Embed presentation
Download to read offline
![a)
dy/dx + 2y/x = x
I.F. = x^2
solution i
y * x^2 = int [ x^2 * x]dx + C
= [x^4]/4 + C
Solution
a)
dy/dx + 2y/x = x](https://image.slidesharecdn.com/adydx2yxxi-230409001442-3d1c98f9/75/a-dydx-2yx-xI-F-x-2solution-iy-pdf-1-2048.jpg)
![I.F. = x^2
solution i
y * x^2 = int [ x^2 * x]dx + C
= [x^4]/4 + C](https://image.slidesharecdn.com/adydx2yxxi-230409001442-3d1c98f9/85/a-dydx-2yx-xI-F-x-2solution-iy-pdf-2-320.jpg)
The document presents a differential equation of the form dy/dx + 2y/x = x. It includes the method of finding the integrating factor and provides a general solution derived from integrating the expression. The solution is simplified to y * x^2 = (x^4)/4 + c.
![a)
dy/dx + 2y/x = x
I.F. = x^2
solution i
y * x^2 = int [ x^2 * x]dx + C
= [x^4]/4 + C
Solution
a)
dy/dx + 2y/x = x](https://image.slidesharecdn.com/adydx2yxxi-230409001442-3d1c98f9/75/a-dydx-2yx-xI-F-x-2solution-iy-pdf-1-2048.jpg)
![I.F. = x^2
solution i
y * x^2 = int [ x^2 * x]dx + C
= [x^4]/4 + C](https://image.slidesharecdn.com/adydx2yxxi-230409001442-3d1c98f9/85/a-dydx-2yx-xI-F-x-2solution-iy-pdf-2-320.jpg)