SlideShare a Scribd company logo
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
1
Small pelagic fisheries web portal
Historical catch and market analysis (SINTEF Ocean)
- Analysis of historical catch data
- Dependencies between prices,
season, location and species.
- Used for planning when and
where to fish for the various
species, to optimize value.
- Data (2012 - ):
- Small pelagic catches
- Trade information
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
2
Small pelagic fisheries web portal
Historical catch and environment analysis (SINTEF Ocean)
- Analysis of how historical catches
has depended on environmental
factors.
- Investigate covariance between
catches and e.g. zooplankton
concentrations.
- Data (2012 -):
- Small pelagic catches
- Earth observations
- Meteorological simulations
- Oceanographic and biomarine
simulations.
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
3
Small pelagic fisheries web portal
Marine environment forecasts
- Forecasts for the marine
environment.
- Supports choice of fishing
grounds for the next days.
- Data (the last days):
- Earth observations
- Meteorological simulations
- Oceanographic and
biomarine simulations.
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
4
Oceanic tuna fisheries planning
Tuna fisheries and Copernicus meteogeobiochemical data in
the Indian Ocean
Jose A. Fernandes, Igor Granado, Iñaki Quincoces
Conceptual diagram of data and components flow
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
5
Oceanic tuna fisheries planning
Conceptual diagram of forecasting model based on pipeline of
supervised classification methods (Fernandes et al., 2010)
Jose A. Fernandes, Igor Granado, Iñaki Quincoces
Example of species distribution probabilistic forecast based on
Copernicus environmental data and fishing events
Satellite data Vessel data
Probabilistic
forecasting
Performance:
• Absence accuracy: ~ 80% (what to avoid)
• High biomass false positive: ~25% (where to go)
• Vessels fuel reduction achieved by a tuna company
vessels during DataBio project is between 4% and
30% with a 19% reduction on average
Fernandes. J.A., Quincoces, I., Fradua, G, Ruiz, J., Lopez, J., Murua, H., Inza, I., Lozano, J.A., Irigoien, X., Santiago,
J. Fishery pilot B1: Planning of oceanic tuna fisheries - Arrantza B1 kasua: Atun tropikalaren arrantza plangintza.
DataBio general assembly 02 (Helsinki), 27-29 June, DOI: 10.13140/RG.2.2.22519.32165.
Fernandes J.A., Irigoien X., Goikoetxea N., Lozano J.A., Inza I., Pérez A, Bode A. (2010) Fish recruitment
prediction, using robust supervised classification methods. Ecol. Model. 221(2): 338-352.
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
6
Open catch data:
• All catches last 20 years
• Coarse in location and time
(catch zones /landing time)
• No catch value
WP4: Team Fish: Machine learning of best
catch locations in open and private data
Private catch data:
• One fishery company
• Precise location and times
(catch position and time)
• Catch value
ML Objective: Predict best daily catch location
• Focus on best vessels/captains for a specific fishery
• Model comparison for open vs private data
=> Same fish species and vessel class (cod & trawlers)
=> Test same MPC model (LOESS) on both data sets
• Later: Best model per dataset and optimal combination
MPC: Multi-Party-Computation using CYBERNETICA Sharemind
Fisheries analytics and prediction models can be trained on the union
of open and sensitive data sets from multiple users:
… without exposing the private data sets to each-other
… collation & linking with open data can be done once
… less total work resultinging in better models for fisheries
This document is part of a project that has received funding
from the European Union’s Horizon 2020 research and innovation programme
under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or
7
WP4: Team CODeFish: Open + Private Catch
Data Analytics & SINTIUM Visualisation
• Open Norwegian
catch data (20years)
• Catch data drill down
• Species, tools, time,
weight, volume
• Copernicus (CMEMS):
• Currents (animated)
• Sea Surface
Temperature
• Live AIS
• Vessel positions
• Machine learning
• Fishing activity from
live AIS by Global
Fishing Watch ML
model
• Catch prediction from
private data (whitefish
data)

More Related Content

Similar to DataBio pilot – Fishery pilot

Big data and ai enhance production of bio resources. Aamu areena Caj Södergå...
Big data and ai enhance production of bio resources.  Aamu areena Caj Södergå...Big data and ai enhance production of bio resources.  Aamu areena Caj Södergå...
Big data and ai enhance production of bio resources. Aamu areena Caj Södergå...
Caj Södergård
 
