SlideShare a Scribd company logo
1 of 66
MongoDB for Time Series Data
Principal Technologist and Technical Director
Chris Biow
@chris_biow
#MongoDBTimeSeries
What is Time Series Data?
Time Series
A time series is a sequence of data points, typically
consisting of successive measurements made over a
time interval.
– Wikipedia j.mp/1yLbf1s
0 2 4 6 8 10 12
time
Time Series Data is Everywhere
• Financial markets pricing (stock ticks)
• Sensors (temperature, pressure, proximity)
• Industrial fleets (location, velocity, operational)
• Social networks (status updates)
• Mobile devices (calls, texts)
• Systems (server logs, application logs)
Time Series Data is Everywhere
• Tool for managing & monitoring MongoDB systems
– 100+ system metrics visualized and alerted
• 35,000+ MongoDB systems submitting data every 60
seconds
• 90% updates, 10% reads
• ~30,000 updates/second
• ~3.2B operations/day
• 8 x86-64 servers
Example: MMS Monitoring
MMS Monitoring Dashboard
Time Series Data at a Higher Level
• Widely applicable data model
• Applies to several different "data use cases"
• Various schema and modeling options
• Application requirements drive schema design
Time Series Data Considerations
• Arrival rate & ingest performance
• Resolution of raw events
• Resolution needed to support
– Applications
– Analysis
– Reporting
• Data retention policies
Data Retention
• How long is data required?
• Strategies for purging data
– TTL collections
– Capped collections
– Batch remove({query})
– Drop collection
• Performance
– Can effectively double write load
– Fragmentation and Record Reuse
– Index updates
Application Requirements
Event Resolution
Analysis
– Dashboards
– Analytics
– Reporting
Data Retention Policies
Event and Query Volumes
Application Requirements
Event Resolution
Analysis
– Dashboards
– Analytics
– Reporting
Data Retention Policies
Event and Query Volumes
Schema Design
Application Requirements
Event Resolution
Analysis
– Dashboards
– Analytics
– Reporting
Data Retention Policies
Event and Query Volumes
Schema Design
Aggregation Queries
Application Requirements
Event Resolution
Analysis
– Dashboards
– Analytics
– Reporting
Data Retention Policies
Event and Query Volumes
Schema Design
Aggregation Queries
Cluster Architecture
Our Mission Today
Develop Nationwide traffic monitoring
system
What we want from our data
Charting and Trending
What we want from our data
Historical & Predictive Analysis
What we want from our data
Real Time Traffic Dashboard
Traffic sensors to monitor interstate
conditions
• 16,000 sensors
• Measure
• Speed
• Travel time
• Weather, pavement, and traffic conditions
• Frequency: average one sample per minute
• Support desktop, mobile, and car navigation
systems
Other requirements
• Need to keep 3 year history
• Three data centers
• VA, Chicago, LA
• Need to support 5M simultaneous users
• Peak volume (rush hour)
• Every minute, each request the 10 minute average
speed for 50 sensors
Master Agenda
• Design a MongoDB application for scale
• Use case: traffic data
• Presentation Components
1. Schema Design
2. Aggregation
3. Cluster Architecture
Schema Design
Considerations
Schema Design Goals
• Store raw event data
• Support analytical queries
• Find best compromise of:
– Memory utilization
– Write performance
– Read/analytical query performance
• Accomplish with realistic amount of hardware
Designing For Reading, Writing, …
• Document per …
– event
– minute (average)
– minute (seconds)
– hour
Document Per Event
{
segId: "I495_mile23",
date: ISODate("2013-10-16T22:07:38.000-0500"),
speed: 63
}
• Familiar pattern from relational databases
• Insert-driven workload
• Aggregations computed at application-level
Document Per Minute (Average)
{
segId: "I495_mile23",
date: ISODate("2013-10-16T22:07:00.000-0500"),
speed_count: 18,
speed_sum: 1134,
}
• Pre-aggregate to compute average per minute more easily
• Update-driven workload
• Resolution at the minute-level
• Note: averaging speeds may not be valid for some purposes (average
of averages); used here for simplicity of example.
Document Per Minute (By Second)
{
segId: "I495_mile23",
date: ISODate("2013-10-16T22:07:00.000-0500"),
speed: { 0: 63, 1: 58, …, 58: 66, 59: 64 }
}
• Store per-second data at the minute level
• Update-driven workload
• Pre-allocate structure to avoid document moves
Document Per Hour (By Second)
{
segId: "I495_mile23",
date: ISODate("2013-10-16T22:00:00.000-0500"),
speed: { 0: 63, 1: 58, …, 3598: 45, 3599: 55 }
}
• Store per-second data at the hourly level
• Update-driven workload
• Pre-allocate structure to avoid document moves
• Updating last second requires 3599 steps
Document Per Hour (By Second)
{
segId: "I495_mile23",
date: ISODate("2013-10-16T22:00:00.000-0500"),
speed: {
0: {0: 47, …, 59: 45},
….
59: {0: 65, …, 59: 66} }
}
• Store per-second data at the hourly level with nesting
• Update-driven workload
• Pre-allocate structure to avoid document moves
• Updating last second requires 59+59 steps
Characterizing Write Differences
• Example: data generated every second
• For 1 minute:
• Transition from insert driven to update driven
– Individual writes are smaller
– Performance and concurrency benefits
Document Per Event
60 writes
Document Per Minute
1 write, 59 updates
Characterizing Read Differences
• Example: data generated every second
• Reading data for a single hour requires:
• Read performance is greatly improved
– Optimal with tuned block sizes and read ahead
– Fewer disk seeks
Document Per Event
3600 reads
Document Per Minute
60 reads
Characterizing Memory Differences
