SlideShare a Scribd company logo
Der Spagat zwischen
Bias und Fairness
#WISSENTEILEN
Lars Röwekamp | @mobileLarson
@mobileLarson
CIO New Technologies
OPEN KNOWLEDGE
Lars Röwekamp
(Architecture, Microservices, Cloud, AI & ML)
„The good,
the bad,
and
the ugly?“
https://www.bmc.com
„... is a phenomenon that
skews the result of an algorithm
in favor or against an idea.“
Bias
Y
X
Bias-Variance Tradeoff
BIAS: Difference between the
average prediction of the model
and the correct value.
VARIANCE: The variablility of
model prediction for a given
data point.
Y
X
Bias-Variance Tradeoff
HIGH BIAS & LOW VARIANCE:
Oversimplified and under-fitted
model. High error on training
and high error on test data.
Y
X
Bias-Variance Tradeoff
LOW BIAS & HIGH VARIANCE:
Complex and over-fitted model.
Performes well on training data
but high error rates on test data.
Y
X
Bias-Variance Tradeoff
LOW BIAS & LOW VARIANCE:
Sweet spot where the model is
optimal with most optimal error
rate and not too complex model.
Y
Model Complexity
Bias-Variance Tradeoff
Prediction
Error
High Bias
Low Variance
Low Bias
High Variance
Test Sample
Training Sample
Y
Model Complexity
Bias-Variance Tradeoff
Prediction
Error
High Bias
Low Variance
Test Sample
Training Sample
under-fitted
Low Bias
High Variance
Y
Model Complexity
Bias-Variance Tradeoff
Prediction
Error
High Bias
Low Variance
Test Sample
Training Sample
under-fitted over-fitted
Low Bias
High Variance
Y
Model Complexity
Bias-Variance Tradeoff
Prediction
Error
High Bias
Low Variance
Test Sample
Training Sample
under-fitted over-fitted
„You want
to be here“
Low Bias
High Variance
( Total Error = Bias2+ Variance + Irreducable Error )
Total Error
Conclusion:
Bias is not bad in general, but …
Bias-Variance Tradeoff
https://preply.com/en/question/what-does-bias-mean-in-english-49251#
“… simply means inclination or prejudice
for or against one person or group,
especially in a way
considered to be unfair.“
Bias in sense of „Fairness“
„A model should not make its decisions
based on sensitive attributes!“*
*Ethnic or social origin, gender, age, income, marital status,
sexual orientation, educational background or religious affiliation.
Bias in sense of „Fairness“
„A model should not make its decisions
based on sensitive attributes!“*
*Ethnic or social origin, gender, age, income, marital status,
sexual orientation, educational background or religious affiliation.
Bias in sense of „Fairness“
height & weight
zip
Be also aware of proxy attributes!
Rule #1 „Be aware
of the
possibility
of bias.“
https://research.aimultiple.com/ai-bias/
“… is an anomaly in the output of
machine learning algorithms, due
to the prejudiced assumptions made during
the algorithm development process or
prejudices in the training data.“
Bias
Action Outcome
AI/ML
Model
ML based Process
Action Outcome
AI/ML
Model
ML based Process. Is it fair?
Action Outcome
Fair compared to … ?
Current
(Human)
Decision
Unfair
Action
Unfair
Outcome
Unfair
(Human)
Decision
Fair compared to … ?
Data
AI/ML
Pipeline
Human
Review
Action
World
Sources of Bias
Example: grant / deny Loan
Goal: Provide loans while balancing repayment rates for bank loans
Adult income data*
• size: 48.843
• task: income > $50K / year
• sensitive attributes
• gender
• race
https://archive.ics.uci.edu/ml/datasets/Adult
Data
AI/ML
Pipeline
Human
Review
Action
World
Sources of Bias
Goal: Provide loans while balancing repayment rates for bank loans
Historical loans and
payments, credit
reporting data,
background checks.
Build model to
predict risk of
not repaying on
time.
Deny loan or
increase interest
rate and/or
penalties
Manual review
by the personal
customer
advisor.
Current and
potential bank
customers
AI/ML
Pipeline
Human
Review
Sources of Bias
