SlideShare a Scribd company logo
1 of 27
Download to read offline
LAPLACE TRANSFORMS
Definition of the Laplace transform:
0
[ ( )] ( ) ( )st
L f t f t e dt F s


 
 
0
0 0
a t
U t
t
  
 
   
0
[ ( )] ( ) ( )st
L u t u t e dt U s


 
0
0
( )
st
st ae a
U s ae dt
s s
 
 
  
( )
( )
0 0 0
1
[ ]
s a t
at at st s a e
L e e e dt e dt
s s 
   
    
   
  
Aşağıdaki rampa (ramp) fonksiyonu analitik yöntemle çözünüz
 
0
0 0
bt t
f t
t
  
 
   
0 0
( ) ( ) st st
F s f t e dt bte dt
 
 
  
 0
0 0
1
(1)
st
st ste
b te dt bt b e dt
s s
 
 
 
  
20
0
0
( ) ( )
st
stb b e b b
e dt
s s s s s s
 

     
 
Properties of Laplace transforms:
1) Linearity : a sabit bir sayı veya s ve t den bağımsız ise
L[af(t)]=aL[f(t)]=aF(s)
2) Süperpozisyon : her iki fonksiyonunda laplace dönüşümü
alınabiliyorsa
1 2 1 2 1 2[ ( ) ( )] [ ( )] [ ( )] ( ) ( )L f t f t L f t L f t F s F s    
3)Translation in time:
[ ( )] ( )as
L f t a e F s
 
4)Complex Differention:
[ ( )] ( )
d
L tf t F s
ds
 
5)Translation in the s domain:
[ ( ) ( )at
L e f t F s a
 
6)Real differantiation:
2 2
[ ( )] ( ) (0 )
[ ( )] ( ) (0) (0)
L Df t sF s f
L D f t s F s sf Df

 
  
7)Final value Theorem:
0
( ) ( )lim lims s
sF s f t
 

Example:
3
( )
( 2)
Y s
s s


Solution:
0 0 0
3 3 3
( ) ( ) ( )
( 2) 2 2lim lim lim lims s s s
y t sY s s
s s s   
   
 
8)Initial value Theorem:
0
( ) ( )lim lims s
sF s f t
 

Laplace Transforms of Most Common Functions of Time
Continuous Function Laplace Transform
Impulse 1
Step
s
1
t 2
1
s
2
t 3
2
s
at
e
as 
1
at
te 2
)(
1
as 
Sin(wt)
)( 22
ws
w

Cos(wt)
)( 22
ws
s

Örnek: 2
3
( )
( 2 5)
f s
s s s

 
1 2 3
2 2
3
( 2 5) 2 5
K K s K
s s s s s s

 
   
1 2 3
2 2
3 ( )
( 2 5) 2 5
K K s K
s s s
s s s s s s

 
   
 1
3
5
K 
2
2 3
3 6
3 ( ) ( ) 3
5 5
K s K s    
1 2 3
2 2
3
( 2 5) 2 5
K K s K
s s s s s s

 
   
2 2
1 1 1 2 33 2 5K s K s K K s K s    
 1
3
5
K  idi.
2
2 3
3 3
3 ( ) 3 (2 )
5 5
K s x K s    
2
2 3
3 6
3 ( ) 3 ( )
5 5
K s K s    
2
3
5
K   3
6
5
K  
2 2
3
3 3 25( )
( 2 5) 5 2 5
s
f s
s s s s s s

  
   
2 2
( )
[ cos ]
( )
at A s a
L Ae wt
s a w
 

 
2 2
[ sin ]
( )
at Bw
L Be wt
s a w


 
2 2
( )
[ cos sin ]
( )
at at A s a Bw
L Ae wt Be wt
s a w
   
 
 
2 2
2
3 ( 1)35 2( )
5 ( 1) 2
s
F s
s s
 
 
 
3 3 1
( ) (cos2 sin 2 )
5 5 2
t
f t e t t
  
Örnek: 2
2
( )
( 1)( 2)
f s
s s

 
1 2 3
2 2
2
( )
( 1)( 2) ( 1) ( 2) 2
K K K
f s
s s s s s
   
    
2 1
2 3
2
( 2) ( 2)
1 1
K
s K s K
s s
    
 
1 2
1
2 2
2
( 1)( 2) ( 1 2)s
K
s s 
  
   
 1 2K 
2s    2 2K  
1 32 2
2 ( 2)
( 1) ( 1)
s s
K K
s s
 
 
 