• _id index for 1 billion events:
• _id index plus segId and date index:
• Memory requirements significantly reduced
– Fewer shards
– Lower capacity servers
Document Per Event
~32 GB
Document Per Minute
~.5 GB
Document Per Event
~100 GB
Document Per Minute
~2 GB
Traffic Monitoring System
Schema
Quick Analysis
Writes
– 16,000 sensors, 1 insert/update per minute
– 16,000 / 60 = 267 inserts/updates per second
Reads
– 5M simultaneous users
– Each requests 10 minute average for 50 sensors every
minute
Tailor your schema to your
application workload
Reads: Impact of Alternative Schemas
10 minute average query
Schema 1 sensor 50 sensors
1 doc per event 10 500
1 doc per 10 min 1.9 95
1 doc per hour 1.3 65
Query: Find the average speed over the
last ten minutes
10 minute average query with 5M
users
Schema ops/sec
1 doc per event 42M
1 doc per 10 min 8M
1 doc per hour 5.4M
Writes: Impact of alternative schemas
1 Sensor - 1 Hour
Schema Inserts Updates
doc/event 60 0
doc/10 min 6 54
doc/hour 1 59
16000 Sensors – 1 Day
Schema Inserts Updates
doc/event 23M 0
doc/10 min 2.3M 21M
doc/hour .38M 22.7M
Sample Document Structure
Compound, unique
Index identifies the
Individual document
{ _id: ObjectId("5382ccdd58db8b81730344e2"),
segId: "900006",
date: ISODate("2014-03-12T17:00:00Z"),
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: "Snow / Ice Conditions",
pavement: "Icy Spots",
weather: "Light Snow"
}
}
Memory: Impact of alternative schemas
1 Sensor - 1 Hour
Schema
# of
Documents
Index Size
(bytes)
doc/event 60 4200
doc/10 min 6 420
doc/hour 1 70
16000 Sensors – 1 Day
Schema
# of
Documents Index Size
doc/event 23M 1.3 GB
doc/10 min 2.3M 131 MB
doc/hour .38M 1.4 MB
Sample Document Structure
Saves an extra index
{ _id: "900006:14031217",
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: "Snow / Ice Conditions",
pavement: "Icy Spots",
weather: "Light Snow"
}
}
{ _id: "900006:14031217",
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: "Snow / Ice Conditions",
pavement: "Icy Spots",
weather: "Light Snow"
}
}
Sample Document Structure
Range queries:
/^900006:1403/
Regex must be
left-anchored &
case-sensitive
{ _id: "900006:140312",
data: [
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
{ speed: NaN, time: NaN },
...
],
conditions: {
status: "Snow / Ice Conditions",
pavement: "Icy Spots",
weather: "Light Snow"
}
}
Sample Document Structure
Pre-allocated,
60 element array of
per-minute data
Analysis with The Aggregation
Framework
Pipelining operations
Piping command line operations
Pipelining operations
grep
Piping command line operations
Pipelining operations
grep | sort
Piping command line operations
Pipelining operations
grep | sort | uniq
Piping command line operations
Pipelining operations
Piping aggregation operations
Pipelining operations
$match
Piping aggregation operations
Stream of documents
Pipelining operations
$match $group|
Piping aggregation operations
Stream of documents
Pipelining operations
$match $group | $sort|
Piping aggregation operations
Stream of documents
Pipelining operations
$match $group | $sort|
Piping aggregation operations
Stream of documents Result documents
What is the average speed for a
given road segment?
> db.linkData.aggregate(
{ $match: { "_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, segId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$segId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Select documents on the target segment
> db.linkData.aggregate(
{ $match: { "_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, segId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$segId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Keep only the fields we really need
> db.linkData.aggregate(
{ $match: { "_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, segId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$segId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Loop over the array of data points
> db.linkData.aggregate(
{ $match: { "_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, segId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$segId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
What is the average speed for a
given road segment?
Use the handy $avg operator
> db.linkData.aggregate(
{ $match: { "_id" : /^20484097:/ } },
{ $project: { "data.speed": 1, segId: 1 } } ,
{ $unwind: "$data"},
{ $group: { _id: "$segId", ave: { $avg: "$data.speed"} } }
);
{ "_id" : 20484097, "ave" : 47.067650676506766 }
More Sophisticated Pipelines:
average speed with variance
{ "$project" : {
mean: "$meanSpd",
spdDiffSqrd : {
"$map" : {
"input": {
"$map" : {
"input" : "$speeds",
"as" : "samp",
"in" : { "$subtract" : [ "$$samp", "$meanSpd" ] }
}
},
as: "df", in: { $multiply: [ "$$df", "$$df" ] }
} } } },
{ $unwind: "$spdDiffSqrd" },
{ $group: { _id: mean: "$mean", variance: { $avg: "$spdDiffSqrd" } } }
High Volume Data Feed (HVDF)
High Volume Data Feed (HVDF)
• Framework for time series data
• Validate, store, aggregate, query, purge
• Simple RESTAPI
• Batch ingest
• Tasks
– Indexing
– Data retention
High Volume Data Feed (HVDF)
• Customized via plugins
– Time slicing into collections, purging
– Storage granularity of raw events
– _id generation
– Interceptors
• Open source
– https://github.com/10gen-labs/hvdf
Summary
• Tailor your schema to your application workload
• Bucketing/aggregating events will
– Improve write performance: inserts  updates
– Improve analytics performance: fewer document reads
– Reduce index size  reduce memory requirements
• Aggregation framework for analytic queries
Questions?

