente il prodotto del
gassificatore.
v la terza anch'essa sperimentale e vede una cella a combustibile tipo PEFC o analoga che
processa idrogeno ricavato dal gas di sintesi attraverso una purificazione con sistema PSA
Si noti infine che, essendo molto bassa la percentuale di TARS è possibile usare dei sistemi di
pulizia a freddo.
Ciclo produttivo e caratteristiche funzionali
Il rifiuto depositato nel piazzale viene caricato nella tramoggia del trasportatore a tazze e
attraversa l’unità di essiccazione (optional) sopra nastri trasportatori. Successivamente viene
trasportato al reattore di pirolisi tramite una coclea passando attraverso un serbatoio di accumulo
intermedio.
Il rifiuto si mescola con il vettore termico proveniente caldo dagli stadi superiori dell’unità, e viene
uniformemente distribuito all’interno del reattore di pirolisi, dove la termolisi avviene ad una
temperatura di circa 500-550°C, accelerata dalla grande superficie di scambio del vettore termico.
Nella zona più profonda del reattore avviene la pirolisi delle componenti più pesanti del rifiuto e di
parte del rimanente carbone. Non c’è bisogno di ossigeno né di aria per fornire l’energia per la
ossidazione parziale, in quanto tutto il calore necessario proviene dal vettore termico. Un flusso di
vapore a bassa pressione proveniente dagli stadi inferiori dell’unità attraversa il letto, e insieme ai
gas rilasciati durante il processo termico viene convogliato nello stadio di reforming.
Nel reattore di reforming la maggior parte dei componenti più pesanti vengono reformati e crackati
fino a diventare metano, CO2, CO, H2 grazie all’alto contenuto di H20 presente in fase di vapore.
Dal momento che l’unità di reforming è costituita da un recipiente del tutto isolato, non è possibile il
mescolamento con gas allo stato grezzo o con gas di pirolisi che non abbiano reagito (a differenza
di quanto succede nei processi convenzionali, come ad esempio i reattori a letto fluido).
Il gas in uscita risulta essere quasi totalmente depurato dagli idrocarburi più pesanti, ed è di buona
qualità in quanto non c’è stata alcuna diluizione con azoto.
Siccome il vettore termico deve fornire sufficiente calore (tra 500 e 1050°C) affinché i processi
endotermici abbiano luogo, è necessario che venga preriscaldato in maniera adeguata. Questa
fase viene espletata all’interno di un recipiente di preriscaldamento dove confluiscono i gas di
scarico provenienti dalla combustione del carbone di pirolisi.
Vagliando il vettore termico all’uscita del reattore di pirolisi con un setaccio meccanico si separa il
vettore stesso dai prodotti carbonizzati. Il vettore ormai separato viene convogliato in cima alla
torre di gassificazione.
I gas di scarico che escono dal recipiente di preriscaldamento sono ancora caldi, e vengono quindi
usati per preriscaldare l’aria comburente della camera di combustione del carbone di pirolisi, così
da aumentare l’efficienza del sistema. Successivamente i gas di scarico vengono forzati attraverso
filtri a maniche e trattati con adsorbenti (calce) per la depolverizzazione e la desulfurizzazione. Il
sistema di ventilazione forzata rappresenta l’ultima sezione del trattamento dei gas di scarico a
monte del camino.
Il gas prodotto viene raffreddato con olio diatermico caldo in uno scambiatore di calore innovativo a
piastre saldate e di facile pulitura, e successivamente lavato. L’acqua di condensazione
proveniente dal sistema di lavaggio viene fatta evaporare in parte a spese del calore dell’olio
diatermico, in modo da generare il vapore a bassa pressione necessario all’unità di reforming. La
frazione residuale della condensa viene inviata alla camera di combustione.
Il gas è quindi trattato con un deumidificatore-depolverizzatore elettrostatico e un lavaggio
successivo (quenche) per ottenere un prodotto sufficientemente puro da poter essere utilizzato in
motori a combustione interna. Per assicurare l’integrità dei motori viene installato un ulteriore filtro
a carboni attivi ed un filtro fine subito a monte dei motori stessi, i motori sono equipaggiati con un
sistema Denox per l'abbattimento degli Nox. Inoltre le fluttuazioni di pressione della linea gas sono
smorzate da un volume di calma.
La produzione di energia elettrica viene così affidata ad un sistema di motori a combustione
interna della DEUTZ o equivalente in grado di usare i gas reformati in modo stabile e con
un’efficienza del 39% restituendo così un’efficienza globale dell’impianto pari circa al 32%.
Inoltre si può prevede di diramare una linea gas dedicata ad una cella a combustibile MCFC o alla
PSA per la produzione di puro idrogeno.
Acqua
L’impianto consuma pochissima acqua.
Non disponendo di un sistema di raffreddamento continuo e aperto limita in modo notevole l’uso di
questa risorsa.
I motori hanno un circuito di raffreddamento chiuso. Il sistema di pulizia dei gas usa acqua che
viene poi concentrata in fanghi che vengono successivamente bruciati nel forno del sistema di
gassificazione e recuperati insieme al calore a valle della combustione.
Alla produzione di vapore si fa fronte condensando l’acqua presente nei syngas e vaporizzandola
a 1,5 bar nel vaporizzatore.
Poca acqua è necessaria per il make-up dell’elettrofiltro e del lavaggio per evitare la
concentrazione di alghe e sporcizia nel circuito di lavaggio. Tranne poche quantità di spillamento
fanghi (in casi eccezionali), l'impianto non produce acque reflue.