2 2 2 21 2 3
2 2
2
( 2) ( 2) ( 2) ( 2)
( 1)( 2) 1 ( 2) ( 2)
K K K
s x s s s
s s s s s
      
    
1
2 3
2
( 2) ( 2)
( 1) 1
K
s K s K
s s
    
 
İşleminin türevi alındığında
s = -2’ye yaklaşır.
3 2K  
1 2 3
2 2
2
( 2) ( 2) ( 2) ( 2)
( 1)( 2) 1 ( 2) ( 2)
K K K
s s s s
s s s s s
      
    
2s   için ; 30 0 K   
2 1
2 3
2
( 2) ( 2)
1 ( 1)
K
s K s K
s s
    
 
3 12 2
(0)( 1) (1)(2) [0( 1) 1]
0 (2 4)
( 1) ( 1)
s s
K K s
s s
   
   
 
2 2
2
( 2) 2( 2)( 1) 1( 2)
( 1) ( 1)
s s s s
s s
    

 
=
2 2
2
2( 2 2) ( 2)
( 1)
s s s s
s
    

=
2 2
2
2 2 2 4 4
( 1)
s s s s s
s
     

2
( 2)
( 1)
s
s


=
2
2
2
( 1)
s s
s
 

Bir Fonksiyonun Tekil Noktaları ve Kutupları
S düzleminde tekil noktalar, fonksiyonun yada türevinin bulunmadığı
noktalardır.Kutup, tekil noktadır.
G(s) s civarında analitik ve tek değerlidir.
[( ) ( )]limi
r
i
s s
s s G s


2
10( 2)
( )
( 1)( 2)
s
G s
s s s


 
fonksiyonunun sıfırları s=-2 de bir sonlu ve
sonsuzda 3 sıfırı vardır. s=-3 de katlı, s=0 da ve s=-1 de katsız kutbu
vardır.G(s) fonksiyonu bu noktalar dışında analitiktir denir.
3
10
( ) 0lim lims s
G s
s 
 
Adi Doğrusal Diferansiyel Denklemler:
Seri RLC devresini ele alalım;
( ) 1
( ) ( ) ( )
di t
Ri t L id t e t
dt C
   ……….( )
İkinci mertebeden bir diferansiyel denklem:
1
1
11
( ) ( ) ( )
... ( ) ( )
n n
n nn n
d y t a d y t dy t
a a y t f t
dt dt dt


     ………(  )
Katsayılar y(t)’nin bir fonksiyonu olmadığı sürece doğrusal adi
diferansiyel denklemdir.
( )’da 1( ) ( )x t i t dt 
ve 1
2
( )
( ) ( )
dx t
x t i t
dt
 
2
1 2
( ) 1 1
( ) ( ) ( )
dx t R
x t x t e t
dt LC L L
   
1. mertebeden durum değişkenleri;
1
2
( ) ( )
( )
( )
x t y t
dy t
x t y
dt

  
(   ) .
.
.
1
1
1
( )
( )
n
n
n n
d y t
x t y
dt



 
1 2
2 3
x x
x x




.
.
.
1n nx x

 
1 1....n n nx a x a x u

    
Dinamik Sistemlerin Matematiksel Modeli
Lineer Sistemler: Bir sisteme süperpozisyon teoremi uygulanıyorsa
sistem lineerdir.
1 1( ) ( )x t y t
İse 1 2 1 2( ) ( ) ( ) ( )x t x t y t y t  
2 2( ) ( )x t y t
Lineer zamanla değişmeyen ve lineer zamanla değişen sistemler:
Bir diferansiyel denklemin katsayıları sabit ise veya fonksiyonları
bağımsız değişkenlerden oluşuyorsa lineerdir.( Zamanla değişen
sistemlere örnek:Uzay aracı kontrol sistemidir.Yakıt tüketiminden
dolayı uzay aracının kütlesi değişir.)
Doğrusal olmayan sistemler:Bir sisteme süperpozisyon teoremi
uygulanamıyorsa sistem nonlineerdir.
22
2
sin
d x dx
x A wt
dt dt
 
   
 
2
2
2
( 1) 0
d x dx
x x
dt dt
   
2
3
2
0
d x dx
x x
dt dt
   
Dinamik Sistemlerin Durum Uzayı Gösterimi
1( )x t ve 2 ( )x t durum değişkenleri olsun;
u(t); Giriş, 11 12 21 22 11 21, , , , ,a a a a b b ise sabit katsayılar:
1
11 1 12 2 11
( )
( ) ( ) ( )
dx t
a x t a x t b u t
dt
  
2
21 1 22 2 21
( )
( ) ( ) ( )
dx t
a x t a x t b u t
dt
  
1
2
( )
( )
( )
x t
x t
x t
 
  
 