More Related Content

What's hot

What's hot (20)

Replicate Elasticsearch Data with Cross-Cluster Replication (CCR)
Replicate Elasticsearch Data with Cross-Cluster Replication (CCR)Replicate Elasticsearch Data with Cross-Cluster Replication (CCR)
Replicate Elasticsearch Data with Cross-Cluster Replication (CCR)
 
Lucene basics
Lucene basicsLucene basics
Lucene basics
 
PostgreSQL
PostgreSQLPostgreSQL
PostgreSQL
 
InfluxDB 101 - Concepts and Architecture | Michael DeSa | InfluxData
InfluxDB 101 - Concepts and Architecture | Michael DeSa | InfluxDataInfluxDB 101 - Concepts and Architecture | Michael DeSa | InfluxData
InfluxDB 101 - Concepts and Architecture | Michael DeSa | InfluxData
 
PostgreSQL
PostgreSQL PostgreSQL
PostgreSQL
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
 
Building a Versatile Analytics Pipeline on Top of Apache Spark with Mikhail C...
Building a Versatile Analytics Pipeline on Top of Apache Spark with Mikhail C...Building a Versatile Analytics Pipeline on Top of Apache Spark with Mikhail C...
Building a Versatile Analytics Pipeline on Top of Apache Spark with Mikhail C...
 