Historical Bias
Data Action
World
Historical Bias: In the past, the husband kept the salary account and the wife the household account.
AI/ML
Pipeline
Human
Review
Sources of Bias
Sample Bias
Measurement Bias
Label Bias
Historical Bias
Data Action
World
Sample Bias:
Measurement Bias:
Label Bias:
Grouping of nationality by German/EU and others.
Overdraft as a proxy for credit risk.
Same scale for feature “income" low/medium/high for man and woman.
AI/ML
Pipeline
Human
Review
Sources of Bias
Sample Bias
Measurement Bias
Label Bias
Historical Bias
Features Bias
Learning Bias
Evaluation Bias
Data Action
World
Feature Bias:
Learning Bias:
Evaluation Bias:
Feature „income“ is less meaningful for people with irregular income.
Model is not suitable for the data and amplifies the BIAS effect.
Data is not representative for small online loans (wrong benchmark).
AI/ML
Pipeline
Human
Review
Sources of Bias
Sample Bias
Measurement Bias
Label Bias
Historical Bias
Features Bias
Learning Bias
Evaluation Bias
Supportive Bias
Conservatism Bias
Zero-Risk Bias
Data Action
World
Supportive Bias:
Conservatism Bias:
Zero-Risk Bias:
Clerk overrules AI based on "experience" or "I know him, he's creditworthy".
Clerk cannot evaluate the risk of a new business idea and rejects loan.
Clerk only approves loans with zero risk because his bonus depends on it.
AI/ML
Pipeline
Human
Review
Sources of Bias
Sample Bias
Measurement Bias
Label Bias
Historical Bias
Features Bias
Learning Bias
Evaluation Bias
Action Bias
Intervention Bias
Deployment Bias
Data Action
World
Supportive Bias
Conservatism Bias
Zero-Risk Bias
Action Bias:
Intervention Bias:
Deployment Bias:
Not approving a credit can have different implications for different income groups.
Loan disbursement delay can cause problems.
Credit AI is also used to decide on account opening / account fees individually.
AI/ML
Pipeline
Human
Review
Sources of Bias
Sample Bias
Measurement Bias
Label Bias
Historical Bias
Features Bias
Learning Bias
Evaluation Bias
Supportive Bias
Conservatism Bias
Zero-Risk Bias
Action Bias
Intervention Bias
Deployment Bias
Action
Data
World
DEFINE
(equity)
DETECT
(bias)
MITIGATE
(impact)
MONITOR
(effect)
Lots of Bias ;-(
How do we make the overall system
and outcomes (more) fair ?
Rule #2 „Define
fairness in
context of
your goal.“
There are many different ways of defining
what constitutes a fair machine learning
(ML) model.
Typically, an ML model can not be fair in all
aspects at the same time.
Define Fairness
ACCURACY Parity
DEMOGRAPHIC Parity
EQUAL Opportunity
EQUALIZED Odds
GROUP Unaware
Define Fairness
Income
POSITVE
grant loan
NEGATIVE
don‘t grant loan
Paid loan in full Defaulted
Define Fairness
People who should
be approved and
are approved by
the model.
People who should
be approved and
are denied by
the model.
People who should
be denied and
are approved by
the model.
People who should
be denied and
are denied by
the model.
PREDICTED
approved denied
denied
approved
TRUE
TP FN
FP TN
TP
TN
FP
FN
True Positive
True Negative
False Positive
False Negative
ACC = 7/10 = 70%
Group B
PREDICTED
TRUE
approve
deny
approve
deny
6 3
0 1
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
Accuracy Parity
P(Ŷ=Y|A=0) = P( Ŷ=Y|A=1)
ACC = 7/10 = 70%
Group B
2 0
3 5
PREDICTED
TRUE
approve
deny
approve
deny
6 3
0 1
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
Accuracy Parity
ACC = 7/10 = 70%
P(Ŷ=Y|A=0) = P( Ŷ=Y|A=1)
Group B
Group A
Paid loan in full
Defaulted
Income
Accuracy Parity
„What could
go wrong?“
„Lost opportunities
in group A vs.
high risk in
group B!“
P(Ŷ=Y|A=0) = P( Ŷ=Y|A=1)
Demographic Parity
PR = 4/8 = 50%
Group B
PREDICTED
TRUE
approve
deny
approve
deny
3 0
1 4
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
