SlideShare a Scribd company logo
1 of 14
प्रस्तुतत का अवलोकन:
1. परिचय औि पृष्ठभूमि:
2. उत्प्प्रेिक का संश्लेषण
3. लक्षण वणणन(characterization)
4. CO2 अपचयन प्रयोग
5. ग्रैफीन ऑक्साइड तथा थैलोसायतनन सम्मिश्र
द्वािा CO2 के अपचयन की क्रियाववधि
2
• ववश्व की ऊर्ाण की खपत 2010 िें 15-17 टेिा वाट से बढकि 2050 तक 25-27 टेिावाट
हो र्ायेगी।
• IPCC की रिपोटण के अनुसाि लगभग 87% ऊर्ाण र्ीवाश्ि ईंिन के द्वािा तथा के वल
13% ही वैकम्पपक ऊर्ाण स्रोतों द्वािा प्राप्त होती है।
•ववषिांगी प्रकृ तत (heterogeneous nature), उपयुक्त बंि अतंि(band gap),
अववषाक्तता(non-toxicity), तथा भूप्रचुिता(earth abundance) के कािण TiO2 एक अच्छी
पसंद के रूप िें उभिा है।
परिचय औि पृष्ठभूमि
अगि हि TiO2 से कोई प्रकाश अवशोषक इकाई र्ोडते हैं तो यह
प्रकाश अवशोषक इकाई TiO2 के प्रवाहकत्त्व बैंड िे इलेक्रॉन
स्थानांतिण के कािण दृश्य प्रकाश िें भी किता है।
पोिफायरिन, थैलोसायतनन आदद टाइप
(II) उत्प्प्रेिक , प्रकाशउत्प्प्रेिक तथा
प्रकाश–प्रभावग्राही दोनो की तिह कायण
किते हैं।
• ग्रैफीन sp2 संकरित काबणन की एकल (single) शीट है, म्र्सिें इलेक्रॉन न्यूनति
प्रततिोि के बह सकते हैं।
• र्ब ग्रैफीन का क्रकसी अिणचालक से सम्मिश्र बनाते हैं तो अिणचालक की सतह से
इलेक्रॉन ग्रैफीन द्वािा स्थानांतरित हो र्ाते हैं।
•इस प्रकाि ग्रैफीन द्वािा आवेश स्थानांतिण(charge separation) होने की वर्ह से
इलेक्रॉन- होल युग्ि की पुन: संयोर्न की दि घट र्ाती है।
उत्प्रेरक का संश्लेषण
स्कै न ंग इलेक्ट्रॉ सूक्ष्मदर्शी चित्र
एक्स०आि०डी०
टी०ई०एम० आई० आि०
अवशोषण स्पेक्रा
एक्स० पी० एस०
CO2 अपिय रयोग
आरेख : ग्रैफी ऑक्ट्साइड द्वारा CO2 के अपिय की क्रियािवच
आरेख : ग्रैफी ऑक्ट्साइड तथा थैलोसायन सम्ममश्र द्वारा CO2 के अपिय की क्रियािवच
•Fujita, E. Photochemical Carbon Dioxide Reduction with Metal Complexes. Coord. Chem. Rev. 1999, 185-186, 373–384.
•Travis A. White, Jessica D. Knoll, Shamindri M. Arachchige and Karen J. Brewer; A Series of Supramolecular Complexes for Solar
Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II),Rh(III),Ru(II)
Photoinitiated Electron Collectors; Materials 2012, 5, 27-46
• Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D.; Mackor, A. Tetraaza-Macrocyclic Cobalt(II) and Nickel(II) Complexes as
Electron-Transfer Agents in the Photoelectrochemical and Electrochemical Reduction of Carbon Dioxide. Recl. Trav. Chim. Pays-
Bas 1984, 103, 288–295.
•Fujita, E.; Brunschwig, B. S. Balzani, V., Catalysis of Electron Transfer, Heterogeneous Systems,Gas Phase Systems. In Electron
Transfer in Chemistry; Ed.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 4, pp 88-126.
•Gholamkhass, B.; Mametsuka, H.; Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Architecture of Supramolecular Metal Complexes
for Photocatalytic CO2 Reduction: Ruthenium-Rhenium Bi- and Tetranuclear Complexes. Inorg. Chem. 2005, 44, 2326–2336.
•Creutz, C.; Chou, M. H. Rapid Transfer of Hydride Ion from a Ruthenium Complex to C1 Species in Water. J. Am. Chem. Soc.
2007, 129, 10108–10109
•Benson EE, Kubiak CP, Sathrum AJ, Smieja JM.. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid
fuels. Chem. Soc. Rev. 2009; 38:89–99.
•Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar
cells. Nature 1978; 275:115–16.
•Ogura K, Yoshida I. Catalytic conversion of CO and CO2 into methanol with a solar cell. J. Mol. Catal. 1986; 34:309–11
• Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995; 28:141–45
•Takeda H, Ishitani O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear andmultinuclear
metal complexes based onmechanistic studies. Coord.Chem. Rev. 2010; 254:346–54
• J. Moser, M. Grätzel, Light-induced electrontransfer in colloid semiconductor dispersions: single versus dielectronic
reduction of acceptors by conduction-band electrons, J. Am. Chem. Soc. 1983; 105; 6547–6555.
• Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U.S.A.
2006; 103; 15729–11573.
•Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol 2009;4(4):217–24.
•Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical
applications. Nat Chem 2010;2(12):1015–24.
12
रश् ! यदद कोई हो ?
Pawan hindi 3