Real-time Analytics with Upsert Using Apache Kafka and Apache Pinot | Yupeng ...
Real-time Analytics with Upsert Using Apache Kafka and Apache Pinot | Yupeng ...Real-time Analytics with Upsert Using Apache Kafka and Apache Pinot | Yupeng ...
Real-time Analytics with Upsert Using Apache Kafka and Apache Pinot | Yupeng ...
 
Spark with Delta Lake
Spark with Delta LakeSpark with Delta Lake
Spark with Delta Lake
 
Iceberg: a fast table format for S3
Iceberg: a fast table format for S3Iceberg: a fast table format for S3
Iceberg: a fast table format for S3
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
 
Open Source North - MongoDB Advanced Schema Design Patterns
Open Source North - MongoDB Advanced Schema Design PatternsOpen Source North - MongoDB Advanced Schema Design Patterns
Open Source North - MongoDB Advanced Schema Design Patterns
 
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and PinotExactly-Once Financial Data Processing at Scale with Flink and Pinot
Exactly-Once Financial Data Processing at Scale with Flink and Pinot
 
Everything You Always Wanted to Know About Kafka's Rebalance Protocol but Wer...
Everything You Always Wanted to Know About Kafka's Rebalance Protocol but Wer...Everything You Always Wanted to Know About Kafka's Rebalance Protocol but Wer...
Everything You Always Wanted to Know About Kafka's Rebalance Protocol but Wer...
 
Elasticsearch
ElasticsearchElasticsearch
Elasticsearch
 
Implementing Domain Events with Kafka
Implementing Domain Events with KafkaImplementing Domain Events with Kafka
Implementing Domain Events with Kafka
 
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...HTTP Analytics for 6M requests per second using ClickHouse, by  Alexander Boc...
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...
 
Introducing Confluent labs Parallel Consumer client | Anthony Stubbes, Confluent
Introducing Confluent labs Parallel Consumer client | Anthony Stubbes, ConfluentIntroducing Confluent labs Parallel Consumer client | Anthony Stubbes, Confluent
Introducing Confluent labs Parallel Consumer client | Anthony Stubbes, Confluent
 
Kafka Tutorial: Kafka Security
Kafka Tutorial: Kafka SecurityKafka Tutorial: Kafka Security
Kafka Tutorial: Kafka Security
 
NoSQL Essentials: Cassandra
NoSQL Essentials: CassandraNoSQL Essentials: Cassandra
NoSQL Essentials: Cassandra
 

Similar to MongoDB for Time Series Data

MongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB for Time Series Data: Setting the Stage for Sensor ManagementMongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB
 
Barga IC2E & IoTDI'16 Keynote
Barga IC2E & IoTDI'16 KeynoteBarga IC2E & IoTDI'16 Keynote
Barga IC2E & IoTDI'16 Keynote
Roger Barga
 

Similar to MongoDB for Time Series Data (20)

MongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB for Time Series Data: Setting the Stage for Sensor ManagementMongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB for Time Series Data: Setting the Stage for Sensor Management
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
 
Mongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - BrignoliMongo db 2.4 time series data - Brignoli
Mongo db 2.4 time series data - Brignoli
 
Webinar: Best Practices for Getting Started with MongoDB
Webinar: Best Practices for Getting Started with MongoDBWebinar: Best Practices for Getting Started with MongoDB
Webinar: Best Practices for Getting Started with MongoDB
 
MongoDB Best Practices
MongoDB Best PracticesMongoDB Best Practices
MongoDB Best Practices
 