P(Ŷ|A=0) = P( Ŷ|A=1)
Demographic Parity
PR = 4/8 = 50%
Group B
1 0
3 4
PREDICTED
TRUE
approve
deny
approve
deny
3 0
1 4
PREDICTED
TRUE
approve
deny
approve
deny
Group A
PR = 4/8 = 50%
Paid loan in full
Defaulted
Income
P(Ŷ|A=0) = P( Ŷ|A=1)
Demographic Parity
Group B
Group A
Paid loan in full
Defaulted
Income
P(Ŷ|A=0) = P( Ŷ|A=1)
„What could
go wrong?“
„Oops! Do we have
a plan for this? “
TPR = 2/4 = 50%
Group B
PREDICTED
TRUE
approve
deny
approve
deny
2 2
1 4
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
Equal Opportunities
P(Ŷ=1|A=0, Y=1) = P( Ŷ=1|A=1, Y=1)
TPR = 2/4 = 50%
Group B
1 1
2 3
PREDICTED
TRUE
approve
deny
approve
deny
2 2
1 4
PREDICTED
TRUE
approve
deny
approve
deny
Group A
TPR = 1/2 = 50%
Paid loan in full
Defaulted
Income
Equal Opportunities
P(Ŷ=1|A=0, Y=1) = P( Ŷ=1|A=1, Y=1)
Group B
Group A
Paid loan in full
Defaulted
Income
Equal Opportunities
„What could
go wrong?“
TPR = 9/12 = 75%
„Wow! Lots of
False Positives!“
TPR = 3/4 = 75%
P(Ŷ=1|A=0, Y=1) = P( Ŷ=1|A=1, Y=1)
TPR = 2/4 = 50%
FPR = 1/4 = 25%
Group B
PREDICTED
TRUE
approve
deny
approve
deny
2 2
1 3
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
Equalized Odds
P(Ŷ=1|A=0, Y=y) = P( Ŷ=1|A=1, Y=y), y ∈ {0,1}
TPR = 2/4 = 50%
FPR = 1/4 = 25%
Group B
1 1
PREDICTED
TRUE
approve
deny
approve
deny
2 2
PREDICTED
TRUE
approve
deny
approve
deny
Group A
Paid loan in full
Defaulted
Income
Equalized Odds
TPR = 1/2 = 50%
FPR = 1/4 = 25%
P(Ŷ=1|A=0, Y=y) = P( Ŷ=1|A=1, Y=y), y ∈ {0,1}
1 3
1 3
Equalized Odds „What could
go wrong?“
P(Ŷ=1|A=0, Y=y) = P( Ŷ=1|A=1, Y=y), y ∈ {0,1}
What is fair?
Accuracy Parity?
Demographic Parity?
Equal Opportunity?
Equalized Odds?
What is fair?
Accuracy Parity?
Demographic Parity?
Equal Opportunity?
Equalized Odds!
What is fair?
When to use Equalized Odds …
• strong emphasis on predicting the positive outcome correctly
e.g.: correctly identifying who should get a loan drives profit
• strongly care about minimising costly False Positives
e.g.: reducing the grant of loans to people who would not be able to pay back
• the reward function of the model is not heavily compromised
e.g.: revenue or profit function for the business remains high
• the target variable is not considered subjective
Rule #3 „Measure
and interpret
bias related
KPIs.“
Measure & interpret KPIs
Step 1: Look for unbalanced datasets
86% 68%
32%
Measure & interpret KPIs
68%
32%
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
Step 1: Look for unbalanced datasets, the WHY
correlation matrix of unbalanced dataset correlation matrix of rebalanced dataset
Measure & interpret KPIs
68%
32%
https://imbalanced-learn.org/stable/introduction.html
Step 1: Look for unbalanced datasets, the WHY
Measure & interpret KPIs
Step 2: Define protected features
1
0
Previliged Group = 1
Unpriveliged Group = 0
1
0
Measure & interpret KPIs
Step 3: Use prevalence as metrics*
1 0
26.2% 15.8%
31.2% 11,4%
Sex
Race
1 0
32.4% 22.4%
12.2% 7.6%
1
0
Race
Sex
Earning more than $50K / year? Earning more than $50K / year?
*overall prevalence = 24.8%.
DIY? NO!
https://aif360.mybluemix.net https://aequitas.dssg.io https://pair-code.github.io/what-if-tool/
AIF360 Aequitas What-if
Rule #4 „Mitigate
to a fair
outcome.“
Mitigate Bias
Quantitative Approach: Making adjustment
to data, model, or predictions.
Non-Qualitative Approach: Step back from
the computer and look at bias / fairness with
a wider lens.
Quantitative Approach
Pre-Processing
In-Processing
Post-Processing
Modify data before processing
Modify algorithm that is trained
Modify prediction of model
Quantitative Approach Pre-Processing
Pre-Processing methods try to remove bias
in data before it is used to train the model.
Quantitative Approach Pre-Processing