Durum denklemleri;
( )
( ) ( ) ( )
dx t
x t Ax t Bu t
dt

   ile ifade edilir.
1
2
n
x
x
x
x
 
 
 
 
  
 
 
 
 
,
A =
1 2
0 1 0 0
0 0 1 0
0 0 0 1
n n n n xa a a a  
   
   
 
    
 
    
    
 
   
       
B =
0
0
0
1
 
 
 
 
  
 
 
 
  
çıkış ( y= Cx) Y =  
1
2
1 0 0
n
x
x
x
x
 
 
 
 
    
 
 
 
 
Filename: kon_sis_tem_2.doc
Directory: C:Documents and
SettingsAdministratorDesktopFUNDAMENTALS OF CONTROL
SYSTEMSkontrol_temelleri
Template: C:Documents and SettingsAdministratorApplication
DataMicrosoftTemplatesNormal.dotm
Title: LAPLACE TRANSFORMS
Subject:
Author: hp
Keywords:
Comments:
Creation Date: 09.10.2009 11:01:00
Change Number: 39
Last Saved On: 08.07.2010 15:34:00
Last Saved By: PERFECT
Total Editing Time: 541 Minutes
Last Printed On: 08.07.2010 15:40:00
As of Last Complete Printing
Number of Pages: 26
Number of Words: 752 (approx.)
Number of Characters: 4.293 (approx.)

More Related Content

Viewers also liked

528kasim2011 120331112702-phpapp02
528kasim2011 120331112702-phpapp02528kasim2011 120331112702-phpapp02
528kasim2011 120331112702-phpapp02Mimar Sinan Saraç
 
Cherry
CherryCherry
Cherryfukre
 
สิ่งมหัศจรรย์ของโลก
สิ่งมหัศจรรย์ของโลกสิ่งมหัศจรรย์ของโลก
สิ่งมหัศจรรย์ของโลกsupasit2702
 
สงครามโลกครั้งที่1
สงครามโลกครั้งที่1สงครามโลกครั้งที่1
สงครามโลกครั้งที่1supasit2702
 
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22phornphan1111
 

Viewers also liked (13)

wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
School
SchoolSchool
School
 
05617901
0561790105617901
05617901
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
528kasim2011 120331112702-phpapp02
528kasim2011 120331112702-phpapp02528kasim2011 120331112702-phpapp02
528kasim2011 120331112702-phpapp02
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
Cherry
CherryCherry
Cherry
 
สิ่งมหัศจรรย์ของโลก
สิ่งมหัศจรรย์ของโลกสิ่งมหัศจรรย์ของโลก
สิ่งมหัศจรรย์ของโลก
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
สงครามโลกครั้งที่1
สงครามโลกครั้งที่1สงครามโลกครั้งที่1
สงครามโลกครั้งที่1
 
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22
พระอภัยมณี ตอน พระอภัยมณีหนีนางผีเสื้อ22
 

More from Mimar Sinan Saraç

More from Mimar Sinan Saraç (9)

Bilim ve-teknik-subat-20114473
Bilim ve-teknik-subat-20114473Bilim ve-teknik-subat-20114473
Bilim ve-teknik-subat-20114473
 
Devre modelleme
Devre modellemeDevre modelleme
Devre modelleme
 
Mekanik sistemlerin-modellenmesi
Mekanik sistemlerin-modellenmesiMekanik sistemlerin-modellenmesi
Mekanik sistemlerin-modellenmesi
 
Kontrol sistemleri-4
Kontrol sistemleri-4Kontrol sistemleri-4
Kontrol sistemleri-4
 
Kontrol sistemleri-1
Kontrol sistemleri-1Kontrol sistemleri-1
Kontrol sistemleri-1
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 

