Embed presentation
Download to read offline

![Follow On www.1stepgrow.com
df = pd.DataFrame(
{"a" : [4 ,5, 6],
"b" : [7, 8, 9],
"c" : [10, 11, 12]},
index = [1, 2, 3])
Specify values for each column.](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-2-320.jpg)
![Follow On www.1stepgrow.com
df = pd.DataFrame(
Specify values for each row.
[[4, 7, 10],
[5, 8, 11],
[6, 9, 12]],
index=[1, 2, 3],
columns=['a', 'b', 'c'])](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-3-320.jpg)
![Follow On www.1stepgrow.com
df = pd.DataFrame(
index = pd.MultiIndex.from_tuples(
{"a" : [4 ,5, 6],
"b" : [7, 8, 9],
"c" : [10, 11, 12]},
Create DataFrame with a MultiIndex
[('d',1),('d',2),('e',2)],
names=['n','v']))](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-4-320.jpg)


The document provides a guide on creating pandas DataFrames using different specifications for rows and columns. It discusses methods to set values for DataFrame elements and highlights the creation of a multi-index DataFrame. The document ends by encouraging readers to engage with the content on social media.

![Follow On www.1stepgrow.com
df = pd.DataFrame(
{"a" : [4 ,5, 6],
"b" : [7, 8, 9],
"c" : [10, 11, 12]},
index = [1, 2, 3])
Specify values for each column.](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-2-320.jpg)
![Follow On www.1stepgrow.com
df = pd.DataFrame(
Specify values for each row.
[[4, 7, 10],
[5, 8, 11],
[6, 9, 12]],
index=[1, 2, 3],
columns=['a', 'b', 'c'])](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-3-320.jpg)
![Follow On www.1stepgrow.com
df = pd.DataFrame(
index = pd.MultiIndex.from_tuples(
{"a" : [4 ,5, 6],
"b" : [7, 8, 9],
"c" : [10, 11, 12]},
Create DataFrame with a MultiIndex
[('d',1),('d',2),('e',2)],
names=['n','v']))](https://image.slidesharecdn.com/datawranglingwithpandascheatsheetpart1-250204121445-83effea7/85/Data-Wrangling-with-pandas-Cheat-Sheet-part-1-pdf-4-320.jpg)