More Related Content

More from Pawan Kumar

Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Pawan Kumar
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Pawan Kumar
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Pawan Kumar
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pawan Kumar
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisPawan Kumar
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Pawan Kumar
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Pawan Kumar
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Pawan Kumar
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationPawan Kumar
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Pawan Kumar
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Pawan Kumar
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...Pawan Kumar
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution ReactionHigh-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution ReactionPawan Kumar
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...Pawan Kumar
 
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystals
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystalsChemical sensing and imaging using fluorophore-conjugated cellulose nanocrystals
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystalsPawan Kumar
 

More from Pawan Kumar (20)

Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
Selective Cellobiose Photoreforming for Simultaneous Gluconic Acid and Syngas...
 
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single...
 
Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...Recent advancements in tuning the electronic structures of transitional metal...
Recent advancements in tuning the electronic structures of transitional metal...
 
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
Pyrazino[2,3-g]quinoxaline core-based organic liquid crystalline semiconducto...
 
Multifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysisMultifunctional carbon nitride nanoarchitectures for catalysis
Multifunctional carbon nitride nanoarchitectures for catalysis
 
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
Production of Renewable Fuels by the Photocatalytic Reduction of CO2 using Ma...
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
Nanoengineered Au-Carbon Nitride Interfaces Enhance PhotoCatalytic Pure Water...
 
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
Nanoengineered Au-Carbon Nitride Interfaces Enhance Photo-Catalytic Pure Wate...
 
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
Cooperative Copper Single Atom Catalyst in Two-dimensional Carbon Nitride for...
 
Bioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidationBioinspired multimetal electrocatalyst for selective methane oxidation
Bioinspired multimetal electrocatalyst for selective methane oxidation
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
 
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI P...
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution ReactionHigh-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
 
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution React...
 
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystals
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystalsChemical sensing and imaging using fluorophore-conjugated cellulose nanocrystals
Chemical sensing and imaging using fluorophore-conjugated cellulose nanocrystals
 