Defra: Data Round Table
Defra: Data Round TableDefra: Data Round Table
Defra: Data Round Table
Alex Coley
 
Fostering global data management with public tuna fisheries data
Fostering global data management with public tuna fisheries dataFostering global data management with public tuna fisheries data
Fostering global data management with public tuna fisheries data
Blue BRIDGE
 
GBIF Work Programme 2016 Update
GBIF Work Programme 2016 UpdateGBIF Work Programme 2016 Update
GBIF Work Programme 2016 Update
Alberto González-Talaván
 
Iot and big data technologies for bio industry data bio
Iot and big data technologies for bio industry   data bioIot and big data technologies for bio industry   data bio
Iot and big data technologies for bio industry data bio
WirelessInfo
 
Developing the field of Biodiversity Informatics in South Africa through the ...
Developing the field of Biodiversity Informatics in South Africa through the ...Developing the field of Biodiversity Informatics in South Africa through the ...
Developing the field of Biodiversity Informatics in South Africa through the ...
Fatima Parker-Allie
 
CBIT-Forest (Uganda)
CBIT-Forest (Uganda)CBIT-Forest (Uganda)
CBIT-Forest (Uganda)
Rocio Danica Condor-Golec
 
The BlueBRIDGE Project - Pasquale Pagano
The BlueBRIDGE Project - Pasquale PaganoThe BlueBRIDGE Project - Pasquale Pagano
The BlueBRIDGE Project - Pasquale Pagano
Blue BRIDGE
 
CBIT-Forest Thailand
CBIT-Forest ThailandCBIT-Forest Thailand
CBIT-Forest Thailand
Rocio Danica Condor-Golec
 
Gaynor Evans: Marine Environmental Data and Information Network
Gaynor Evans: Marine Environmental Data and Information NetworkGaynor Evans: Marine Environmental Data and Information Network
Gaynor Evans: Marine Environmental Data and Information Network
AGI Geocommunity
 
Introduction to the GSDI Marine SDI Best Practice Webinar
Introduction to the GSDI Marine SDI Best Practice WebinarIntroduction to the GSDI Marine SDI Best Practice Webinar
Introduction to the GSDI Marine SDI Best Practice Webinar
GSDI Association
 
Toward equitable distribution of REDD+ finance
Toward equitable distribution of REDD+ financeToward equitable distribution of REDD+ finance
Toward equitable distribution of REDD+ finance
Global Landscapes Forum (GLF)
 
eROSA Policy WS1: Databio Project Overview
eROSA Policy WS1: Databio Project OvervieweROSA Policy WS1: Databio Project Overview
eROSA Policy WS1: Databio Project Overview
e-ROSA
 
BDE SC2 Workshop 3: DataBio
BDE SC2 Workshop 3: DataBioBDE SC2 Workshop 3: DataBio
BDE SC2 Workshop 3: DataBio
BigData_Europe
 
Data bio big data worksop Brussels
Data bio big data worksop BrusselsData bio big data worksop Brussels
Data bio big data worksop Brussels
WirelessInfo
 
Forestry Pilot
Forestry PilotForestry Pilot
Joint GBIF Biodiversa+ symposium in Helsinki on 2024-04-16
Joint GBIF Biodiversa+ symposium in  Helsinki on 2024-04-16Joint GBIF Biodiversa+ symposium in  Helsinki on 2024-04-16
Joint GBIF Biodiversa+ symposium in Helsinki on 2024-04-16
Dag Endresen
 
H2020 big data and fiware an d iot
H2020 big data and fiware an d iotH2020 big data and fiware an d iot
H2020 big data and fiware an d iot
WirelessInfo
 
Towards a more equitable distribution of REDD+ finance
Towards a more equitable distribution of REDD+ financeTowards a more equitable distribution of REDD+ finance
Towards a more equitable distribution of REDD+ finance
Global Landscapes Forum (GLF)
 
Ocean Data Factory - Application for Funding
Ocean Data Factory - Application for FundingOcean Data Factory - Application for Funding
Ocean Data Factory - Application for Funding
Robin Teigland
 

Similar to DataBio pilot – Fishery pilot (20)

Big data and ai enhance production of bio resources. Aamu areena Caj Södergå...
Big data and ai enhance production of bio resources.  Aamu areena Caj Södergå...Big data and ai enhance production of bio resources.  Aamu areena Caj Södergå...
Big data and ai enhance production of bio resources. Aamu areena Caj Södergå...
 