Webinar: MongoDB Use Cases within the Oil, Gas, and Energy Industries
Webinar: MongoDB Use Cases within the Oil, Gas, and Energy IndustriesWebinar: MongoDB Use Cases within the Oil, Gas, and Energy Industries
Webinar: MongoDB Use Cases within the Oil, Gas, and Energy Industries
 
Cloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark AnalyticsCloud Security Monitoring and Spark Analytics
Cloud Security Monitoring and Spark Analytics
 
Optimizing industrial operations using the big data ecosystem
Optimizing industrial operations using the big data ecosystemOptimizing industrial operations using the big data ecosystem
Optimizing industrial operations using the big data ecosystem
 
Codemotion Milano 2014 - MongoDB and the Internet of Things
Codemotion Milano 2014 - MongoDB and the Internet of ThingsCodemotion Milano 2014 - MongoDB and the Internet of Things
Codemotion Milano 2014 - MongoDB and the Internet of Things
 
AWS Webcast - Introduction to Amazon Kinesis
AWS Webcast - Introduction to Amazon KinesisAWS Webcast - Introduction to Amazon Kinesis
AWS Webcast - Introduction to Amazon Kinesis
 
Design and Implementation of A Data Stream Management System
Design and Implementation of A Data Stream Management SystemDesign and Implementation of A Data Stream Management System
Design and Implementation of A Data Stream Management System
 
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
 Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
Monitoring and Scaling Redis at DataDog - Ilan Rabinovitch, DataDog
 
Stream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdaysStream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdays
 
Day 5 - Real-time Data Processing/Internet of Things (IoT) with Amazon Kinesis
Day 5 - Real-time Data Processing/Internet of Things (IoT) with Amazon KinesisDay 5 - Real-time Data Processing/Internet of Things (IoT) with Amazon Kinesis
Day 5 - Real-time Data Processing/Internet of Things (IoT) with Amazon Kinesis
 
Intelligent Monitoring
Intelligent MonitoringIntelligent Monitoring
Intelligent Monitoring
 
Azure Stream Analytics : Analyse Data in Motion
Azure Stream Analytics  : Analyse Data in MotionAzure Stream Analytics  : Analyse Data in Motion
Azure Stream Analytics : Analyse Data in Motion
 
Shikha fdp 62_14july2017
Shikha fdp 62_14july2017Shikha fdp 62_14july2017
Shikha fdp 62_14july2017
 
Barga IC2E & IoTDI'16 Keynote
Barga IC2E & IoTDI'16 KeynoteBarga IC2E & IoTDI'16 Keynote
Barga IC2E & IoTDI'16 Keynote
 
MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...
MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...
MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...
 
MongoDB IoT City Tour EINDHOVEN: Managing the Database Complexity
MongoDB IoT City Tour EINDHOVEN: Managing the Database ComplexityMongoDB IoT City Tour EINDHOVEN: Managing the Database Complexity
MongoDB IoT City Tour EINDHOVEN: Managing the Database Complexity
 