#1: Handle unbalanced datasets
See also
for implementations
Quantitative Approach Pre-Processing
#1: … via Undersampling / Oversampling
Original dataset Original Dataset
Samples of
majority class
Undersampling Oversampling
copies or
synthetics of
minority class
Quantitative Approach Pre-Processing
#1: … via Undersampling / Oversampling
Original dataset Original Dataset
Samples of
majority class
Undersampling Oversampling
copies or
synthetics of
minority class
Oversampling with different Methods Oversampling Pitfalls
Quantitative Approach Pre-Processing
#1: .. via Grouping
White
Black
Asian-Pacific
Hispanic
White
Others
Quantitative Approach Pre-Processing
#2: Disperate impact removal
DIR
Quantitative Approach Pre-Processing
#3: Elimination of proxy variables
Quantitative Approach Pre-Processing
#4: Fair Representation Learning: „A fair & rich Z“
Input
Vector
Fair
Representation
X, A Z
Ŷ
Â
Predictor
Adversary
negative
gradient
g
max I(X;Z)
min I(A;Z)
-- Rich Zemel --
https://www.cs.toronto.edu/~toni/Papers/icml-final.pdf
Quantitative Approach In-Processing
In-Processing methods work by adjusting the
objective to also consider fairness. This can be
done by changing the cost function or by
imposing constraints on the model.
Quantitative Approach In-Processing
https://towardsdatascience.com/approaches-for-addressing-unfairness-in-machine-learning-a31f9807cf31
Quantitative Approach Post-Processing
Post-Processing methods work by changing
the predictions made by a model if indicated
to be unfair. E.g by setting different tresholds
for priviliged and unpriviliged groups.
Quantitative Approach Post-Processing
https://towardsdatascience.com/approaches-for-addressing-unfairness-in-machine-learning-a31f9807cf31
Non-Quantitative Approach
Awareness of
the problem
Don‘t use
ML at all
Limit the use
of ML
Address the
root cause
Undestand
the model
Give
explanations
Give
opportunities
Support
team diversity
Non-Quantitative Approach
Awareness of
the problem
Don‘t use
ML at all
Limit the use
of ML
Address the
root cause
Undestand
the model
Give
explanations
Give
opportunities
Support
team diversity
Non-Quantitative Approach
Awareness of
the problem
Don‘t use
ML at all
Limit the use
of ML
Address the
root cause
Undestand
the model
Give
explanations
Give
opportunities
Support
team diversity
Non-Quantitative Approach
Awareness of
the problem
Don‘t use
ML at all
Limit the use
of ML
Address the
root cause
Undestand
the model
Give
opportunities
Give
explanation
Support
team diversity
AIF360
AIF360
AIF360
Rule #5 „Monitor
for silent
Failures.“
Monitoring
What to look for?
• Performance Drift
Monitoring
Best-Case: Ground truth is immediately accessible
Monitoring
Not-so-good-Case: Ground truth is postponed in time
Monitoring
Worst-Case: Absent ground Truth
Monitoring
What to look for?
• Performance Drift*
• Input Data Drift
• Prediction Drift
• Concept Drift
*ground truth required
Monitoring
How to find out?
• Model Performance Metrics
(e.g. confusion matrix, acc, recall, F1 score, ROC-AUC, …)
• Descriptive Stastitics
(e.g. min, max, mean, uniqueness, correlations, …)
• Distribution Change
(e.g. PSI, MMD, LSDD, KL Divergence, Jensen-Shannon, …)
Monitoring
Which tool to use for free?
• Evidently
• Alibi Detect
• NannyML
• whyLogs
• …
Monitoring
Which tool to use for money?
• Neptune.ai
• Arize AI
• WhyLabs
• Qualdo
• …
Rules 1. Be aware
2. Define
3. Measure
4. Mitigate
5. Monitor
Zeit für
Fragen?
Immer!
Vielen
Dank!
#WISSENTEILEN
by open knowledge GmbH
@_openKnowledge | @mobileLarson
Lars Röwekamp, CIO New Technologies
BILDNACHWEIS
Folie 01: © brizmaker, iStockphoto.com
All other pictures, drawings and icons originate from
• pexels.com, pixabay.com, unsplash.com,
• flaticon.com
or were made by my own.