Defra: Data Round Table
Defra: Data Round TableDefra: Data Round Table
Defra: Data Round Table
 
Fostering global data management with public tuna fisheries data
Fostering global data management with public tuna fisheries dataFostering global data management with public tuna fisheries data
Fostering global data management with public tuna fisheries data
 
GBIF Work Programme 2016 Update
GBIF Work Programme 2016 UpdateGBIF Work Programme 2016 Update
GBIF Work Programme 2016 Update
 
Iot and big data technologies for bio industry data bio
Iot and big data technologies for bio industry   data bioIot and big data technologies for bio industry   data bio
Iot and big data technologies for bio industry data bio
 
Developing the field of Biodiversity Informatics in South Africa through the ...
Developing the field of Biodiversity Informatics in South Africa through the ...Developing the field of Biodiversity Informatics in South Africa through the ...
Developing the field of Biodiversity Informatics in South Africa through the ...
 
CBIT-Forest (Uganda)
CBIT-Forest (Uganda)CBIT-Forest (Uganda)
CBIT-Forest (Uganda)
 
The BlueBRIDGE Project - Pasquale Pagano
The BlueBRIDGE Project - Pasquale PaganoThe BlueBRIDGE Project - Pasquale Pagano
The BlueBRIDGE Project - Pasquale Pagano
 
CBIT-Forest Thailand
CBIT-Forest ThailandCBIT-Forest Thailand
CBIT-Forest Thailand
 
Gaynor Evans: Marine Environmental Data and Information Network
Gaynor Evans: Marine Environmental Data and Information NetworkGaynor Evans: Marine Environmental Data and Information Network
Gaynor Evans: Marine Environmental Data and Information Network
 
Introduction to the GSDI Marine SDI Best Practice Webinar
Introduction to the GSDI Marine SDI Best Practice WebinarIntroduction to the GSDI Marine SDI Best Practice Webinar
Introduction to the GSDI Marine SDI Best Practice Webinar
 
Toward equitable distribution of REDD+ finance
Toward equitable distribution of REDD+ financeToward equitable distribution of REDD+ finance
Toward equitable distribution of REDD+ finance
 
eROSA Policy WS1: Databio Project Overview
eROSA Policy WS1: Databio Project OvervieweROSA Policy WS1: Databio Project Overview
eROSA Policy WS1: Databio Project Overview
 
BDE SC2 Workshop 3: DataBio
BDE SC2 Workshop 3: DataBioBDE SC2 Workshop 3: DataBio
BDE SC2 Workshop 3: DataBio
 
Data bio big data worksop Brussels
Data bio big data worksop BrusselsData bio big data worksop Brussels
Data bio big data worksop Brussels
 
Forestry Pilot
Forestry PilotForestry Pilot
Forestry Pilot
 
Joint GBIF Biodiversa+ symposium in Helsinki on 2024-04-16
Joint GBIF Biodiversa+ symposium in  Helsinki on 2024-04-16Joint GBIF Biodiversa+ symposium in  Helsinki on 2024-04-16
Joint GBIF Biodiversa+ symposium in Helsinki on 2024-04-16
 
H2020 big data and fiware an d iot
H2020 big data and fiware an d iotH2020 big data and fiware an d iot
H2020 big data and fiware an d iot
 
Towards a more equitable distribution of REDD+ finance
Towards a more equitable distribution of REDD+ financeTowards a more equitable distribution of REDD+ finance
Towards a more equitable distribution of REDD+ finance
 
Ocean Data Factory - Application for Funding
Ocean Data Factory - Application for FundingOcean Data Factory - Application for Funding
Ocean Data Factory - Application for Funding
 

More from Big Data Value Association

Data Privacy, Security in personal data sharing
Data Privacy, Security in personal data sharingData Privacy, Security in personal data sharing
Data Privacy, Security in personal data sharing
Big Data Value Association
 