More Related Content

What's hot

Recupero Energia - Le soluzioni ad elevato rendimento di Spirax Sarco
Recupero Energia - Le soluzioni ad elevato rendimento di Spirax SarcoRecupero Energia - Le soluzioni ad elevato rendimento di Spirax Sarco
Recupero Energia - Le soluzioni ad elevato rendimento di Spirax SarcoMarco Achilli
 
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativo
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativoCalcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativo
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativoPierluca Bracco
 
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabrese
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabresePOMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabrese
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabreseViessmann Italia
 
Indici di Prestazione delle pompe di calore elettriche
Indici di Prestazione delle pompe di calore elettricheIndici di Prestazione delle pompe di calore elettriche
Indici di Prestazione delle pompe di calore elettricheRosa De Maio
 
Pompe di calore, introduzione alla tecnologia e mercato Italia
Pompe di calore, introduzione alla tecnologia e mercato ItaliaPompe di calore, introduzione alla tecnologia e mercato Italia
Pompe di calore, introduzione alla tecnologia e mercato ItaliaDavide Maritan
 
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...Michele Golfieri
 
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPA
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPAIntervento di Roberto Perego, VORTICE ELETTROSOCIALI SPA
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPAinfoprogetto
 
Vacuum concentration kettles Inox-Fer
Vacuum concentration kettles  Inox-FerVacuum concentration kettles  Inox-Fer
Vacuum concentration kettles Inox-FerBarbara Beneventi
 

What's hot (11)

Recupero Energia - Le soluzioni ad elevato rendimento di Spirax Sarco
Recupero Energia - Le soluzioni ad elevato rendimento di Spirax SarcoRecupero Energia - Le soluzioni ad elevato rendimento di Spirax Sarco
Recupero Energia - Le soluzioni ad elevato rendimento di Spirax Sarco
 
Cogenerazione ad alto rendimento
Cogenerazione ad alto rendimentoCogenerazione ad alto rendimento
Cogenerazione ad alto rendimento
 
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativo
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativoCalcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativo
Calcolo semplificato di rendimento caldaia con e senza "air-heater" rigenerativo
 
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabrese
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabresePOMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabrese
POMPE DI CALORE AD R744 - Centro Enea Casaccia (RM), 17-01-2013 calabrese
 
