SlideShare a Scribd company logo
1 of 13
Download to read offline
Age-­‐related	
  changes	
  in	
  the	
  primary	
  afferent	
  function	
  in	
  vitro	
  
Liang	
  Huang,	
  Ratan	
  Banik	
  
New	
  Jersey	
  Neuroscience	
  Institute	
  
Abstract	
  
The	
  altered	
  pain	
  perception	
  and	
  the	
  cutaneous	
  nociception	
  elicited	
  by	
  noxious	
  stimuli	
  to	
  the	
  skin	
  during	
  
senescence	
  are	
  not	
  well	
  understood,	
  and	
  it	
  is	
  thought	
  that	
  this	
  could	
  in	
  part	
  be	
  due	
  to	
  changes	
  in	
  
peripheral	
  pain	
  sensing	
  processes.	
  We	
  systematically	
  examined	
  cutaneous	
  nociceptor	
  responses	
  and	
  
nociceptive	
  behaviors	
  in	
  young	
  (2-­‐6	
  months)	
  and	
  in	
  aged	
  (18-­‐26	
  months)	
  F334/N	
  rats.	
  C-­‐fiber	
  
nociceptors	
  in	
  the	
  skin	
  were	
  identified	
  by	
  mechanical	
  stimulation,	
  and	
  extracellularly	
  recorded	
  from	
  
hind	
  paw	
  skin-­‐saphenous	
  nerve	
  preparations	
  in	
  vitro.	
  The	
  aim	
  of	
  the	
  present	
  study	
  was	
  to	
  investigate	
  
the	
  activities	
  of	
  aged	
  skin	
  nociceptors	
  systematically	
  to	
  mechanical,	
  chemical	
  stimuli,	
  and	
  to	
  compare	
  
with	
  the	
  data	
  from	
  young	
  animals.	
  Mechanical	
  threshold	
  measured	
  by	
  a	
  ramp	
  mechanical	
  stimulus	
  in	
  
the	
  aged	
  skin	
  was	
  significantly	
  higher	
  than	
  that	
  in	
  the	
  younger	
  skin.	
  The	
  latency	
  to	
  chemical	
  stimulations	
  
tended	
  to	
  be	
  longer.	
  	
  In	
  addition,	
  the	
  magnitude	
  of	
  the	
  chemical	
  response	
  during	
  the	
  60s	
  chemical	
  
stimulus	
  was	
  not	
  significantly	
  different.	
  In	
  contrast,	
  the	
  numbers	
  of	
  total	
  net	
  discharges	
  induced	
  by	
  
chemical	
  (bradykinin,	
  prostaglandin,	
  serotonin,	
  histamine)	
  stimuli	
  were	
  not	
  different	
  with	
  the	
  different	
  
ages.	
  After	
  sensitization	
  by	
  chemicals,	
  the	
  young	
  rats	
  displayed	
  a	
  stronger	
  and	
  longer	
  
mechanosensitization.	
  This	
  showed	
  for	
  the	
  first	
  time	
  that	
  not	
  only	
  receptive	
  properties	
  of	
  afferent	
  
terminals	
  but	
  also	
  mechanical	
  sensitizations	
  by	
  chemicals	
  in	
  axons	
  are	
  changed	
  in	
  aged	
  rats.	
  These	
  
results	
  showed	
  decreased	
  mechanical	
  and	
  chemical	
  responses	
  in	
  skin	
  C-­‐afferents	
  in	
  the	
  aged	
  rats.	
  