Pawan hindi 3

  • 1.
  • 2. प्रस्तुतत का अवलोकन: 1. परिचय औि पृष्ठभूमि: 2. उत्प्प्रेिक का संश्लेषण 3. लक्षण वणणन(characterization) 4. CO2 अपचयन प्रयोग 5. ग्रैफीन ऑक्साइड तथा थैलोसायतनन सम्मिश्र द्वािा CO2 के अपचयन की क्रियाववधि 2
  • 3. • ववश्व की ऊर्ाण की खपत 2010 िें 15-17 टेिा वाट से बढकि 2050 तक 25-27 टेिावाट हो र्ायेगी। • IPCC की रिपोटण के अनुसाि लगभग 87% ऊर्ाण र्ीवाश्ि ईंिन के द्वािा तथा के वल 13% ही वैकम्पपक ऊर्ाण स्रोतों द्वािा प्राप्त होती है। •ववषिांगी प्रकृ तत (heterogeneous nature), उपयुक्त बंि अतंि(band gap), अववषाक्तता(non-toxicity), तथा भूप्रचुिता(earth abundance) के कािण TiO2 एक अच्छी पसंद के रूप िें उभिा है। परिचय औि पृष्ठभूमि
  • 4. अगि हि TiO2 से कोई प्रकाश अवशोषक इकाई र्ोडते हैं तो यह प्रकाश अवशोषक इकाई TiO2 के प्रवाहकत्त्व बैंड िे इलेक्रॉन स्थानांतिण के कािण दृश्य प्रकाश िें भी किता है। पोिफायरिन, थैलोसायतनन आदद टाइप (II) उत्प्प्रेिक , प्रकाशउत्प्प्रेिक तथा प्रकाश–प्रभावग्राही दोनो की तिह कायण किते हैं।
  • 5. • ग्रैफीन sp2 संकरित काबणन की एकल (single) शीट है, म्र्सिें इलेक्रॉन न्यूनति प्रततिोि के बह सकते हैं। • र्ब ग्रैफीन का क्रकसी अिणचालक से सम्मिश्र बनाते हैं तो अिणचालक की सतह से इलेक्रॉन ग्रैफीन द्वािा स्थानांतरित हो र्ाते हैं। •इस प्रकाि ग्रैफीन द्वािा आवेश स्थानांतिण(charge separation) होने की वर्ह से इलेक्रॉन- होल युग्ि की पुन: संयोर्न की दि घट र्ाती है।
  • 7. स्कै न ंग इलेक्ट्रॉ सूक्ष्मदर्शी चित्र एक्स०आि०डी० टी०ई०एम० आई० आि०
  • 10. आरेख : ग्रैफी ऑक्ट्साइड द्वारा CO2 के अपिय की क्रियािवच
  • 11. आरेख : ग्रैफी ऑक्ट्साइड तथा थैलोसायन सम्ममश्र द्वारा CO2 के अपिय की क्रियािवच
  • 12. •Fujita, E. Photochemical Carbon Dioxide Reduction with Metal Complexes. Coord. Chem. Rev. 1999, 185-186, 373–384. •Travis A. White, Jessica D. Knoll, Shamindri M. Arachchige and Karen J. Brewer; A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II),Rh(III),Ru(II) Photoinitiated Electron Collectors; Materials 2012, 5, 27-46 • Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D.; Mackor, A. Tetraaza-Macrocyclic Cobalt(II) and Nickel(II) Complexes as Electron-Transfer Agents in the Photoelectrochemical and Electrochemical Reduction of Carbon Dioxide. Recl. Trav. Chim. Pays- Bas 1984, 103, 288–295. •Fujita, E.; Brunschwig, B. S. Balzani, V., Catalysis of Electron Transfer, Heterogeneous Systems,Gas Phase Systems. In Electron Transfer in Chemistry; Ed.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 4, pp 88-126. •Gholamkhass, B.; Mametsuka, H.; Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Architecture of Supramolecular Metal Complexes for Photocatalytic CO2 Reduction: Ruthenium-Rhenium Bi- and Tetranuclear Complexes. Inorg. Chem. 2005, 44, 2326–2336. •Creutz, C.; Chou, M. H. Rapid Transfer of Hydride Ion from a Ruthenium Complex to C1 Species in Water. J. Am. Chem. Soc. 2007, 129, 10108–10109 •Benson EE, Kubiak CP, Sathrum AJ, Smieja JM.. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009; 38:89–99. •Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978; 275:115–16. •Ogura K, Yoshida I. Catalytic conversion of CO and CO2 into methanol with a solar cell. J. Mol. Catal. 1986; 34:309–11 • Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995; 28:141–45 •Takeda H, Ishitani O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear andmultinuclear metal complexes based onmechanistic studies. Coord.Chem. Rev. 2010; 254:346–54 • J. Moser, M. Grätzel, Light-induced electrontransfer in colloid semiconductor dispersions: single versus dielectronic reduction of acceptors by conduction-band electrons, J. Am. Chem. Soc. 1983; 105; 6547–6555. • Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. U.S.A. 2006; 103; 15729–11573. •Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol 2009;4(4):217–24. •Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2010;2(12):1015–24. 12
  • 13. रश् ! यदद कोई हो ?