Kontrol sistemleri-2

  • 1. LAPLACE TRANSFORMS Definition of the Laplace transform: 0 [ ( )] ( ) ( )st L f t f t e dt F s       0 0 0 a t U t t          0 [ ( )] ( ) ( )st L u t u t e dt U s     0 0 ( ) st st ae a U s ae dt s s       
  • 2. ( ) ( ) 0 0 0 1 [ ] s a t at at st s a e L e e e dt e dt s s                  Aşağıdaki rampa (ramp) fonksiyonu analitik yöntemle çözünüz   0 0 0 bt t f t t          0 0 ( ) ( ) st st F s f t e dt bte dt         0 0 0 1 (1) st st ste b te dt bt b e dt s s          20 0 0 ( ) ( ) st stb b e b b e dt s s s s s s           
  • 3. Properties of Laplace transforms: 1) Linearity : a sabit bir sayı veya s ve t den bağımsız ise L[af(t)]=aL[f(t)]=aF(s) 2) Süperpozisyon : her iki fonksiyonunda laplace dönüşümü alınabiliyorsa 1 2 1 2 1 2[ ( ) ( )] [ ( )] [ ( )] ( ) ( )L f t f t L f t L f t F s F s    
  • 4. 3)Translation in time: [ ( )] ( )as L f t a e F s   4)Complex Differention: [ ( )] ( ) d L tf t F s ds   5)Translation in the s domain: [ ( ) ( )at L e f t F s a  
  • 5. 6)Real differantiation: 2 2 [ ( )] ( ) (0 ) [ ( )] ( ) (0) (0) L Df t sF s f L D f t s F s sf Df       7)Final value Theorem: 0 ( ) ( )lim lims s sF s f t   
  • 6. Example: 3 ( ) ( 2) Y s s s   Solution: 0 0 0 3 3 3 ( ) ( ) ( ) ( 2) 2 2lim lim lim lims s s s y t sY s s s s s          8)Initial value Theorem: 0 ( ) ( )lim lims s sF s f t   
  • 7. Laplace Transforms of Most Common Functions of Time Continuous Function Laplace Transform Impulse 1 Step s 1 t 2 1 s 2 t 3 2 s at e as  1 at te 2 )( 1 as  Sin(wt) )( 22 ws w  Cos(wt) )( 22 ws s 
  • 8. Örnek: 2 3 ( ) ( 2 5) f s s s s    1 2 3 2 2 3 ( 2 5) 2 5 K K s K s s s s s s        1 2 3 2 2 3 ( ) ( 2 5) 2 5 K K s K s s s s s s s s s         1 3 5 K  2 2 3 3 6 3 ( ) ( ) 3 5 5 K s K s    
  • 9. 1 2 3 2 2 3 ( 2 5) 2 5 K K s K s s s s s s        2 2 1 1 1 2 33 2 5K s K s K K s K s      1 3 5 K  idi. 2 2 3 3 3 3 ( ) 3 (2 ) 5 5 K s x K s     2 2 3 3 6 3 ( ) 3 ( ) 5 5 K s K s    
  • 10. 2 3 5 K   3 6 5 K   2 2 3 3 3 25( ) ( 2 5) 5 2 5 s f s s s s s s s         2 2 ( ) [ cos ] ( ) at A s a L Ae wt s a w      2 2 [ sin ] ( ) at Bw L Be wt s a w    
  • 11. 2 2 ( ) [ cos sin ] ( ) at at A s a Bw L Ae wt Be wt s a w         2 2 2 3 ( 1)35 2( ) 5 ( 1) 2 s F s s s       3 3 1 ( ) (cos2 sin 2 ) 5 5 2 t f t e t t    Örnek: 2 2 ( ) ( 1)( 2) f s s s    1 2 3 2 2 2 ( ) ( 1)( 2) ( 1) ( 2) 2 K K K f s s s s s s         
  • 12. 2 1 2 3 2 ( 2) ( 2) 1 1 K s K s K s s        1 2 1 2 2 2 ( 1)( 2) ( 1 2)s K s s          1 2K  2s    2 2K   1 32 2 2 ( 2) ( 1) ( 1) s s K K s s      
  • 13. 2 2 2 21 2 3 2 2 2 ( 2) ( 2) ( 2) ( 2) ( 1)( 2) 1 ( 2) ( 2) K K K s x s s s s s s s s             1 2 3 2 ( 2) ( 2) ( 1) 1 K s K s K s s        İşleminin türevi alındığında s = -2’ye yaklaşır. 3 2K  
  • 14. 1 2 3 2 2 2 ( 2) ( 2) ( 2) ( 2) ( 1)( 2) 1 ( 2) ( 2) K K K s s s s s s s s s             2s   için ; 30 0 K    2 1 2 3 2 ( 2) ( 2) 1 ( 1) K s K s K s s        3 12 2 (0)( 1) (1)(2) [0( 1) 1] 0 (2 4) ( 1) ( 1) s s K K s s s           2 2 2 ( 2) 2( 2)( 1) 1( 2) ( 1) ( 1) s s s s s s        
  • 15. = 2 2 2 2( 2 2) ( 2) ( 1) s s s s s       = 2 2 2 2 2 2 4 4 ( 1) s s s s s s        2 ( 2) ( 1) s s   = 2 2 2 ( 1) s s s   