More Related Content

Similar to Der Spagat zwischen BIAS und FAIRNESS (2024)

Lean Analytics: Using Data to Build a Better Business Faster
Lean Analytics: Using Data to Build a Better Business FasterLean Analytics: Using Data to Build a Better Business Faster
Lean Analytics: Using Data to Build a Better Business Faster
Lean Startup Co.
 
Responsible AI in Industry (ICML 2021 Tutorial)
Responsible AI in Industry (ICML 2021 Tutorial)Responsible AI in Industry (ICML 2021 Tutorial)
Responsible AI in Industry (ICML 2021 Tutorial)
Krishnaram Kenthapadi
 
Alexandr Honchar. Financial ML != ML and Finance
Alexandr Honchar. Financial ML != ML and FinanceAlexandr Honchar. Financial ML != ML and Finance
Alexandr Honchar. Financial ML != ML and Finance
Lviv Startup Club
 
Being Right Starts By Knowing You're Wrong
Being Right Starts By Knowing You're WrongBeing Right Starts By Knowing You're Wrong
Being Right Starts By Knowing You're Wrong
Data Con LA
 
Storyfying your Data: How to go from Data to Insights to Stories
Storyfying your Data: How to go from Data to Insights to StoriesStoryfying your Data: How to go from Data to Insights to Stories
Storyfying your Data: How to go from Data to Insights to Stories
Gramener
 
Introduction to FAIR Risk Methodology – Global CISO Forum 2019 – Donna Gall...
Introduction to FAIR Risk Methodology – Global CISO Forum 2019  –  Donna Gall...Introduction to FAIR Risk Methodology – Global CISO Forum 2019  –  Donna Gall...
Introduction to FAIR Risk Methodology – Global CISO Forum 2019 – Donna Gall...
EC-Council
 
Enterprise Risk Assessment PowerPoint Presentation Slides
Enterprise Risk Assessment PowerPoint Presentation SlidesEnterprise Risk Assessment PowerPoint Presentation Slides
Enterprise Risk Assessment PowerPoint Presentation Slides
SlideTeam
 
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
Amazon Web Services
 
Entering the Data Analytics industry
Entering the Data Analytics industryEntering the Data Analytics industry
Entering the Data Analytics industry
Gramener
 
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
Big Data Week
 
1530 track1 rosenbaum
1530 track1 rosenbaum1530 track1 rosenbaum
1530 track1 rosenbaum
Rising Media, Inc.
 
Slides from Growthcon 2014 Lean Analytics masterclass
Slides from Growthcon 2014 Lean Analytics masterclassSlides from Growthcon 2014 Lean Analytics masterclass
Slides from Growthcon 2014 Lean Analytics masterclass
Lean Analytics
 
What is Data Science and How to Succeed in it
What is Data Science and How to Succeed in itWhat is Data Science and How to Succeed in it
What is Data Science and How to Succeed in it
Khosrow Hassibi
 
Iwsm2014 why cant people estimate (dan galorath)
Iwsm2014   why cant people estimate (dan galorath)Iwsm2014   why cant people estimate (dan galorath)
Iwsm2014 why cant people estimate (dan galorath)
Nesma
 
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Shift Conference
 
Echelon Asia Summit 2017 Startup Academy Workshop
Echelon Asia Summit 2017 Startup Academy WorkshopEchelon Asia Summit 2017 Startup Academy Workshop
Echelon Asia Summit 2017 Startup Academy Workshop
Garrett Teoh Hor Keong
 
205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ball
p6academy
 
Incubator 2.0: A Silicon Valley Success Story
Incubator 2.0: A Silicon Valley Success StoryIncubator 2.0: A Silicon Valley Success Story
Incubator 2.0: A Silicon Valley Success Story
Dave McClure
 
Metrics that Matter: The 360-Degree Customer
Metrics that Matter: The 360-Degree CustomerMetrics that Matter: The 360-Degree Customer
Metrics that Matter: The 360-Degree Customer
Cassie Lancellotti-Young
 
Enterprise Risk Management Overview Powerpoint Presentation Slides
Enterprise Risk Management Overview Powerpoint Presentation SlidesEnterprise Risk Management Overview Powerpoint Presentation Slides
Enterprise Risk Management Overview Powerpoint Presentation Slides
SlideTeam
 

Similar to Der Spagat zwischen BIAS und FAIRNESS (2024) (20)

Lean Analytics: Using Data to Build a Better Business Faster
Lean Analytics: Using Data to Build a Better Business FasterLean Analytics: Using Data to Build a Better Business Faster
Lean Analytics: Using Data to Build a Better Business Faster
 
Responsible AI in Industry (ICML 2021 Tutorial)
Responsible AI in Industry (ICML 2021 Tutorial)Responsible AI in Industry (ICML 2021 Tutorial)
Responsible AI in Industry (ICML 2021 Tutorial)
 
Alexandr Honchar. Financial ML != ML and Finance
Alexandr Honchar. Financial ML != ML and FinanceAlexandr Honchar. Financial ML != ML and Finance
Alexandr Honchar. Financial ML != ML and Finance
 
Being Right Starts By Knowing You're Wrong
Being Right Starts By Knowing You're WrongBeing Right Starts By Knowing You're Wrong
Being Right Starts By Knowing You're Wrong
 
Storyfying your Data: How to go from Data to Insights to Stories
Storyfying your Data: How to go from Data to Insights to StoriesStoryfying your Data: How to go from Data to Insights to Stories
Storyfying your Data: How to go from Data to Insights to Stories
 
Introduction to FAIR Risk Methodology – Global CISO Forum 2019 – Donna Gall...
Introduction to FAIR Risk Methodology – Global CISO Forum 2019  –  Donna Gall...Introduction to FAIR Risk Methodology – Global CISO Forum 2019  –  Donna Gall...
Introduction to FAIR Risk Methodology – Global CISO Forum 2019 – Donna Gall...
 