Indici di Prestazione delle pompe di calore elettriche
Indici di Prestazione delle pompe di calore elettricheIndici di Prestazione delle pompe di calore elettriche
Indici di Prestazione delle pompe di calore elettriche
 
Pompe di calore, introduzione alla tecnologia e mercato Italia
Pompe di calore, introduzione alla tecnologia e mercato ItaliaPompe di calore, introduzione alla tecnologia e mercato Italia
Pompe di calore, introduzione alla tecnologia e mercato Italia
 
Roberto Perego
Roberto PeregoRoberto Perego
Roberto Perego
 
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...
Recupero energia dalle reti vapore - Spirax Sarco all'evento Recupero Energia...
 
Roberto Perego,
Roberto Perego,Roberto Perego,
Roberto Perego,
 
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPA
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPAIntervento di Roberto Perego, VORTICE ELETTROSOCIALI SPA
Intervento di Roberto Perego, VORTICE ELETTROSOCIALI SPA
 
Vacuum concentration kettles Inox-Fer
Vacuum concentration kettles  Inox-FerVacuum concentration kettles  Inox-Fer
Vacuum concentration kettles Inox-Fer
 

Similar to Depliant biomasse

Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016
Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016
Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016Michele Golfieri
 
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...Servizi a rete
 
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta Pino Ciampolillo
 
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta Pino Ciampolillo
 
Il termovalorizzatore
Il termovalorizzatore Il termovalorizzatore
Il termovalorizzatore Simona Martini
 
L'economia del biometano - Intervento di Efisio Scano
L'economia del biometano - Intervento di Efisio ScanoL'economia del biometano - Intervento di Efisio Scano
L'economia del biometano - Intervento di Efisio ScanoSardegna Ricerche
 
Corso Resp 07 Lezione Inceneritori
Corso Resp   07 Lezione   InceneritoriCorso Resp   07 Lezione   Inceneritori
Corso Resp 07 Lezione InceneritoriLuca Vecchiato
 
Premio pa sostenibile smat demosofc
Premio pa sostenibile smat demosofcPremio pa sostenibile smat demosofc
Premio pa sostenibile smat demosofcarmaq
 
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...WEC Italia
 
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...Centro Studi Galileo
 
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industriale
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industrialeSostenibilità ed economia circolare: esempi applicativi di simbiosi industriale
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industrialeServizi a rete
 
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...Viessmann Italia
 
Lucidi Tavernola 9 Marzo 2006
Lucidi Tavernola 9 Marzo 2006Lucidi Tavernola 9 Marzo 2006
Lucidi Tavernola 9 Marzo 2006Anna Sorosina
 
Spirax Sarco - 6E - energy efficiency & recovery
Spirax Sarco - 6E -  energy efficiency & recoverySpirax Sarco - 6E -  energy efficiency & recovery
Spirax Sarco - 6E - energy efficiency & recoveryMarco Achilli
 
Solare termodinamico
Solare termodinamicoSolare termodinamico
Solare termodinamicoConvertitalia
 
Presentazione biometano
Presentazione biometanoPresentazione biometano
Presentazione biometanoargilli
 
Cogenerazione a biomassa - Viessmann a mcTER 2013
Cogenerazione a biomassa - Viessmann a mcTER 2013Cogenerazione a biomassa - Viessmann a mcTER 2013
Cogenerazione a biomassa - Viessmann a mcTER 2013Viessmann Italia
 
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCO
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCOENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCO
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCOPaglia Ing. Mirko Massimiliano
 
3 muraro biogas-processo
3 muraro biogas-processo3 muraro biogas-processo
3 muraro biogas-processoANAPIA FSE 2010
 

Similar to Depliant biomasse (20)

Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016
Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016
Spirax Sarco - recupero energetico nelle reti vapore - Brescia 21/04/2016
 
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...
Utilizzo delle energie da fonti rinnovabili: un prototipo finanziato da U.E. ...
 