Introduction	
  	
  
With	
  advancing	
  age,	
  a	
  decline	
  in	
  the	
  sensation	
  is	
  well	
  reported	
  to	
  occur.	
  Ageing	
  influences	
  on	
  
morphological	
  and	
  functional	
  features	
  of	
  cutaneous	
  mechanical	
  transducers	
  and	
  mechanosensitive	
  ion	
  
channels,	
  sensory	
  innervation,	
  neurotransmitters	
  and	
  even	
  vascular	
  system	
  required	
  to	
  ensure	
  efferent	
  
function	
  of	
  the	
  afferent	
  nerve	
  fibres	
  in	
  the	
  skin.	
  This,	
  in	
  conjunction	
  with	
  effect	
  of	
  ageing	
  on	
  the	
  skin	
  per	
  
se	
  and	
  central	
  nervous	
  system,	
  could	
  significantly	
  affect	
  the	
  skin	
  sensation	
  among	
  the	
  ageing	
  
population.	
  However,	
  little	
  is	
  known	
  about	
  the	
  peripheral	
  neural	
  mechanisms	
  of	
  skin	
  nociception	
  in	
  the	
  
aged.	
  
Ageing	
  is	
  associated	
  with	
  reductions	
  of	
  the	
  principal	
  functions	
  of	
  the	
  skin,	
  including	
  protection,	
  
excretion,	
  secretion,	
  absorption,	
  thermoregulation,	
  pigmentogenesis,	
  and	
  regulation	
  of	
  immunological	
  
processes	
  and	
  wound	
  repair.	
  Ageing	
  is	
  also	
  associated	
  with	
  a	
  progressive	
  decline	
  in	
  cutaneous	
  thermal,	
  
vibratory	
  and	
  mechanical	
  sensory	
  perception	
  (Guergova	
  S.,	
  Thermal	
  sensitivity	
  in	
  the	
  elderly:	
  a	
  review	
  
Ageing	
  Res.	
  Rev.,	
  10	
  (2011),	
  Lin	
  Y.H.,	
  Influence	
  of	
  aging	
  on	
  thermal	
  and	
  vibratory	
  thresholds	
  of	
  
quantitative	
  sensory	
  testing.	
  J.	
  Peripher.	
  Nerv.	
  Syst.,	
  2005	
  and	
  Taguchi,	
  2010).	
  However,	
  the	
  change	
  with	
  
age	
  in	
  pain	
  perception	
  in	
  humans	
  and	
  the	
  nociceptive	
  behaviors	
  in	
  animals	
  elicited	
  by	
  noxious	
  stimuli	
  to	
  
the	
  skin	
  are	
  not	
  well	
  understood,	
  and	
  little	
  is	
  known	
  about	
  the	
  peripheral	
  neural	
  mechanisms	
  of	
  
cutaneous	
  nociception	
  in	
  the	
  aged	
  and	
  responses	
  to	
  mechanical	
  stimulation	
  and	
  to	
  inflammatory	
  soup	
  
were	
  not	
  recorded.	
  The	
  sensitizations	
  of	
  mechanical	
  response	
  by	
  inflammatory	
  soup	
  from	
  different	
  age	
  
groups	
  remain	
  unclear.	
  To	
  date,	
  nearly	
  all	
  attempts	
  to	
  characterize	
  aged	
  afferent	
  fibers	
  have	
  utilized	
  
structural,	
  biochemical,	
  or	
  molecular	
  measures1-­‐12
.	
  Morphologic	
  studies	
  reported	
  several	
  abnormalities	
  
after	
  aging	
  such	
  as	
  demyelination,	
  axonal	
  atrophy,	
  reduction	
  in	
  the	
  expression	
  of	
  cytoskeletal	
  
proteins5,9,10
.	
  Biochemical	
  studies	
  found	
  reduction	
  of	
  neuropeptide	
  expression13
	
  and	
  molecular	
  studies	
  
found	
  reduction	
  in	
  the	
  expression	
  of	
  the	
  molecules	
  necessary	
  for	
  transduction	
  of	
  natural	
  stimuli6,7,11
.	
  
Using	
  an	
  in	
  vitro	
  skin-­‐saphenous	
  nerve	
  preparation,	
  single-­‐fiber	
  recordings	
  were	
  made	
  from	
  mechano-­‐
heat	
  sensitive	
  C-­‐fiber	
  nociceptors	
  innervating	
  rat	
  glabrous	
  hind	
  paw	
  skin,	
  and	
  their	
  responses	
  were	
  
compared	
  with	
  those	
  obtained	
  from	
  different	
  age	
  groups.	
  Responses	
  to	
  mechanical	
  stimulation	
  and	
  to	
  
inflammatory	
  soup	
  were	
  tested.	
  The	
  sensitizations	
  of	
  mechanical	
  response	
  by	
  inflammatory	
  soup	
  from	
  
different	
  age	
  groups	
  were	
  also	
  investigated.	
  