Enterprise Risk Assessment PowerPoint Presentation Slides
Enterprise Risk Assessment PowerPoint Presentation SlidesEnterprise Risk Assessment PowerPoint Presentation Slides
Enterprise Risk Assessment PowerPoint Presentation Slides
 
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
Using Machine Learning on AWS for Continuous Sentiment Analysis from Labeling...
 
Entering the Data Analytics industry
Entering the Data Analytics industryEntering the Data Analytics industry
Entering the Data Analytics industry
 
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
BDW16 London - Amjad Zaim, Cognitro Analytics: How Deep is Your Learning
 
1530 track1 rosenbaum
1530 track1 rosenbaum1530 track1 rosenbaum
1530 track1 rosenbaum
 
Slides from Growthcon 2014 Lean Analytics masterclass
Slides from Growthcon 2014 Lean Analytics masterclassSlides from Growthcon 2014 Lean Analytics masterclass
Slides from Growthcon 2014 Lean Analytics masterclass
 
What is Data Science and How to Succeed in it
What is Data Science and How to Succeed in itWhat is Data Science and How to Succeed in it
What is Data Science and How to Succeed in it
 
Iwsm2014 why cant people estimate (dan galorath)
Iwsm2014   why cant people estimate (dan galorath)Iwsm2014   why cant people estimate (dan galorath)
Iwsm2014 why cant people estimate (dan galorath)
 
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
 
Echelon Asia Summit 2017 Startup Academy Workshop
Echelon Asia Summit 2017 Startup Academy WorkshopEchelon Asia Summit 2017 Startup Academy Workshop
Echelon Asia Summit 2017 Startup Academy Workshop
 
205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ball
 
Incubator 2.0: A Silicon Valley Success Story
Incubator 2.0: A Silicon Valley Success StoryIncubator 2.0: A Silicon Valley Success Story
Incubator 2.0: A Silicon Valley Success Story
 
Metrics that Matter: The 360-Degree Customer
Metrics that Matter: The 360-Degree CustomerMetrics that Matter: The 360-Degree Customer
Metrics that Matter: The 360-Degree Customer
 
Enterprise Risk Management Overview Powerpoint Presentation Slides
Enterprise Risk Management Overview Powerpoint Presentation SlidesEnterprise Risk Management Overview Powerpoint Presentation Slides
Enterprise Risk Management Overview Powerpoint Presentation Slides
 

More from OPEN KNOWLEDGE GmbH

Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AIWarum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
OPEN KNOWLEDGE GmbH
 
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
OPEN KNOWLEDGE GmbH
 
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die CloudFrom Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
OPEN KNOWLEDGE GmbH
 
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data ImputationFEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
OPEN KNOWLEDGE GmbH
 
Nie wieder Log-Files!
Nie wieder Log-Files!Nie wieder Log-Files!
Nie wieder Log-Files!
OPEN KNOWLEDGE GmbH
 
Cloud-native and Enterprise Java? Hold my beer!
Cloud-native and Enterprise Java? Hold my beer!Cloud-native and Enterprise Java? Hold my beer!
Cloud-native and Enterprise Java? Hold my beer!
OPEN KNOWLEDGE GmbH
 
From Zero to still Zero: The most beautiful mistakes going into the cloud.
From Zero to still Zero: The most beautiful mistakes going into the cloud. From Zero to still Zero: The most beautiful mistakes going into the cloud.
From Zero to still Zero: The most beautiful mistakes going into the cloud.
OPEN KNOWLEDGE GmbH
 
API Expand Contract
API Expand ContractAPI Expand Contract
API Expand Contract
OPEN KNOWLEDGE GmbH
 
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & Co
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & CoReady for the Future: Jakarta EE in Zeiten von Cloud Native & Co
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & Co
OPEN KNOWLEDGE GmbH
 
Shared Data in verteilten Architekturen
Shared Data in verteilten ArchitekturenShared Data in verteilten Architekturen
Shared Data in verteilten Architekturen
OPEN KNOWLEDGE GmbH
 