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
 
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008  decaduta
Italcementi revamping progetto 2006 a.i.a. decreto 693 18 luglio 2008 decaduta
 
Il termovalorizzatore
Il termovalorizzatore Il termovalorizzatore
Il termovalorizzatore
 
L'economia del biometano - Intervento di Efisio Scano
L'economia del biometano - Intervento di Efisio ScanoL'economia del biometano - Intervento di Efisio Scano
L'economia del biometano - Intervento di Efisio Scano
 
2 Inceneritori
2 Inceneritori2 Inceneritori
2 Inceneritori
 
Corso Resp 07 Lezione Inceneritori
Corso Resp   07 Lezione   InceneritoriCorso Resp   07 Lezione   Inceneritori
Corso Resp 07 Lezione Inceneritori
 
Premio pa sostenibile smat demosofc
Premio pa sostenibile smat demosofcPremio pa sostenibile smat demosofc
Premio pa sostenibile smat demosofc
 
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...
Roasio Roberto - Alternative Fuels Product Manager - Ecomotive Solutions-Star...
 
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...
XVI CONVEGNO EUROPEO C. Marotta - HIGH-ENERGY EFFICIENCY FLUID FOR SECONDARY ...
 
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industriale
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industrialeSostenibilità ed economia circolare: esempi applicativi di simbiosi industriale
Sostenibilità ed economia circolare: esempi applicativi di simbiosi industriale
 
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...
Fonti e vettori energetici integrati fossili e rinnovabili - Convegno Viessma...
 
Lucidi Tavernola 9 Marzo 2006
Lucidi Tavernola 9 Marzo 2006Lucidi Tavernola 9 Marzo 2006
Lucidi Tavernola 9 Marzo 2006
 
Spirax Sarco - 6E - energy efficiency & recovery
Spirax Sarco - 6E -  energy efficiency & recoverySpirax Sarco - 6E -  energy efficiency & recovery
Spirax Sarco - 6E - energy efficiency & recovery
 
Solare termodinamico
Solare termodinamicoSolare termodinamico
Solare termodinamico
 
Presentazione biometano
Presentazione biometanoPresentazione biometano
Presentazione biometano
 
Cogenerazione a biomassa - Viessmann a mcTER 2013
Cogenerazione a biomassa - Viessmann a mcTER 2013Cogenerazione a biomassa - Viessmann a mcTER 2013
Cogenerazione a biomassa - Viessmann a mcTER 2013
 
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCO
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCOENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCO
ENEL - Co-firing di combustibili secondari - Il progetto EU FP7 DEBCO
 
3 muraro biogas-processo
3 muraro biogas-processo3 muraro biogas-processo
3 muraro biogas-processo
 