Methods	
  
Animals	
  
	
  Experiments	
  were	
  performed	
  on	
  52	
  male	
  F344/N	
  rats	
  of	
  various	
  ages.	
  Two	
  months	
  (n=13),	
  6	
  months	
  
(n=22),	
  	
  	
  18	
  months	
  (n=6),	
  and	
  26	
  month	
  (n=11)	
  old	
  rats	
  were	
  purchased	
  from	
  National	
  Institute	
  of	
  
Aging,	
  Bethesda,	
  Maryland,	
  USA.	
  	
  Two	
  to	
  four	
  animals	
  were	
  placed	
  
in	
  plastic	
  cages	
  with	
  sawdust	
  bedding	
  
and	
  housed	
  in	
  a	
  climate-­‐controlled	
  room	
  under	
  a	
  14/10	
  hr	
  light/dark	
  cycle.	
  The	
  Animal	
  Care	
  and	
  Use	
  
Committee	
  at	
  The	
  Seton	
  Hall	
  University,	
  South	
  Orange,	
  New	
  Jersey,	
  USA	
  has	
  approved	
  experiments,	
  and	
  
the	
  animals	
  were	
  treated	
  in	
  accordance	
  with	
  the	
  Ethical	
  Guidelines	
  for	
  Investigations	
  of	
  Experimental	
  
Pain	
  in	
  Conscious	
  Animals.	
  
Organ	
  bath	
  	
  
Electrophysiological	
  recordings	
  were	
  performed	
  in	
  animals.	
  Animals	
  were	
  killed	
  using	
  CO2	
  inhalation;	
  
then	
  hairy	
  skin	
  of	
  the	
  rat	
  hind	
  paw	
  and	
  its	
  intact	
  saphenous	
  nerve	
  were	
  dissected	
  free	
  from	
  muscles	
  and	
  
tendons.	
  The	
  preparation	
  was	
  then	
  placed	
  in	
  an	
  organ	
  bath	
  and	
  was	
  continuously	
  super	
  fused	
  with	
  a	
  
modified	
  Krebs-­‐Henseleit	
  solution	
  (in	
  mM:	
  110.9	
  NaCl,	
  4.8	
  KCl,	
  2.5	
  CaCl2,	
  1.2	
  MgSO4,	
  1.2	
  KH2So4,	
  24.4	
  
NaHCO3,	
  and	
  20	
  glucose),	
  which	
  was	
  saturated	
  with	
  a	
  gas	
  mixture	
  of	
  95%	
  O2	
  and	
  5%	
  CO2.	
  The	
  
temperature	
  of	
  the	
  bath	
  solution	
  was	
  maintained	
  at	
  34	
  ±	
  1°C.	
  After	
  dissection,	
  the	
  preparation	
  was	
  
placed	
  with	
  ‘epidermal	
  side	
  down’.	
  The	
  nerves	
  attached	
  to	
  the	
  skin	
  were	
  drawn	
  through	
  one	
  small	
  hole	
  
to	
  the	
  second	
  chamber,	
  which	
  was	
  filled	
  with	
  liquid	
  paraffin.	
  The	
  nerves	
  were	
  placed	
  on	
  a	
  fixed	
  mirror,	
  
their	
  sheaths	
  removed	
  and	
  nerve	
  filaments	
  repeatedly	
  teased	
  to	
  allow	
  single	
  fiber	
  recording	
  to	
  be	
  made	
  
by	
  using	
  double-­‐platinum	
  electrodes	
  (one	
  for	
  recording	
  and	
  another	
  for	
  reference).	
  Single	
  nociceptive	
  
afferent	
  fibers	
  were	
  recorded	
  extracellularly	
  with	
  a	
  differential	
  amplifier	
  (DAM50,	
  Harvard	
  Apparatus,	
  