Key Modules for a trsuted and privacy preserving personal data marketplace
Key Modules for a trsuted and privacy preserving personal data marketplaceKey Modules for a trsuted and privacy preserving personal data marketplace
Key Modules for a trsuted and privacy preserving personal data marketplace
Big Data Value Association
 
GDPR and Data Ethics considerations in personal data sharing
GDPR and Data Ethics considerations in personal data sharingGDPR and Data Ethics considerations in personal data sharing
GDPR and Data Ethics considerations in personal data sharing
Big Data Value Association
 
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
Big Data Value Association
 
Three pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
Three pillars for building a Smart Data Ecosystem: Trust, Security and PrivacyThree pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
Three pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
Big Data Value Association
 
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
Big Data Value Association
 
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
Big Data Value Association
 
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
Big Data Value Association
 
BDV Skills Accreditation - EIT labels for professionals
BDV Skills Accreditation - EIT labels for professionalsBDV Skills Accreditation - EIT labels for professionals
BDV Skills Accreditation - EIT labels for professionals
Big Data Value Association
 
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
Big Data Value Association
 
BDV Skills Accreditation - Objectives of the workshop
BDV Skills Accreditation - Objectives of the workshopBDV Skills Accreditation - Objectives of the workshop
BDV Skills Accreditation - Objectives of the workshop
Big Data Value Association
 
BDV Skills Accreditation - Welcome introduction to the workshop
BDV Skills Accreditation - Welcome introduction to the workshopBDV Skills Accreditation - Welcome introduction to the workshop
BDV Skills Accreditation - Welcome introduction to the workshop
Big Data Value Association
 
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
Big Data Value Association
 
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector WebinarBigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
Big Data Value Association
 
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector WebinarBigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
Big Data Value Association
 
Virtual BenchLearning - Data Bench Framework
Virtual BenchLearning - Data Bench FrameworkVirtual BenchLearning - Data Bench Framework
Virtual BenchLearning - Data Bench Framework
Big Data Value Association
 
Virtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
Virtual BenchLearning - DeepHealth - Needs & Requirements for BenchmarkingVirtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
Virtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
Big Data Value Association
 
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
Big Data Value Association
 
Policy Cloud Data Driven Policies against Radicalisation - Technical Overview
Policy Cloud Data Driven Policies against Radicalisation - Technical OverviewPolicy Cloud Data Driven Policies against Radicalisation - Technical Overview
Policy Cloud Data Driven Policies against Radicalisation - Technical Overview
Big Data Value Association
 
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
Big Data Value Association
 

More from Big Data Value Association (20)

Data Privacy, Security in personal data sharing
Data Privacy, Security in personal data sharingData Privacy, Security in personal data sharing
Data Privacy, Security in personal data sharing
 
Key Modules for a trsuted and privacy preserving personal data marketplace
Key Modules for a trsuted and privacy preserving personal data marketplaceKey Modules for a trsuted and privacy preserving personal data marketplace
Key Modules for a trsuted and privacy preserving personal data marketplace
 
GDPR and Data Ethics considerations in personal data sharing
GDPR and Data Ethics considerations in personal data sharingGDPR and Data Ethics considerations in personal data sharing
GDPR and Data Ethics considerations in personal data sharing
 
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
Intro - Three pillars for building a Smart Data Ecosystem: Trust, Security an...
 
Three pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
Three pillars for building a Smart Data Ecosystem: Trust, Security and PrivacyThree pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
Three pillars for building a Smart Data Ecosystem: Trust, Security and Privacy
 
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
Market into context - Three pillars for building a Smart Data Ecosystem: Trus...
 
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
BDV Skills Accreditation - Future of digital skills in Europe reskilling and ...
 
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
BDV Skills Accreditation - Big Data skilling in Emilia-Romagna
 
BDV Skills Accreditation - EIT labels for professionals
BDV Skills Accreditation - EIT labels for professionalsBDV Skills Accreditation - EIT labels for professionals
BDV Skills Accreditation - EIT labels for professionals
 
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
BDV Skills Accreditation - Recognizing Data Science Skills with BDV Data Scie...
 