Depliant biomasse

  • 1. ICARO Srl Via Principe Pignatelli 13, 65012 Villanova di Cepagatti (PE) www.icaro-srl.eu Biomasse
  • 2.
  • 3. Idrogeno da Biomasse: La Reformazione a Stadi La Reformazione a Stadi è stata sviluppata per produrre, in modo semplice ed economico, gas pregiato, non diluito, con alto contenuto di idrogeno, (> 50%vol) da Biomasse e scarti di poca rilevanza economica. In questo modo è possibile, non solo produrre energia elettrica con massima efficienza tramite motori a gas, ma bensì anche un gas di sintesi per l‘alimentazione di Fuel Cells del tipo MCFC o addirittura puro idrogeno per Fuel Cells PI/PAFC. La Reformazione a Stadi è un processo a due stadi che lavora a pressione atmosferica, dove le Biomasse vengono prima gassificate. Successivamente il gas di pirolisi viene reformato insieme al vapore in gas con alto contenuto di idrogeno. Il calore necessario è fornito dalla combustione del carbone di pirolisi. Una gestione con scarico acque zero è possibile. A Herten (Germania) è stato installato un‘impianto pilota da 1 MWtermico, dove sono possibile effettuare prove di combustione.
  • 4. Materiali Input COMBUSTIBILE PROVENIENZA/CARATTERISTICHE PREVALENTI UMIDITA' MEDIA 1 Potature Provengono da: 20-40% a) oliveti b) frutteti e) Aree a verde d) Pulizia alvei 2 Graspi E' previsto un pretrattamento prima dell'avvio alla centrale (spremitura) 60% 3 Farina di vinaccioli Viene utilizzata tal quale 15% 4 Scarti Industria del legno Sono costituiti da: a) Rifili 20-35% b) Polverino (dim <0,5 mm) 10% 5 Cippati forestali Provengono dal taglio dei cedui e dai diradamenti di rimboschimenti. 30-40% Le specie prevalenti sono: a) Faggi b) Pioppo C) Abeti d) Pino e) Roverella 6 Bucce di arancio / noccioli Provengono dall'industria conserviera 10-30% 7 Sanse esauste Viene utilizzata tal quale 10- 15% 8 Sanse vergini Viene utilizzata tal quale 40-50% 9 Vinacce Viene utilizzata tal quale 40-50% 10 Coltivazioni energetiche Sono costituite da: 30-50% a) Canna comune b) Kenaf C) Canapa d) Sorgo zuccherino e) Vetiver f) Pioppo g) Paulonia h) Altre di cui alla sperimentazione 11 Polpe esauste di barbabietola essiccate 20-40% 12 Polverino di legno trattato Industria dei legno - Contenuto di formaldeide < 2% 10% 13 Polverino di mais Dimensioni < 0,5 mm 10% 14 Paglia, Fieno 15 Pulper di cartiera applicando le direttive su termodistruttori (inceneritori) 50% 16 Farine animali applicando le direttive su termodistruttori (inceneritori) 25% 17 Scarti tessili applicando le direttive su termodistruttori (inceneritori) 10% 18 Oli vegetali applicando le direttive su termodistruttori (inceneritori) 19 Grassi vegetali applicando le direttive su termodistruttori (inceneritori) 20 CDR applicando le direttive su termodistruttori (inceneritori) 21 FLUFF applicando le direttive su termodistruttori (inceneritori) 22 Pneumatici esausti applicando le direttive su termodistruttori (inceneritori)
  • 5. 1 Syngas e Idrogeno dal processo Blue Tower Il Syngas prodotto tramite il processo Blue Tower è ottenuto da un processo di gassificazione delle biomasse. Il gas così ottenuto riceve un trattamento di reforming con aggiunta di H2O in stato vaporoso. In questo modo si ottiene una miscela di gas, simile ai gas di sintesi o di cockeria che vengono comunemente impiegati nell'indutria, con la differenza che si tratta di un gas molto più pulito come p.e bassissimi valori di TAR (<2g/Nm3) Il diagramma sottostante mostra la composizione media rappresentativa per le biomasse. Il sistema di reattori a cascata che formano la Blue Tower lavora a pressione atmosferica, leggermente sottopresione, in questo modo si evitano fuge di gas incontrollate. Il rack (struttura portante dei 3 reattori) è posizionato all'esterno, ben ventilato, e coperto da un telo blu che dà il nome a questo