Holliston,	
  MA).	
  Neural	
  activity	
  was	
  amplified	
  and	
  filtered	
  using	
  standard	
  techniques.	
  Amplified	
  signals	
  
were	
  led	
  to	
  a	
  digital	
  oscilloscope	
  and	
  an	
  audio	
  monitor	
  and	
  fed	
  into	
  PC	
  computer	
  via	
  a	
  data	
  acquisition	
  
system	
  (spike2/CED1401	
  program).	
  Action	
  potentials	
  collected	
  on	
  a	
  computer	
  were	
  analyzed	
  off-­‐line	
  
with	
  a	
  template	
  matching	
  function	
  of	
  spike	
  2	
  software.	
  
Identification	
  of	
  afferents	
  
The	
  search	
  strategy	
  was	
  mechanical	
  stimulation	
  by	
  a	
  fire-­‐polished	
  glass	
  rod;	
  thus,	
  mechanosensitive	
  
afferents	
  were	
  characterized.	
  Only	
  units	
  with	
  a	
  clearly	
  distinguished	
  signal	
  to	
  noise	
  ratio	
  were	
  further	
  
studied.	
  Rapidly	
  adapting,	
  low	
  threshold	
  A-­‐β	
  and	
  D-­‐hair	
  fibers	
  were	
  not	
  studied.	
  After	
  the	
  initial	
  
assessment,	
  fibers	
  were	
  evaluated	
  for	
  their	
  responsiveness	
  to	
  controlled	
  mechanical	
  stimuli	
  and	
  a	
  
cocktail	
  of	
  chemicals,	
  previously	
  termed	
  as	
  ‘inflammatory	
  soup’.	
  In	
  this	
  study,	
  ingredients	
  of	
  this	
  soup	
  
and	
  concentrations	
  were	
  different	
  from	
  other	
  studies	
  and	
  the	
  pH	
  was	
  normal	
  (7.4).	
  Aliquots	
  (20	
  µl)	
  of	
  
chemical	
  cocktail	
  were	
  prepared	
  by	
  combining	
  bradykinin,	
  serotonin,	
  and	
  histamine	
  dissolved	
  in	
  distilled	
  
water	
  with	
  prostaglandin	
  E2	
  dissolved	
  in	
  dimethyl	
  sulfoxide	
  (DMSO)	
  and	
  stored	
  at	
  -­‐20°C.	
  The	
  aliquots	
  
were	
  diluted	
  to	
  final	
  concentration	
  (10	
  µM)	
  in	
  neutral	
  (7.4)	
  Krebs’	
  solution	
  on	
  the	
  day	
  of	
  the	
  experiment.	
  
All	
  chemicals	
  were	
  obtained	
  from	
  Sigma-­‐Aldrich	
  (St.	
  Louis,	
  MO).	
  The	
  decision	
  to	
  use	
  10	
  µM	
  
concentration	
  of	
  the	
  soup	
  was	
  based	
  on	
  the	
  results	
  of	
  published	
  studies	
  (14,15
).	
  	
  
Conduction	
  Velocity	
  and	
  Fiber	
  Categorization	
  
	
  In this study we concentrated on the C-fiber nociceptors. The	
  conduction	
  velocity	
  was	
  always	
  
measured	
  at	
  the	
  end	
  of	
  the	
  experiment	
  to	
  avoid	
  damage	
  to	
  the	
  receptive	
  field	
  or	
  alteration	
  of	
  fiber	
  
properties.	
  The	
  conduction	
  velocity	
  of	
  the	
  axon	
  was	
  determined	
  by	
  monopolar	
  electrical	
  stimulation	
  
through	
  an	
  epoxy-­‐coated	
  electrode.	
  The	
  electrical	
  stimulation	
  (1-­‐20	
  V	
  at	
  0.2-­‐1	
  Hz	
  for	
  0.5-­‐2	
  ms)	
  was	
  
delivered	
  at	
  the	
  sensitive	
  spot	
  of	
  a	
  receptive	
  field.	
  The	
  intensity	
  of	
  the	
  stimulus	
  started	
  form	
  0.1	
  V	
  and	
  
gradually	
  increased	
  until	
  the	
  similar	
  shape	
  spike	
  appeared.	
  The	
  distance	
  between	
  receptive	
  field	
  and	
  the	
  
recording	
  electrode	
  (conduction	
  distance)	
  was	
  divided	
  by	
  the	
  latency	
  of	
  the	
  action	
  potential	
  (stimulus	
  
artifact	
  to	
  the	
  appearance	
  to	
  spike).	
  