More from MongoDB

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

MongoDB for Time Series Data

  • 1. MongoDB for Time Series Data Principal Technologist and Technical Director Chris Biow @chris_biow #MongoDBTimeSeries
  • 2. What is Time Series Data?
  • 3. Time Series A time series is a sequence of data points, typically consisting of successive measurements made over a time interval. – Wikipedia j.mp/1yLbf1s 0 2 4 6 8 10 12 time
  • 4. Time Series Data is Everywhere • Financial markets pricing (stock ticks) • Sensors (temperature, pressure, proximity) • Industrial fleets (location, velocity, operational) • Social networks (status updates) • Mobile devices (calls, texts) • Systems (server logs, application logs)
  • 5. Time Series Data is Everywhere
  • 6. • Tool for managing & monitoring MongoDB systems – 100+ system metrics visualized and alerted • 35,000+ MongoDB systems submitting data every 60 seconds • 90% updates, 10% reads • ~30,000 updates/second • ~3.2B operations/day • 8 x86-64 servers Example: MMS Monitoring
  • 8. Time Series Data at a Higher Level • Widely applicable data model • Applies to several different "data use cases" • Various schema and modeling options • Application requirements drive schema design
  • 9. Time Series Data Considerations • Arrival rate & ingest performance • Resolution of raw events • Resolution needed to support – Applications – Analysis – Reporting • Data retention policies
  • 10. Data Retention • How long is data required? • Strategies for purging data – TTL collections – Capped collections – Batch remove({query}) – Drop collection • Performance – Can effectively double write load – Fragmentation and Record Reuse – Index updates
  • 11. Application Requirements Event Resolution Analysis – Dashboards – Analytics – Reporting Data Retention Policies Event and Query Volumes
  • 12. Application Requirements Event Resolution Analysis – Dashboards – Analytics – Reporting Data Retention Policies Event and Query Volumes Schema Design
  • 13. Application Requirements Event Resolution Analysis – Dashboards – Analytics – Reporting Data Retention Policies Event and Query Volumes Schema Design Aggregation Queries
  • 14. Application Requirements Event Resolution Analysis – Dashboards – Analytics – Reporting Data Retention Policies Event and Query Volumes Schema Design Aggregation Queries Cluster Architecture
  • 16.
  • 17.
  • 18. Develop Nationwide traffic monitoring system
  • 19. What we want from our data Charting and Trending
  • 20. What we want from our data Historical & Predictive Analysis
  • 21. What we want from our data Real Time Traffic Dashboard
  • 22. Traffic sensors to monitor interstate conditions • 16,000 sensors • Measure • Speed • Travel time • Weather, pavement, and traffic conditions • Frequency: average one sample per minute • Support desktop, mobile, and car navigation systems
  • 23. Other requirements • Need to keep 3 year history • Three data centers • VA, Chicago, LA • Need to support 5M simultaneous users • Peak volume (rush hour) • Every minute, each request the 10 minute average speed for 50 sensors
  • 24. Master Agenda • Design a MongoDB application for scale • Use case: traffic data • Presentation Components 1. Schema Design 2. Aggregation 3. Cluster Architecture
  • 26. Schema Design Goals • Store raw event data • Support analytical queries • Find best compromise of: – Memory utilization – Write performance – Read/analytical query performance • Accomplish with realistic amount of hardware
  • 27. Designing For Reading, Writing, … • Document per … – event – minute (average) – minute (seconds) – hour
  • 28. Document Per Event { segId: "I495_mile23", date: ISODate("2013-10-16T22:07:38.000-0500"), speed: 63 } • Familiar pattern from relational databases • Insert-driven workload • Aggregations computed at application-level
  • 29. Document Per Minute (Average) { segId: "I495_mile23", date: ISODate("2013-10-16T22:07:00.000-0500"), speed_count: 18, speed_sum: 1134, } • Pre-aggregate to compute average per minute more easily • Update-driven workload • Resolution at the minute-level • Note: averaging speeds may not be valid for some purposes (average of averages); used here for simplicity of example.
  • 30. Document Per Minute (By Second) { segId: "I495_mile23", date: ISODate("2013-10-16T22:07:00.000-0500"), speed: { 0: 63, 1: 58, …, 58: 66, 59: 64 } } • Store per-second data at the minute level • Update-driven workload • Pre-allocate structure to avoid document moves