Machine Learning mit TensorFlow.js
Machine Learning mit TensorFlow.jsMachine Learning mit TensorFlow.js
Machine Learning mit TensorFlow.js
OPEN KNOWLEDGE GmbH
 
KI und Architektur
KI und ArchitekturKI und Architektur
KI und Architektur
OPEN KNOWLEDGE GmbH
 
It's not Rocket Science: Neuronale Netze
It's not Rocket Science: Neuronale NetzeIt's not Rocket Science: Neuronale Netze
It's not Rocket Science: Neuronale Netze
OPEN KNOWLEDGE GmbH
 
Shared Data in verteilten Systemen
Shared Data in verteilten SystemenShared Data in verteilten Systemen
Shared Data in verteilten Systemen
OPEN KNOWLEDGE GmbH
 
Business-Mehrwert durch KI
Business-Mehrwert durch KIBusiness-Mehrwert durch KI
Business-Mehrwert durch KI
OPEN KNOWLEDGE GmbH
 
Mehr Sicherheit durch Automatisierung
Mehr Sicherheit durch AutomatisierungMehr Sicherheit durch Automatisierung
Mehr Sicherheit durch Automatisierung
OPEN KNOWLEDGE GmbH
 
API-Design, Microarchitecture und Testing
API-Design, Microarchitecture und TestingAPI-Design, Microarchitecture und Testing
API-Design, Microarchitecture und Testing
OPEN KNOWLEDGE GmbH
 
Supersonic Java für die Cloud: Quarkus
Supersonic Java für die Cloud: QuarkusSupersonic Java für die Cloud: Quarkus
Supersonic Java für die Cloud: Quarkus
OPEN KNOWLEDGE GmbH
 
Hilfe, ich will meinen Monolithen zurück!
Hilfe, ich will meinen Monolithen zurück!Hilfe, ich will meinen Monolithen zurück!
Hilfe, ich will meinen Monolithen zurück!
OPEN KNOWLEDGE GmbH
 
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
OPEN KNOWLEDGE GmbH
 

More from OPEN KNOWLEDGE GmbH (20)

Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AIWarum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
Warum der Computer "Nein" sagt - Mehr Nachvollziehbarkeit dank Explainable AI
 
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
Machine Learning? Ja gerne! Aber was und wie? Eine Kurzanleitung für den erfo...
 
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die CloudFrom Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
From Zero to still Zero: Die schönsten Fehler auf dem Weg in die Cloud
 
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data ImputationFEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
FEHLENDE DATEN? (K)EIN PROBLEM!: Die Kunst der Data Imputation
 
Nie wieder Log-Files!
Nie wieder Log-Files!Nie wieder Log-Files!
Nie wieder Log-Files!
 
Cloud-native and Enterprise Java? Hold my beer!
Cloud-native and Enterprise Java? Hold my beer!Cloud-native and Enterprise Java? Hold my beer!
Cloud-native and Enterprise Java? Hold my beer!
 
From Zero to still Zero: The most beautiful mistakes going into the cloud.
From Zero to still Zero: The most beautiful mistakes going into the cloud. From Zero to still Zero: The most beautiful mistakes going into the cloud.
From Zero to still Zero: The most beautiful mistakes going into the cloud.
 
API Expand Contract
API Expand ContractAPI Expand Contract
API Expand Contract
 
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & Co
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & CoReady for the Future: Jakarta EE in Zeiten von Cloud Native & Co
Ready for the Future: Jakarta EE in Zeiten von Cloud Native & Co
 
Shared Data in verteilten Architekturen
Shared Data in verteilten ArchitekturenShared Data in verteilten Architekturen
Shared Data in verteilten Architekturen
 
Machine Learning mit TensorFlow.js
Machine Learning mit TensorFlow.jsMachine Learning mit TensorFlow.js
Machine Learning mit TensorFlow.js
 
KI und Architektur
KI und ArchitekturKI und Architektur
KI und Architektur
 
It's not Rocket Science: Neuronale Netze
It's not Rocket Science: Neuronale NetzeIt's not Rocket Science: Neuronale Netze
It's not Rocket Science: Neuronale Netze
 
Shared Data in verteilten Systemen
Shared Data in verteilten SystemenShared Data in verteilten Systemen
Shared Data in verteilten Systemen
 
Business-Mehrwert durch KI
Business-Mehrwert durch KIBusiness-Mehrwert durch KI
Business-Mehrwert durch KI
 