The	
  fibers	
  were	
  classified	
  using	
  criteria	
  from	
  Leem	
  et	
  al.16
	
  Afferent	
  fibers	
  conducting	
  slower	
  than	
  2.5	
  m/s	
  
were	
  classified	
  as	
  C-­‐fibers,	
  those	
  conducting	
  between	
  2.5	
  m/s	
  and	
  24	
  m/s	
  as	
  Aδ-­‐fibers,	
  and	
  those	
  
conducting	
  faster	
  than	
  24	
  m/s	
  as	
  Aβ-­‐fibers.	
  Units	
  were	
  classified	
  as	
  mechanosensitive	
  nociceptors	
  on	
  
the	
  basis	
  of	
  their	
  graded	
  response	
  throughout	
  the	
  innocuous	
  and	
  noxious	
  range	
  of	
  mechanical	
  force	
  
stimuli.	
  Rapidly	
  adapting	
  fibers	
  were	
  not	
  studied. 	
  
Feedback	
  –controlled	
  mechanical	
  stimulation	
  
To	
  measure	
  quantitative	
  mechanosensitivity,	
  a	
  servo	
  force-­‐controlled	
  mechanical	
  stimulator(Series	
  300B	
  
Dual	
  Mode	
  Servo	
  System;	
  Aurora	
  Scientific,	
  Aurora,	
  Ontario,	
  Canada)17
were	
  used.	
  	
  	
  	
  A	
  flat	
  and	
  cylindrical	
  
metal	
  probe	
  (tip	
  diameter,	
  0.7	
  mm)	
  attached	
  to	
  the	
  tip	
  of	
  the	
  stimulator	
  arm	
  was	
  placed	
  just	
  close	
  to	
  
the	
  receptive	
  field	
  so	
  that	
  no	
  force	
  was	
  generated.	
  Servo-­‐controlled	
  mechanical	
  stimulation	
  (Series	
  300B	
  
dual	
  mode	
  servo	
  system,	
  Aurora	
  Scientific,	
  Canada)	
  was	
  used	
  to	
  measure	
  mechanosensitivity.	
  	
  The	
  
computer	
  controlled	
  ascending	
  series	
  of	
  square-­‐shaped	
  force	
  stimuli	
  was	
  applied	
  to	
  the	
  most	
  sensitive	
  
spot	
  of	
  the	
  receptive	
  field	
  at	
  60-­‐s	
  intervals.	
  Since	
  the	
  neural	
  responses	
  of	
  cutaneous	
  mechanosensitive	
  
nociceptors	
  to	
  mechanical	
  stimuli	
  are	
  highly	
  correlated	
  with	
  compressive	
  stress	
  (force)	
  than	
  compressive	
  
strain	
  (	
  displacement),17
	
  sustained	
  force-­‐controlled	
  stimuli	
  (	
  rise	
  time,	
  100ms;	
  duration	
  of	
  sustained	
  
force	
  plateau,	
  1.9s)	
  were	
  applied.	
  Each	
  force	
  stimulus	
  was	
  2s	
  in	
  duration	
  and	
  started	
  from	
  zero	
  to	
  12,	
  32,	
  
52,	
  72,	
  92,112,132,151,171,191,210mN.	
  When	
  an	
  afferent	
  produced	
  a	
  response	
  to	
  a	
  particular	
  force	
  
controlled	
  ramp,	
  it	
  received	
  additional	
  ascending	
  series	
  of	
  stimuli	
  to	
  construct	
  stimulus	
  response	
  curve	
  
(as	
  shown	
  in	
  Fig.	
  1).	
  The	
  total	
  number	
  of	
  spikes	
  generated	
  during	
  ascending	
  series	
  of	
  force	
  pulses	
  before	
  
112mN	
  is	
  compared	
  between	
  different	
  age	
  groups	
  (see	
  Fig.	
  1).	
  The	
  mechanical	
  threshold	
  of	
  units	
  was	
  
determined	
  when	
  an	
  afferent	
  produced	
  a	
  response	
  to	
  a	
  particular	
  force	
  controlled	
  ramp.
	