  • 31. Document Per Hour (By Second) { segId: "I495_mile23", date: ISODate("2013-10-16T22:00:00.000-0500"), speed: { 0: 63, 1: 58, …, 3598: 45, 3599: 55 } } • Store per-second data at the hourly level • Update-driven workload • Pre-allocate structure to avoid document moves • Updating last second requires 3599 steps
  • 32. Document Per Hour (By Second) { segId: "I495_mile23", date: ISODate("2013-10-16T22:00:00.000-0500"), speed: { 0: {0: 47, …, 59: 45}, …. 59: {0: 65, …, 59: 66} } } • Store per-second data at the hourly level with nesting • Update-driven workload • Pre-allocate structure to avoid document moves • Updating last second requires 59+59 steps
  • 33. Characterizing Write Differences • Example: data generated every second • For 1 minute: • Transition from insert driven to update driven – Individual writes are smaller – Performance and concurrency benefits Document Per Event 60 writes Document Per Minute 1 write, 59 updates
  • 34. Characterizing Read Differences • Example: data generated every second • Reading data for a single hour requires: • Read performance is greatly improved – Optimal with tuned block sizes and read ahead – Fewer disk seeks Document Per Event 3600 reads Document Per Minute 60 reads
  • 35. Characterizing Memory Differences • _id index for 1 billion events: • _id index plus segId and date index: • Memory requirements significantly reduced – Fewer shards – Lower capacity servers Document Per Event ~32 GB Document Per Minute ~.5 GB Document Per Event ~100 GB Document Per Minute ~2 GB
  • 37. Quick Analysis Writes – 16,000 sensors, 1 insert/update per minute – 16,000 / 60 = 267 inserts/updates per second Reads – 5M simultaneous users – Each requests 10 minute average for 50 sensors every minute
  • 38. Tailor your schema to your application workload
  • 39. Reads: Impact of Alternative Schemas 10 minute average query Schema 1 sensor 50 sensors 1 doc per event 10 500 1 doc per 10 min 1.9 95 1 doc per hour 1.3 65 Query: Find the average speed over the last ten minutes 10 minute average query with 5M users Schema ops/sec 1 doc per event 42M 1 doc per 10 min 8M 1 doc per hour 5.4M
  • 40. Writes: Impact of alternative schemas 1 Sensor - 1 Hour Schema Inserts Updates doc/event 60 0 doc/10 min 6 54 doc/hour 1 59 16000 Sensors – 1 Day Schema Inserts Updates doc/event 23M 0 doc/10 min 2.3M 21M doc/hour .38M 22.7M
  • 41. Sample Document Structure Compound, unique Index identifies the Individual document { _id: ObjectId("5382ccdd58db8b81730344e2"), segId: "900006", date: ISODate("2014-03-12T17:00:00Z"), data: [ { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, ... ], conditions: { status: "Snow / Ice Conditions", pavement: "Icy Spots", weather: "Light Snow" } }
  • 42. Memory: Impact of alternative schemas 1 Sensor - 1 Hour Schema # of Documents Index Size (bytes) doc/event 60 4200 doc/10 min 6 420 doc/hour 1 70 16000 Sensors – 1 Day Schema # of Documents Index Size doc/event 23M 1.3 GB doc/10 min 2.3M 131 MB doc/hour .38M 1.4 MB
  • 43. Sample Document Structure Saves an extra index { _id: "900006:14031217", data: [ { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, ... ], conditions: { status: "Snow / Ice Conditions", pavement: "Icy Spots", weather: "Light Snow" } }
  • 44. { _id: "900006:14031217", data: [ { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, ... ], conditions: { status: "Snow / Ice Conditions", pavement: "Icy Spots", weather: "Light Snow" } } Sample Document Structure Range queries: /^900006:1403/ Regex must be left-anchored & case-sensitive
  • 45. { _id: "900006:140312", data: [ { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, { speed: NaN, time: NaN }, ... ], conditions: { status: "Snow / Ice Conditions", pavement: "Icy Spots", weather: "Light Snow" } } Sample Document Structure Pre-allocated, 60 element array of per-minute data
  • 46. Analysis with The Aggregation Framework
  • 49. Pipelining operations grep | sort Piping command line operations
  • 50. Pipelining operations grep | sort | uniq Piping command line operations
  • 52. Pipelining operations $match Piping aggregation operations Stream of documents
  • 53. Pipelining operations $match $group| Piping aggregation operations Stream of documents