BDV Skills Accreditation - Objectives of the workshop
BDV Skills Accreditation - Objectives of the workshopBDV Skills Accreditation - Objectives of the workshop
BDV Skills Accreditation - Objectives of the workshop
 
BDV Skills Accreditation - Welcome introduction to the workshop
BDV Skills Accreditation - Welcome introduction to the workshopBDV Skills Accreditation - Welcome introduction to the workshop
BDV Skills Accreditation - Welcome introduction to the workshop
 
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
BDV Skills Accreditation - Definition and ensuring of digital roles and compe...
 
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector WebinarBigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
BigDataPilotDemoDays - I BiDaaS Application to the Manufacturing Sector Webinar
 
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector WebinarBigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
BigDataPilotDemoDays - I-BiDaaS Application to the Financial Sector Webinar
 
Virtual BenchLearning - Data Bench Framework
Virtual BenchLearning - Data Bench FrameworkVirtual BenchLearning - Data Bench Framework
Virtual BenchLearning - Data Bench Framework
 
Virtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
Virtual BenchLearning - DeepHealth - Needs & Requirements for BenchmarkingVirtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
Virtual BenchLearning - DeepHealth - Needs & Requirements for Benchmarking
 
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
Virtual BenchLearning - I-BiDaaS - Industrial-Driven Big Data as a Self-Servi...
 
Policy Cloud Data Driven Policies against Radicalisation - Technical Overview
Policy Cloud Data Driven Policies against Radicalisation - Technical OverviewPolicy Cloud Data Driven Policies against Radicalisation - Technical Overview
Policy Cloud Data Driven Policies against Radicalisation - Technical Overview
 
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
Policy Cloud Data Driven Policies against Radicalisation - Participatory poli...
 

Recently uploaded

一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
hyfjgavov
 
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
Timothy Spann
 
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Aggregage
 
Intelligence supported media monitoring in veterinary medicine
Intelligence supported media monitoring in veterinary medicineIntelligence supported media monitoring in veterinary medicine
Intelligence supported media monitoring in veterinary medicine
AndrzejJarynowski
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
exukyp
 
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data LakeViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
Walaa Eldin Moustafa
 
DSSML24_tspann_CodelessGenerativeAIPipelines
DSSML24_tspann_CodelessGenerativeAIPipelinesDSSML24_tspann_CodelessGenerativeAIPipelines
DSSML24_tspann_CodelessGenerativeAIPipelines
Timothy Spann
 
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
a9qfiubqu
 
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
taqyea
 
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
Social Samosa
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
AlessioFois2
 
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
v7oacc3l
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
bmucuha
 
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
y3i0qsdzb
 
Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
Márton Kodok
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Kiwi Creative
 
Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024
ElizabethGarrettChri
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
nyfuhyz
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
jitskeb
 
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Kaxil Naik
 

Recently uploaded (20)

一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
 
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
 
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
Beyond the Basics of A/B Tests: Highly Innovative Experimentation Tactics You...
 
Intelligence supported media monitoring in veterinary medicine
Intelligence supported media monitoring in veterinary medicineIntelligence supported media monitoring in veterinary medicine
Intelligence supported media monitoring in veterinary medicine
 
UofT毕业证如何办理
UofT毕业证如何办理UofT毕业证如何办理
UofT毕业证如何办理
 
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data LakeViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
ViewShift: Hassle-free Dynamic Policy Enforcement for Every Data Lake
 
DSSML24_tspann_CodelessGenerativeAIPipelines
DSSML24_tspann_CodelessGenerativeAIPipelinesDSSML24_tspann_CodelessGenerativeAIPipelines
DSSML24_tspann_CodelessGenerativeAIPipelines
 
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
原版一比一弗林德斯大学毕业证(Flinders毕业证书)如何办理
 
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
一比一原版(harvard毕业证书)哈佛大学毕业证如何办理
 
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
4th Modern Marketing Reckoner by MMA Global India & Group M: 60+ experts on W...
 