  
Chemical	
  Stimulation	
  	
  
After	
  mechanical	
  stimulation,	
  chemosensitivity	
  was	
  assessed	
  using	
  modified	
  Krebs-­‐Henseleit	
  solution.	
  To	
  
restrict	
  the	
  chemical	
  stimuli	
  to	
  the	
  isolated	
  receptive	
  field,	
  a	
  small	
  metal	
  ring	
  (	
  internal	
  diameter,	
  5	
  mm;	
  
height,	
  6	
  mm;	
  volume,	
  0.4	
  ml),	
  which	
  could	
  seal	
  by	
  its	
  own	
  weight,	
  was	
  used.	
  In	
  some	
  cases,	
  inert	
  
silicone	
  grease	
  was	
  added	
  to	
  ensure	
  a	
  waterproof	
  seal.	
  	
  
After	
  recording	
  baseline	
  for	
  5	
  min,	
  the	
  metal	
  ring	
  was	
  placed	
  and	
  the	
  Krebs-­‐Henseleit	
  solution	
  inside	
  the	
  
ring	
  chamber	
  was	
  removed	
  and	
  a	
  chemical	
  cocktail,	
  commonly	
  present	
  in	
  an	
  inflammatory	
  milieu,	
  was	
  
applied	
  to	
  the	
  receptive	
  field	
  for	
  60	
  s	
  with	
  a	
  temperature	
  of	
  32	
  °C.	
  The	
  RF	
  was	
  continuously	
  superfused	
  
with	
  Krebs	
  solution	
  (32	
  °C)	
  before	
  and	
  after	
  application	
  of	
  chemical	
  soup.	
  	
  
We	
  compared	
  the	
  latencies	
  for	
  a	
  response	
  which	
  was	
  calculated	
  with	
  time	
  from	
  onset	
  of	
  chemical	
  
application	
  to	
  appearance	
  of	
  two	
  or	
  more	
  consecutive	
  discharges	
  exceeding	
  the	
  mean	
  frequency	
  +	
  2	
  SD	
  
of	
  the	
  background	
  discharge	
  rate	
  during	
  the	
  control	
  period	
  (60	
  s).	
  We	
  also	
  compared	
  the	
  mean	
  
frequency	
  or	
  total	
  spikes	
  during	
  a	
  response	
  between	
  different	
  groups	
  (see	
  Fig.	
  2).	
  	
  
Following	
  chemicals	
  were	
  used	
  to	
  prepare	
  this	
  chemical	
  cocktail:	
  bradykinin,	
  histamine,	
  serotonin,	
  and	
  
prostaglandin	
  E2.	
  The	
  pH	
  of	
  this	
  cocktail	
  was	
  normal	
  (7.4).	
  The	
  concentrations	
  are	
  10-­‐6
M,	
  these	
  
concentrations	
  were	
  determined	
  according	
  to	
  past	
  literature	
  (Kessler	
  W	
  1992)	
  and	
  our	
  pilot	
  study.	
  Ten	
  
min	
  after	
  chemical	
  application,	
  computer	
  controlled	
  ascending	
  series	
  of	
  square-­‐shaped	
  force	
  stimuli	
  was	
  
applied	
  in	
  a	
  few	
  experiments.	
  These	
  data	
  were	
  used	
  to	
  compare	
  changes	
  in	
  the	
  mechanical	
  stimulus	
  
response	
  before	
  and	
  after	
  chemical	
  soup	
  (see	
  Fig.	
  3).	
  	
