Binary and Hexidecimal
 Learning how to count in different bases
Decimal - Base 10


From the Latin, "decimus" meaning
             "tenth"

 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Binary - Base 2


From the Latin, "binarius" meaning
       "consisting of two"

           Digits: 0, 1
Hexadecimal - Base 16


         In Greek, "hexa" means "six"

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Adding Binary

                0001 0111
             + 0000 0011



 Any time you add 1+1, then you carry
the result into the next column like you
  would if you reached 10 in decimal.
Adding Binary
             1
      0001 0111
   + 0000 0011
              0
Adding Binary
            1
      0001 0111
   + 0000 0011
             10
Adding Binary
           1
      0001 0111
   + 0000 0011
           010
Adding Binary

      0001 0111
   + 0000 0011
          1010
Adding Binary

      0001 0111
   + 0000 0011
         1 1010
Adding Binary

      0001 0111
   + 0000 0011
     0001 1010
Binary    Decimal   Hex     Binary    Decimal   Hex     Binary    Decimal   Hex

00000000     0       0000   00010000     16      0010   00100000     32      0020

00000001      1      0001   00010001     17      0011   00100001     33      0021

00000010     2       0002   00010010     18      0012   00100010     34      0022

00000011     3       0003   00010011     19      0013   00100011     35      0023

00000100     4       0004   00010100     20      0014   00100100     36      0024

00000101     5       0005   00010101     21      0015   00100101     37      0025

00000110     6       0006   00010110     22      0016   00100110     38      0026

00000111     7       0007   00010111     23      0017   00100111     39      0027

00001000     8       0008   00011000     24      0018   00101000     40      0028

00001001     9       0009   00011001     25      0019   00101001     41      0029

00001010     10      000A   00011010     26      001A   00101010     42      002A

00001011     11      000B   00011011     27      001B   00101011     43      002B

00001100     12      000C   00011100     28      001C   00101100     44      002C

00001101     13      000D   00011101     29      001D   00101101     45      002D

00001110     14      000E   00011110     30      001E   00101110     46      002E

00001111     15      000F   00011111     31      001F   00101111     47      002F

Binary & Hexadecimal

  • 1.
    Binary and Hexidecimal Learning how to count in different bases
  • 2.
    Decimal - Base10 From the Latin, "decimus" meaning "tenth" Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
  • 3.
    Binary - Base2 From the Latin, "binarius" meaning "consisting of two" Digits: 0, 1
  • 4.
    Hexadecimal - Base16 In Greek, "hexa" means "six" Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
  • 5.
    Adding Binary 0001 0111 + 0000 0011 Any time you add 1+1, then you carry the result into the next column like you would if you reached 10 in decimal.
  • 6.
    Adding Binary 1 0001 0111 + 0000 0011 0
  • 7.
    Adding Binary 1 0001 0111 + 0000 0011 10
  • 8.
    Adding Binary 1 0001 0111 + 0000 0011 010
  • 9.
    Adding Binary 0001 0111 + 0000 0011 1010
  • 10.
    Adding Binary 0001 0111 + 0000 0011 1 1010
  • 11.
    Adding Binary 0001 0111 + 0000 0011 0001 1010
  • 12.
    Binary Decimal Hex Binary Decimal Hex Binary Decimal Hex 00000000 0 0000 00010000 16 0010 00100000 32 0020 00000001 1 0001 00010001 17 0011 00100001 33 0021 00000010 2 0002 00010010 18 0012 00100010 34 0022 00000011 3 0003 00010011 19 0013 00100011 35 0023 00000100 4 0004 00010100 20 0014 00100100 36 0024 00000101 5 0005 00010101 21 0015 00100101 37 0025 00000110 6 0006 00010110 22 0016 00100110 38 0026 00000111 7 0007 00010111 23 0017 00100111 39 0027 00001000 8 0008 00011000 24 0018 00101000 40 0028 00001001 9 0009 00011001 25 0019 00101001 41 0029 00001010 10 000A 00011010 26 001A 00101010 42 002A 00001011 11 000B 00011011 27 001B 00101011 43 002B 00001100 12 000C 00011100 28 001C 00101100 44 002C 00001101 13 000D 00011101 29 001D 00101101 45 002D 00001110 14 000E 00011110 30 001E 00101110 46 002E 00001111 15 000F 00011111 31 001F 00101111 47 002F

Editor's Notes