gassificatore innovativo. Nel caso ci dovessero essere comunque delle fuoriuscite di gas, le componenti più "pericolose" come: H2 e C0 reagiscono immediatamente con l'ossigeno dell'atmosfera, trasformandosi in sostanze innocue come H20 e C02. Inoltre questi componenti vengono rilevati in continuo tramite rilevatori posizionati opportunamente; eventuali segnalazioni fanno scattare allarmi del sistema di gestione che a sua volta attiva tutte le procedure di avaria e spegnimento impianto previste dal programma operativo. Il reattore di pirolisi è costantemente riempito con biomasse e vettore termico ceramico, pertanto il gas grezzo, contenuto nel reattore, non ha molto spazio di espansione e pertanto non esiste pericolo di esplosione del reattore. Lo stesso vale anche per il reattore di reforming. Il gas grezzo dal gassificatore subisce una serie di processi di condizionamento e purificazione per renderlo sufficientemente puro per essere combusto in motori a gas. A monte dei motori, il gas raffinato viene "stoccato" per smorzare eventuali picchi di pressione derivati da un'adduzzione del combustibile (biomasse) non perfettamente omogenea. Questo "serbatoio" consiste in un allargamento della sezione delle tubazioni che portano ai motori per permettere una giacenza max di 5 sec. I motori necessitano ca. 2-3 sec. per passare in automatico da syngas a gas metano. In caso di avaria dei motori che causa lo spegnimento degli stessi, il sistema produce ancora per ca. 20 min. gas di sintesi, nonostante che il sistema di adduzione biomasse è fermo. Lo stop dei motori fà attivare in modo automatico la valvola by-pass che devia tutto il syngas dal gassificatore al forno di combustione carbone e lì bruciato; contemporaneamente va a ridursi la quantità di coke al forno.
  • 6. CopyrightbyDEG-EngineeringGmbH Deposito Rifiuti ca.1200 m2 H = 8m aperto Capacità 1 settimana Torre Blu H=ca.33m Legenda 1 - Trasportatore a Tazze 2 - Trasportatore a Nastro 3 - Silo di processo (3-4 ore) 4 - Silo calce con contenitore 5 - Filtro a secco 6 - Lavaggio Gas 7 - Precipitatore Elettrico 8 - Filtro di sicurezza 9 - Economizer 10 - Camera di Combustione Carbone con Setaccio 11 - Contenitore Ceneri 12 - Ventilatore 13 - Scambiatore per produzione vapore 14 - Evaporizzatore con Pompe 15 - Serbatoio Gas Prodotto 16 - Motore a Gas 17 - PSA (Pressure Swing Absorption) + Desulfurisation OPTIONAL 18 - Serbatoio Idrogeno OPTIONAL 19 - Compressore OPTIONAL 20 - Essicatore OPTIONAL 21 - Fuel Cell MCFC OPTIONAL 2 6 7 14 Bilancia (OPTIONAL) N.B. Le posizioni dei singoli componenti sono soggetti a variazione A - Accettazione & Sorveglianza B - Ufficio / Sala Riunioni C - Sala Controllo D - Sala Mensa E - Spogliatoio F - Servizi Superfice ca. 85 m x 46 m 9 5 12 4 8 13 10 11 1 20 Deposito Materiali ca. 85 m ca.46m 35,00m 3 15 Cabina elettrica A C F 16 17 19 18 BDE 34,00m ca.18m ca. 30 m ca.12mH=6m H G F E D C B A 8 7 6 5 4 3 2 1 H G F E D C B A 8 7 6 5 4 3 2 1 Marino Scala: 1:250 Versione 01 DEG-Engineering Blue Tower Unit 01003-15-000 Stabilimento di conversione Biomasse OPTIONAL 21 16 16 OPTIONAL
  • 7. MCFC OPTION Fuel Cell OPTION PSA + Desulfurisation for H2-Production OPTION Dryer Input-Material OPTION Organic Rankine Cycle Gas Engine Blue Tower Unit DEG-Engineering GmbH Marino INPUT Fluegas Dry offgas Purification Fluegas Gasifyer Carbon Filter Heat carrier Combustion OPTION Direct Gas Consumer Combustion Air Fresh Air Fresh Air 1 2 3 4 5 7 8 9 Natural Gas 11 NaturalGas11 Quenche ORCAsh Sludge Steam Product Gas Coke PyrolisisGas Economizer Cooling Water 10 Fluegas6 KatFine-Filter DEG Heat-Exchanger Gas Cooling X X X X X X X X X X X X Electro Wet-Precipitator Low Steam Evaporator Hot Oil Fresh Water 10 H2 Reformer Heater
