This document provides an overview of linear programming, including its history, key components, assumptions, and applications. Linear programming involves maximizing or minimizing a linear objective function subject to linear constraints. It was developed in 1947 and can be used to optimize problems involving allocation of limited resources. The key components of a linear programming problem are the objective function, decision variables, constraints, and parameters. It makes assumptions of proportionality, additivity, continuity, determinism, and finite choices. Common applications of linear programming include production planning, facility location, and transportation problems.