  • 16. Bir Fonksiyonun Tekil Noktaları ve Kutupları S düzleminde tekil noktalar, fonksiyonun yada türevinin bulunmadığı noktalardır.Kutup, tekil noktadır. G(s) s civarında analitik ve tek değerlidir. [( ) ( )]limi r i s s s s G s   2 10( 2) ( ) ( 1)( 2) s G s s s s     fonksiyonunun sıfırları s=-2 de bir sonlu ve sonsuzda 3 sıfırı vardır. s=-3 de katlı, s=0 da ve s=-1 de katsız kutbu vardır.G(s) fonksiyonu bu noktalar dışında analitiktir denir.
  • 17. 3 10 ( ) 0lim lims s G s s    Adi Doğrusal Diferansiyel Denklemler: Seri RLC devresini ele alalım; ( ) 1 ( ) ( ) ( ) di t Ri t L id t e t dt C    ……….( ) İkinci mertebeden bir diferansiyel denklem: 1 1 11 ( ) ( ) ( ) ... ( ) ( ) n n n nn n d y t a d y t dy t a a y t f t dt dt dt        ………(  )
  • 18. Katsayılar y(t)’nin bir fonksiyonu olmadığı sürece doğrusal adi diferansiyel denklemdir. ( )’da 1( ) ( )x t i t dt  ve 1 2 ( ) ( ) ( ) dx t x t i t dt   2 1 2 ( ) 1 1 ( ) ( ) ( ) dx t R x t x t e t dt LC L L    
  • 19. 1. mertebeden durum değişkenleri; 1 2 ( ) ( ) ( ) ( ) x t y t dy t x t y dt     (   ) . . . 1 1 1 ( ) ( ) n n n n d y t x t y dt     
  • 20. 1 2 2 3 x x x x     . . . 1n nx x    1 1....n n nx a x a x u       Dinamik Sistemlerin Matematiksel Modeli Lineer Sistemler: Bir sisteme süperpozisyon teoremi uygulanıyorsa sistem lineerdir.
  • 21. 1 1( ) ( )x t y t İse 1 2 1 2( ) ( ) ( ) ( )x t x t y t y t   2 2( ) ( )x t y t Lineer zamanla değişmeyen ve lineer zamanla değişen sistemler: Bir diferansiyel denklemin katsayıları sabit ise veya fonksiyonları bağımsız değişkenlerden oluşuyorsa lineerdir.( Zamanla değişen sistemlere örnek:Uzay aracı kontrol sistemidir.Yakıt tüketiminden dolayı uzay aracının kütlesi değişir.) Doğrusal olmayan sistemler:Bir sisteme süperpozisyon teoremi uygulanamıyorsa sistem nonlineerdir.
  • 22. 22 2 sin d x dx x A wt dt dt         2 2 2 ( 1) 0 d x dx x x dt dt     2 3 2 0 d x dx x x dt dt    
  • 23. Dinamik Sistemlerin Durum Uzayı Gösterimi 1( )x t ve 2 ( )x t durum değişkenleri olsun; u(t); Giriş, 11 12 21 22 11 21, , , , ,a a a a b b ise sabit katsayılar: 1 11 1 12 2 11 ( ) ( ) ( ) ( ) dx t a x t a x t b u t dt    2 21 1 22 2 21 ( ) ( ) ( ) ( ) dx t a x t a x t b u t dt    1 2 ( ) ( ) ( ) x t x t x t       
  • 24. Durum denklemleri; ( ) ( ) ( ) ( ) dx t x t Ax t Bu t dt     ile ifade edilir. 1 2 n x x x x                    ,
  • 25. A = 1 2 0 1 0 0 0 0 1 0 0 0 0 1 n n n n xa a a a                                           
  • 26. B = 0 0 0 1                     çıkış ( y= Cx) Y =   1 2 1 0 0 n x x x x                     
  • 27. Filename: kon_sis_tem_2.doc Directory: C:Documents and SettingsAdministratorDesktopFUNDAMENTALS OF CONTROL SYSTEMSkontrol_temelleri Template: C:Documents and SettingsAdministratorApplication DataMicrosoftTemplatesNormal.dotm Title: LAPLACE TRANSFORMS Subject: Author: hp Keywords: Comments: Creation Date: 09.10.2009 11:01:00 Change Number: 39 Last Saved On: 08.07.2010 15:34:00 Last Saved By: PERFECT Total Editing Time: 541 Minutes Last Printed On: 08.07.2010 15:40:00 As of Last Complete Printing Number of Pages: 26 Number of Words: 752 (approx.) Number of Characters: 4.293 (approx.)