  • 8. DESCRIZIONE DELL'IMPIANTO BLUE TOWER NEI SUOI PARTICOLARI Tecnologia di base del processo produttivo. L’impianto Blue Tower parte innanzitutto da un processo produttivo che basa la sua efficienza su una tecnologia del tutto innovativa, poiché non solo procede alla gassificazione delle biomase, che di per sè rappresenta già una metodologia innovativa di conversione energetica in quanto amplifica l’utilizzabilità del combustibile, ma ritrova una straordinaria innovazione nel processo stesso di gassificazione e nei suoi prodotti e cioè nella composizione dei syngas che è in grado di produrre: volendo definire meglio la tecnologia di base del processo produttivo si deve innanzitutto partire dalla tecnologia di gassificazione che è di tipo • A letto fisso mobile con accumulo e trasporto di calore • Ad atmosfera ambiente • A due stadi • A mezzo di gassificazione vapore Esplicitando il tutto in modo più sintetico si può dire che si tratta di un processo di gassificazione allotermico (indiretto) basato sulla reformazione a stadi, che vede una fase in cui avviene la pirolisi del rifiuto ed una fase in cui i gas di pirolisi entrano in un reattore di reforming alimentato termicamente da vapore prodotto a partire dalla combustione del coke di pirolisi che viene anche recuperato attraverso un sitstema di accumulo e trasporto del calore che si base sulla movimentazione di un inerte argilloso granulare. Il recupero del calore e il processo di reforming riducono la diluizione dei gas di pirolisi rielevando il loro contenuto energetico e producendo syngas in cui è presente idrogeno in volume pari al 60%. Tale processo di gassificazione è sperimentato già da quattro anni in un pilota da 1500-2000 kWth costruito ad Herten in Germania dove sta mostrando efficacemente le sue straordinari potenzialità. I Syngas prodotti vanno incontro a tre sostanziali tipologie di utilizzazione: v la prima, che assicura la produzione nei primi anni di esercizio, vede dei motori a gas della Deutz o analoghi, testati in diversi contesti, dai gas di cokeria a quelli da fermentazione alcolica dei rifiuti urbani; v la seconda è del tutto sperimentale e vede una cella a combustibile tipo MCFC in grado di lavorare con gas reformati senza necessità di raffinare ulteriormente il prodotto del gassificatore. v la terza anch'essa sperimentale e vede una cella a combustibile tipo PEFC o analoga che processa idrogeno ricavato dal gas di sintesi attraverso una purificazione con sistema PSA Si noti infine che, essendo molto bassa la percentuale di TARS è possibile usare dei sistemi di pulizia a freddo. Ciclo produttivo e caratteristiche funzionali Il rifiuto depositato nel piazzale viene caricato nella tramoggia del trasportatore a tazze e attraversa l’unità di essiccazione (optional) sopra nastri trasportatori. Successivamente viene trasportato al reattore di pirolisi tramite una coclea passando attraverso un serbatoio di accumulo intermedio. Il rifiuto si mescola con il vettore termico proveniente caldo dagli stadi superiori dell’unità, e viene uniformemente distribuito all’interno del reattore di pirolisi, dove la termolisi avviene ad una temperatura di circa 500-550°C, accelerata dalla grande superficie di scambio del vettore termico. Nella zona più profonda del reattore avviene la pirolisi delle componenti più pesanti del rifiuto e di parte del rimanente carbone. Non c’è bisogno di ossigeno né di aria per fornire l’energia per la ossidazione parziale, in quanto tutto il calore necessario proviene dal vettore termico. Un flusso di