A presentation that explain the Power BI Licensing
A presentation that explain the Power BI LicensingA presentation that explain the Power BI Licensing
A presentation that explain the Power BI Licensing
 
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
在线办理(英国UCA毕业证书)创意艺术大学毕业证在读证明一模一样
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
 
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
一比一原版巴斯大学毕业证(Bath毕业证书)学历如何办理
 
Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
 
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging DataPredictably Improve Your B2B Tech Company's Performance by Leveraging Data
Predictably Improve Your B2B Tech Company's Performance by Leveraging Data
 
Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024
 
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
一比一原版(UMN文凭证书)明尼苏达大学毕业证如何办理
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
 
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
Orchestrating the Future: Navigating Today's Data Workflow Challenges with Ai...
 

DataBio pilot – Fishery pilot

  • 1. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 1 Small pelagic fisheries web portal Historical catch and market analysis (SINTEF Ocean) - Analysis of historical catch data - Dependencies between prices, season, location and species. - Used for planning when and where to fish for the various species, to optimize value. - Data (2012 - ): - Small pelagic catches - Trade information
  • 2. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 2 Small pelagic fisheries web portal Historical catch and environment analysis (SINTEF Ocean) - Analysis of how historical catches has depended on environmental factors. - Investigate covariance between catches and e.g. zooplankton concentrations. - Data (2012 -): - Small pelagic catches - Earth observations - Meteorological simulations - Oceanographic and biomarine simulations.
  • 3. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 3 Small pelagic fisheries web portal Marine environment forecasts - Forecasts for the marine environment. - Supports choice of fishing grounds for the next days. - Data (the last days): - Earth observations - Meteorological simulations - Oceanographic and biomarine simulations.
  • 4. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 4 Oceanic tuna fisheries planning Tuna fisheries and Copernicus meteogeobiochemical data in the Indian Ocean Jose A. Fernandes, Igor Granado, Iñaki Quincoces Conceptual diagram of data and components flow
  • 5. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 5 Oceanic tuna fisheries planning Conceptual diagram of forecasting model based on pipeline of supervised classification methods (Fernandes et al., 2010) Jose A. Fernandes, Igor Granado, Iñaki Quincoces Example of species distribution probabilistic forecast based on Copernicus environmental data and fishing events Satellite data Vessel data Probabilistic forecasting Performance: • Absence accuracy: ~ 80% (what to avoid) • High biomass false positive: ~25% (where to go) • Vessels fuel reduction achieved by a tuna company vessels during DataBio project is between 4% and 30% with a 19% reduction on average Fernandes. J.A., Quincoces, I., Fradua, G, Ruiz, J., Lopez, J., Murua, H., Inza, I., Lozano, J.A., Irigoien, X., Santiago, J. Fishery pilot B1: Planning of oceanic tuna fisheries - Arrantza B1 kasua: Atun tropikalaren arrantza plangintza. DataBio general assembly 02 (Helsinki), 27-29 June, DOI: 10.13140/RG.2.2.22519.32165. Fernandes J.A., Irigoien X., Goikoetxea N., Lozano J.A., Inza I., Pérez A, Bode A. (2010) Fish recruitment prediction, using robust supervised classification methods. Ecol. Model. 221(2): 338-352.
  • 6. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 6 Open catch data: • All catches last 20 years • Coarse in location and time (catch zones /landing time) • No catch value WP4: Team Fish: Machine learning of best catch locations in open and private data Private catch data: • One fishery company • Precise location and times (catch position and time) • Catch value ML Objective: Predict best daily catch location • Focus on best vessels/captains for a specific fishery • Model comparison for open vs private data => Same fish species and vessel class (cod & trawlers) => Test same MPC model (LOESS) on both data sets • Later: Best model per dataset and optimal combination MPC: Multi-Party-Computation using CYBERNETICA Sharemind Fisheries analytics and prediction models can be trained on the union of open and sensitive data sets from multiple users: … without exposing the private data sets to each-other … collation & linking with open data can be done once … less total work resultinging in better models for fisheries
  • 7. This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 732064. It is the property of the DataBio consortium and shall not be distributed or 7 WP4: Team CODeFish: Open + Private Catch Data Analytics & SINTIUM Visualisation • Open Norwegian catch data (20years) • Catch data drill down • Species, tools, time, weight, volume • Copernicus (CMEMS): • Currents (animated) • Sea Surface Temperature • Live AIS • Vessel positions • Machine learning • Fishing activity from live AIS by Global Fishing Watch ML model • Catch prediction from private data (whitefish data)