Mehr Sicherheit durch Automatisierung
Mehr Sicherheit durch AutomatisierungMehr Sicherheit durch Automatisierung
Mehr Sicherheit durch Automatisierung
 
API-Design, Microarchitecture und Testing
API-Design, Microarchitecture und TestingAPI-Design, Microarchitecture und Testing
API-Design, Microarchitecture und Testing
 
Supersonic Java für die Cloud: Quarkus
Supersonic Java für die Cloud: QuarkusSupersonic Java für die Cloud: Quarkus
Supersonic Java für die Cloud: Quarkus
 
Hilfe, ich will meinen Monolithen zurück!
Hilfe, ich will meinen Monolithen zurück!Hilfe, ich will meinen Monolithen zurück!
Hilfe, ich will meinen Monolithen zurück!
 
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
Das ist doch alles nur Frontend - Wer braucht da schon Architektur?
 

Recently uploaded

Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
Grant Fritchey
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
kalichargn70th171
 
Hand Rolled Applicative User Validation Code Kata
Hand Rolled Applicative User ValidationCode KataHand Rolled Applicative User ValidationCode Kata
Hand Rolled Applicative User Validation Code Kata
Philip Schwarz
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
dakas1
 
Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !
Marcin Chrost
 
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
mz5nrf0n
 
Modelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - AmsterdamModelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - Amsterdam
Alberto Brandolini
 
Preparing Non - Technical Founders for Engaging a Tech Agency
Preparing Non - Technical Founders for Engaging  a  Tech AgencyPreparing Non - Technical Founders for Engaging  a  Tech Agency
Preparing Non - Technical Founders for Engaging a Tech Agency
ISH Technologies
 
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s EcosystemUI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
Peter Muessig
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
safelyiotech
 
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling ExtensionsUI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
Peter Muessig
 
Oracle Database 19c New Features for DBAs and Developers.pptx
Oracle Database 19c New Features for DBAs and Developers.pptxOracle Database 19c New Features for DBAs and Developers.pptx
Oracle Database 19c New Features for DBAs and Developers.pptx
Remote DBA Services
 
Liberarsi dai framework con i Web Component.pptx
Liberarsi dai framework con i Web Component.pptxLiberarsi dai framework con i Web Component.pptx
Liberarsi dai framework con i Web Component.pptx
Massimo Artizzu
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Julian Hyde
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
Hornet Dynamics
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
Drona Infotech
 
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
gapen1
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
Patrick Weigel
 
Project Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdfProject Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdf
Karya Keeper
 
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
XfilesPro
 

Recently uploaded (20)

Using Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query PerformanceUsing Query Store in Azure PostgreSQL to Understand Query Performance
Using Query Store in Azure PostgreSQL to Understand Query Performance
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
 
Hand Rolled Applicative User Validation Code Kata
Hand Rolled Applicative User ValidationCode KataHand Rolled Applicative User ValidationCode Kata
Hand Rolled Applicative User Validation Code Kata
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
 
Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !Enums On Steroids - let's look at sealed classes !
Enums On Steroids - let's look at sealed classes !
 
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
原版定制美国纽约州立大学奥尔巴尼分校毕业证学位证书原版一模一样
 
Modelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - AmsterdamModelling Up - DDDEurope 2024 - Amsterdam
Modelling Up - DDDEurope 2024 - Amsterdam
 
Preparing Non - Technical Founders for Engaging a Tech Agency
Preparing Non - Technical Founders for Engaging  a  Tech AgencyPreparing Non - Technical Founders for Engaging  a  Tech Agency
Preparing Non - Technical Founders for Engaging a Tech Agency
 
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s EcosystemUI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
 
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
Safelyio Toolbox Talk Softwate & App (How To Digitize Safety Meetings)
 
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling ExtensionsUI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
 
Oracle Database 19c New Features for DBAs and Developers.pptx
Oracle Database 19c New Features for DBAs and Developers.pptxOracle Database 19c New Features for DBAs and Developers.pptx
Oracle Database 19c New Features for DBAs and Developers.pptx
 
Liberarsi dai framework con i Web Component.pptx
Liberarsi dai framework con i Web Component.pptxLiberarsi dai framework con i Web Component.pptx
Liberarsi dai framework con i Web Component.pptx
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
 
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
如何办理(hull学位证书)英国赫尔大学毕业证硕士文凭原版一模一样
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
 
Project Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdfProject Management: The Role of Project Dashboards.pdf
Project Management: The Role of Project Dashboards.pdf
 
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
Everything You Need to Know About X-Sign: The eSign Functionality of XfilesPr...
 

Der Spagat zwischen BIAS und FAIRNESS (2024)