  • 9. vapore a bassa pressione proveniente dagli stadi inferiori dell’unità attraversa il letto, e insieme ai gas rilasciati durante il processo termico viene convogliato nello stadio di reforming. Nel reattore di reforming la maggior parte dei componenti più pesanti vengono reformati e crackati fino a diventare metano, CO2, CO, H2 grazie all’alto contenuto di H20 presente in fase di vapore. Dal momento che l’unità di reforming è costituita da un recipiente del tutto isolato, non è possibile il mescolamento con gas allo stato grezzo o con gas di pirolisi che non abbiano reagito (a differenza di quanto succede nei processi convenzionali, come ad esempio i reattori a letto fluido). Il gas in uscita risulta essere quasi totalmente depurato dagli idrocarburi più pesanti, ed è di buona qualità in quanto non c’è stata alcuna diluizione con azoto. Siccome il vettore termico deve fornire sufficiente calore (tra 500 e 1050°C) affinché i processi endotermici abbiano luogo, è necessario che venga preriscaldato in maniera adeguata. Questa fase viene espletata all’interno di un recipiente di preriscaldamento dove confluiscono i gas di scarico provenienti dalla combustione del carbone di pirolisi. Vagliando il vettore termico all’uscita del reattore di pirolisi con un setaccio meccanico si separa il vettore stesso dai prodotti carbonizzati. Il vettore ormai separato viene convogliato in cima alla torre di gassificazione. I gas di scarico che escono dal recipiente di preriscaldamento sono ancora caldi, e vengono quindi usati per preriscaldare l’aria comburente della camera di combustione del carbone di pirolisi, così da aumentare l’efficienza del sistema. Successivamente i gas di scarico vengono forzati attraverso filtri a maniche e trattati con adsorbenti (calce) per la depolverizzazione e la desulfurizzazione. Il sistema di ventilazione forzata rappresenta l’ultima sezione del trattamento dei gas di scarico a monte del camino. Il gas prodotto viene raffreddato con olio diatermico caldo in uno scambiatore di calore innovativo a piastre saldate e di facile pulitura, e successivamente lavato. L’acqua di condensazione proveniente dal sistema di lavaggio viene fatta evaporare in parte a spese del calore dell’olio diatermico, in modo da generare il vapore a bassa pressione necessario all’unità di reforming. La frazione residuale della condensa viene inviata alla camera di combustione. Il gas è quindi trattato con un deumidificatore-depolverizzatore elettrostatico e un lavaggio successivo (quenche) per ottenere un prodotto sufficientemente puro da poter essere utilizzato in motori a combustione interna. Per assicurare l’integrità dei motori viene installato un ulteriore filtro a carboni attivi ed un filtro fine subito a monte dei motori stessi, i motori sono equipaggiati con un sistema Denox per l'abbattimento degli Nox. Inoltre le fluttuazioni di pressione della linea gas sono smorzate da un volume di calma. La produzione di energia elettrica viene così affidata ad un sistema di motori a combustione interna della DEUTZ o equivalente in grado di usare i gas reformati in modo stabile e con un’efficienza del 39% restituendo così un’efficienza globale dell’impianto pari circa al 32%. Inoltre si può prevede di diramare una linea gas dedicata ad una cella a combustibile MCFC o alla PSA per la produzione di puro idrogeno. Acqua L’impianto consuma pochissima acqua. Non disponendo di un sistema di raffreddamento continuo e aperto limita in modo notevole l’uso di questa risorsa. I motori hanno un circuito di raffreddamento chiuso. Il sistema di pulizia dei gas usa acqua che viene poi concentrata in fanghi che vengono successivamente bruciati nel forno del sistema di gassificazione e recuperati insieme al calore a valle della combustione. Alla produzione di vapore si fa fronte condensando l’acqua presente nei syngas e vaporizzandola a 1,5 bar nel vaporizzatore. Poca acqua è necessaria per il make-up dell’elettrofiltro e del lavaggio per evitare la concentrazione di alghe e sporcizia nel circuito di lavaggio. Tranne poche quantità di spillamento fanghi (in casi eccezionali), l'impianto non produce acque reflue.