Subspaces associated
with a Matrix
Hung-yi Lee
Reference
• Textbook: Chapter 4.3
Three Associated Subspaces
• A is an m x n matrix
Basis? Dimension?
Col A Null A Row A
in Rm in Rn in Rn
= Col AT
A
A
Zero
vector
range
Zero
vector
Col A
• Basis: The pivot columns of A form a basis for Col A.
• Dimension:
 Col A = Span
pivot columns pivot columns
Dim (Col A) = number of pivot columns
= rank A
Rank A (revisit)
Maximum number of Independent Columns
Number of Pivot Columns
Number of Non-zero rows
Number of Basic Variables
Dim (Col A): dimension of column space
Dimension of the range of A
Null A
• Basis:
• Solving Ax = 0
• Each free variable in the parametric representation of
the general solution is multiplied by a vector.
• The vectors form the basis.
𝐴 =
3
1
−5
−2
1
0
−2
−1
−2
1
5
3
1
0
−5
2
5
1
−3
−10
𝑅 =
1
0
0
0
0
1
0
0
1
−5
0
0
0
0
1
0
1
4
−2
0
𝑥1 + 𝑥3 + 𝑥5 = 0
𝑥2 − 5𝑥3 + 4𝑥5 = 0
𝑥4 − 2𝑥5 = 0
𝑥1 = −𝑥3 − 𝑥5
𝑥2 = 5𝑥3 − 4𝑥5
𝑥4 = 2𝑥5
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
= 𝑥3
−1
5
1
0
0
+ 𝑥5
−1
−4
0
2
1
𝑥3 = 𝑥3
𝑥5 = 𝑥5
Example 2, P256
Basis
(free)
(free)
Null A
• Basis:
• Solving Ax = 0
• Each free variable in the parametric representation of
the general solution is multiplied by a vector.
• The vectors form the basis.
• Dimension:
Dim (Null A) = number of free variables
= Nullity A
= n - Rank A
Row A
• Basis: Nonzero rows of RREF(A)
• Dimension:
RREF
a basis of Row R
R=
Row A = Row R
(The elementary row operations
do not change the row space.)
= a basis of Row A
Dim (Row A) = Number of Nonzero rows
= Rank A
Rank A (revisit)
Maximum number of Independent Columns
Number of Pivot Column
Number of Non-zero rows
Number of Basic Variables
Dim (Col A): dimension of column space
Dimension of the range of A
= Dim (Row A)
= Dim (Col AT)
Rank A = Rank AT
• Proof
= Dim (Row A)
= Dim (Col AT)
Rank A
Rank A = Dim (Col A)
= Rank AT
Dimension Theorem
Dim of Range Dim of Null Dim of Domain
A
A
range
+ =
Dim (Col A) Dim (Null A) If A is mxn
=Rank A =n - Rank A Dim (Rn) =n
Summary
Col A
Null A
Row A
Rank A
Nullity A
Rank A
= n - Rank A
A is an m x n matrix
Dimension Basis
The pivot columns of A
The vectors in the
parametric representation
of the solution of Ax=0
The nonzero rows of the
RREF of A

associated.pptx for the vector spaces and subspaes

  • 1.
    Subspaces associated with aMatrix Hung-yi Lee
  • 2.
  • 3.
    Three Associated Subspaces •A is an m x n matrix Basis? Dimension? Col A Null A Row A in Rm in Rn in Rn = Col AT A A Zero vector range Zero vector
  • 4.
    Col A • Basis:The pivot columns of A form a basis for Col A. • Dimension:  Col A = Span pivot columns pivot columns Dim (Col A) = number of pivot columns = rank A
  • 5.
    Rank A (revisit) Maximumnumber of Independent Columns Number of Pivot Columns Number of Non-zero rows Number of Basic Variables Dim (Col A): dimension of column space Dimension of the range of A
  • 6.
    Null A • Basis: •Solving Ax = 0 • Each free variable in the parametric representation of the general solution is multiplied by a vector. • The vectors form the basis. 𝐴 = 3 1 −5 −2 1 0 −2 −1 −2 1 5 3 1 0 −5 2 5 1 −3 −10 𝑅 = 1 0 0 0 0 1 0 0 1 −5 0 0 0 0 1 0 1 4 −2 0 𝑥1 + 𝑥3 + 𝑥5 = 0 𝑥2 − 5𝑥3 + 4𝑥5 = 0 𝑥4 − 2𝑥5 = 0 𝑥1 = −𝑥3 − 𝑥5 𝑥2 = 5𝑥3 − 4𝑥5 𝑥4 = 2𝑥5 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 = 𝑥3 −1 5 1 0 0 + 𝑥5 −1 −4 0 2 1 𝑥3 = 𝑥3 𝑥5 = 𝑥5 Example 2, P256 Basis (free) (free)
  • 7.
    Null A • Basis: •Solving Ax = 0 • Each free variable in the parametric representation of the general solution is multiplied by a vector. • The vectors form the basis. • Dimension: Dim (Null A) = number of free variables = Nullity A = n - Rank A
  • 8.
    Row A • Basis:Nonzero rows of RREF(A) • Dimension: RREF a basis of Row R R= Row A = Row R (The elementary row operations do not change the row space.) = a basis of Row A Dim (Row A) = Number of Nonzero rows = Rank A
  • 9.
    Rank A (revisit) Maximumnumber of Independent Columns Number of Pivot Column Number of Non-zero rows Number of Basic Variables Dim (Col A): dimension of column space Dimension of the range of A = Dim (Row A) = Dim (Col AT)
  • 10.
    Rank A =Rank AT • Proof = Dim (Row A) = Dim (Col AT) Rank A Rank A = Dim (Col A) = Rank AT
  • 11.
    Dimension Theorem Dim ofRange Dim of Null Dim of Domain A A range + = Dim (Col A) Dim (Null A) If A is mxn =Rank A =n - Rank A Dim (Rn) =n
  • 12.
    Summary Col A Null A RowA Rank A Nullity A Rank A = n - Rank A A is an m x n matrix Dimension Basis The pivot columns of A The vectors in the parametric representation of the solution of Ax=0 The nonzero rows of the RREF of A

Editor's Notes

  • #7 Give an example here