  
Response	
  criteria	
  for	
  chemical	
  stimulations	
  
When	
  a	
  fiber	
  fulfilled	
  the	
  following	
  criteria,	
  it	
  was	
  defined	
  to	
  be	
  sensitive	
  to	
  a	
  stimulus:	
  (1)	
  the	
  net	
  
increase	
  in	
  the	
  discharge	
  rate	
  during	
  the	
  application	
  period	
  of	
  60	
  s	
  for	
  chemical	
  soup	
  was	
  more	
  than	
  0.1	
  
imp/s	
  from	
  the	
  background	
  discharge	
  rate	
  during	
  the	
  control	
  period	
  (60	
  s)	
  immediately	
  before	
  
application,	
  and	
  (2)	
  the	
  instantaneous	
  discharge	
  rate	
  of	
  two	
  consecutive	
  discharges	
  exceeded	
  the	
  mean	
  
+	
  2	
  SD	
  of	
  the	
  background	
  discharge	
  rate.	
  	
  
Data	
  analysis	
  
Action	
  potentials	
  collected	
  on	
  a	
  computer	
  were	
  analyzed	
  off-­‐line	
  with	
  a	
  template	
  matching	
  function	
  of	
  
spike	
  2	
  software.	
  Quantitative	
  analysis	
  was	
  carried	
  out	
  by	
  counting	
  total	
  impulses	
  generated	
  in	
  the	
  
stimulation	
  period.	
  In	
  addition,	
  average	
  discharge	
  frequencies	
  during	
  chemical	
  soup	
  application	
  were	
  
also	
  counted.	
  Only	
  good	
  signal-­‐to-­‐noise	
  ratio	
  
(>2:1)	
  was	
  considered.	
  
Statistical	
  analysis	
  
Results	
  are	
  expressed	
  as	
  median	
  with	
  interquartile	
  range	
  (IQR).	
  Averaged	
  response	
  patterns	
  of	
  afferents	
  
are	
  shown	
  with	
  mean	
  ±	
  SEM.	
  Comparisons	
  of	
  the	
  electrophysiological	
  data	
  between	
  the	
  young	
  and	
  the	
  
aged	
  rats	
  were	
  done	
  using	
  the	
  Mann–Whitney	
  U-­‐test.	
  Mann–Whitney	
  U-­‐test	
  was	
  also	
  used	
  to	
  compare	
  
baseline	
  (before	
  application	
  of	
  inflammatory	
  soup)	
  spike	
  numbers	
  induced	
  by	
  mechanical	
  stimulation	
  
and	
  the	
  spike	
  numbers	
  after	
  inflammatory	
  soup.	
  All	
  tests	
  were	
  made	
  with	
  GraphPad	
  Prism	
  software,	
  
version	
  5	
  (GraphPad,	
  San	
  Diego,	
  CA).	
  Values	
  of	
  p	
  <0.05	
  were	
  considered	
  significant.	
  	
  
Results	
  
1	
  General	
  properties	
  of	
  C-­‐fibers	
  from	
  young	
  and	
  senescent	
  animals	
  
	
  
127	
  fibers	
  were	
  identified.	
  86	
  C-­‐fiber	
  nociceptors	
  innervating	
  the	
  hairy	
  skin	
  of	
  rat	
  hindpaw	
  were	
  studied:	
  
64	
  from	
  the	
  young	
  rats	
  and	
  22	
  from	
  aged	
  rats.	
  Conduction	
  velocity	
  was	
  not	
  different	
  between	
  two	
  age	
  
groups.	
  The	
  conduction	
  velocities	
  of	
  the	
  control	
  C-­‐fibers	
  ranged	
  from	
  0.1	
  to	
  1.5	
  m/s	
  (0.54	
  ±	
  0.06	
  m/s,	
  
IQR:	
  0.1-­‐1.0m/s),	
  and	
  those	
  of	
  the	
  aged	
  C-­‐fibers	
  were	
  between	
  0.1	
  and	
  1.2	
  m/s	
  (0.59	
  ±	
  0.09	
  m/s	
  