  • 54. Pipelining operations $match $group | $sort| Piping aggregation operations Stream of documents
  • 55. Pipelining operations $match $group | $sort| Piping aggregation operations Stream of documents Result documents
  • 56. What is the average speed for a given road segment? > db.linkData.aggregate( { $match: { "_id" : /^20484097:/ } }, { $project: { "data.speed": 1, segId: 1 } } , { $unwind: "$data"}, { $group: { _id: "$segId", ave: { $avg: "$data.speed"} } } ); { "_id" : 20484097, "ave" : 47.067650676506766 }
  • 57. What is the average speed for a given road segment? Select documents on the target segment > db.linkData.aggregate( { $match: { "_id" : /^20484097:/ } }, { $project: { "data.speed": 1, segId: 1 } } , { $unwind: "$data"}, { $group: { _id: "$segId", ave: { $avg: "$data.speed"} } } ); { "_id" : 20484097, "ave" : 47.067650676506766 }
  • 58. What is the average speed for a given road segment? Keep only the fields we really need > db.linkData.aggregate( { $match: { "_id" : /^20484097:/ } }, { $project: { "data.speed": 1, segId: 1 } } , { $unwind: "$data"}, { $group: { _id: "$segId", ave: { $avg: "$data.speed"} } } ); { "_id" : 20484097, "ave" : 47.067650676506766 }
  • 59. What is the average speed for a given road segment? Loop over the array of data points > db.linkData.aggregate( { $match: { "_id" : /^20484097:/ } }, { $project: { "data.speed": 1, segId: 1 } } , { $unwind: "$data"}, { $group: { _id: "$segId", ave: { $avg: "$data.speed"} } } ); { "_id" : 20484097, "ave" : 47.067650676506766 }
  • 60. What is the average speed for a given road segment? Use the handy $avg operator > db.linkData.aggregate( { $match: { "_id" : /^20484097:/ } }, { $project: { "data.speed": 1, segId: 1 } } , { $unwind: "$data"}, { $group: { _id: "$segId", ave: { $avg: "$data.speed"} } } ); { "_id" : 20484097, "ave" : 47.067650676506766 }
  • 61. More Sophisticated Pipelines: average speed with variance { "$project" : { mean: "$meanSpd", spdDiffSqrd : { "$map" : { "input": { "$map" : { "input" : "$speeds", "as" : "samp", "in" : { "$subtract" : [ "$$samp", "$meanSpd" ] } } }, as: "df", in: { $multiply: [ "$$df", "$$df" ] } } } } }, { $unwind: "$spdDiffSqrd" }, { $group: { _id: mean: "$mean", variance: { $avg: "$spdDiffSqrd" } } }
  • 62. High Volume Data Feed (HVDF)
  • 63. High Volume Data Feed (HVDF) • Framework for time series data • Validate, store, aggregate, query, purge • Simple RESTAPI • Batch ingest • Tasks – Indexing – Data retention
  • 64. High Volume Data Feed (HVDF) • Customized via plugins – Time slicing into collections, purging – Storage granularity of raw events – _id generation – Interceptors • Open source – https://github.com/10gen-labs/hvdf
  • 65. Summary • Tailor your schema to your application workload • Bucketing/aggregating events will – Improve write performance: inserts  updates – Improve analytics performance: fewer document reads – Reduce index size  reduce memory requirements • Aggregation framework for analytic queries

Editor's Notes

  1. Data produced at regular intervals, ordered in time. Want to capture this data and build an application.
  2. Need to clarify the new flavors of MMS?
  3. A special index type supports the implementation of TTL collections. TTL relies on a background thread in mongod that reads the date-typed values in the index and removes expired documents from the collection.
  4. Wind speed and direction sensor Antenna for communications Traffic speed and traffic count sensor Pan-tilt-zoom color camera Precipitation and visibility sensor Air temperature and Relative Humidity sensor Road surface temperature sensor and sub surface temperature sensor below pavement
  5. 511ny.org Many states have 511 systems, data provided by dialing 511 and/or via webapp
  6. Assumptions/requirements for what we're going to spec out for this imaginary time series application
  7. Should I axe the 3 data centers bullet since we don't go into replication?
  8. Use findAndModify with the $inc operator 63 mph average
  9. *** clarify 2nd to last bullet
  10. How did we get these numbers…db.collection.stats() totalIndexSize, indexSizes []
  11. Point out 1 doc per minute granularity, not per second 5M users performing 10 minute average
  12. Need to practice this
  13. Compound unique index on segId & date update field used to identify new documents for aggregation
  14. Need to redo these index sizes based on different data types for segId?