IQR:0.18-­‐1.2m/s).	
  Part	
  of	
  the	
  reason	
  we	
  found	
  so	
  few	
  mechanically	
  sensitive	
  and	
  chemically	
  sensitive	
  C-­‐
fibers	
  in	
  aged	
  rats	
  when	
  compared	
  with	
  young	
  rats	
  might	
  have	
  been	
  a	
  reported	
  remarkably	
  decreased	
  
proportion	
  of	
  mechano-­‐responsive	
  C-­‐fibers	
  and	
  an	
  notable	
  increase	
  in	
  the	
  proportion	
  of	
  mechano-­‐
insensitive	
  C-­‐fibers	
  in	
  aged	
  rats	
  (Taguchi	
  2010),	
  which	
  phenomenon	
  is	
  also	
  found	
  in	
  humans(Namer,	
  
2009).	
  Since	
  we	
  only	
  identify	
  the	
  C-­‐fibers	
  by	
  using	
  manual	
  probing	
  with	
  a	
  glass	
  rod,	
  therefore,	
  we	
  found	
  
much	
  less	
  mechano-­‐responsive	
  c-­‐fibers	
  in	
  aged	
  group	
  in	
  comparison	
  with	
  young	
  group.	
  	
  
There	
  was	
  no	
  significant	
  increase	
  in	
  the	
  discharge	
  rates	
  of	
  spontaneous	
  activity,	
  which	
  were	
  0.05	
  imp/s	
  
(IQR:	
  0-­‐0.14	
  imp/s)	
  in	
  young	
  rats	
  and	
  0.02	
  imp/s	
  (IQR:	
  0-­‐0.10	
  imp/s)	
  in	
  old	
  rats,	
  respectively.	
  In	
  this	
  study	
  
all	
  tested	
  C-­‐fibers	
  responded	
  to	
  the	
  inflammatory	
  soup	
  stimulation,	
  and	
  they	
  had	
  a	
  single	
  spot	
  like	
  
receptive	
  field.	
  
2	
  The	
  mechanical	
  thresholds	
  are	
  different	
  between	
  youth	
  and	
  aged	
  rats.	
  
Although	
  the	
  Primary	
  afferent	
  response	
  to	
  mechanical	
  stimuli	
  of	
  different	
  age	
  groups	
  looks	
  the	
  same,	
  
the	
  mechanical	
  thresholds	
  are	
  different	
  between	
  youth	
  and	
  aged	
  rats.	
  Mechanical	
  threshold	
  measured	
  
by	
  a	
  train	
  mechanical	
  stimulus	
  in	
  the	
  aged	
  skin	
  median;	
  68.44	
  mN	
  (IQR:	
  52.1–92.1	
  mN),	
  n	
  =	
  18)	
  was	
  
significantly	
  higher	
  than	
  that	
  in	
  the	
  younger	
  skin	
  (median;	
  52.67	
  mN	
  (IQR:	
  33.6–72.0	
  mN),	
  n	
  =	
  57,	
  p	
  <	
  
0.05,	
  Mann–Whitney	
  U-­‐test).	
  In	
  addition,	
  the	
  magnitude	
  of	
  the	
  mechanical	
  response	
  during	
  the	
  first	
  6	
  
stimulus	
  (from	
  13mN	
  to	
  112mN)	
  was	
  significantly	
  lower	
  in	
  the	
  aged	
  skin	
  (22.5	
  spikes	
  (IQR:	
  10.75–34.25	
  
spikes))	
  than	
  in	
  the	
  young	
  (31.0spikes	
  (IQR:	
  24.25–42	
  spikes),	
  p	
  <	
  0.05,	
  Mann–Whitney	
  U-­‐test).	
  	
  
<6 and >18 mechanical threshold
t=0.03
Mech.threshold(mN)
young<6
old>18
0
50
100
150
200
	
  
112mn mech mag *
t=0.048
<
6
m
onth
>
18
m
onth
0
20
40
60
80
	
  
	
  
Figure	
  1	
  Primary	
  afferent	
  responses	
  to	
  mechanical	
  stimuli.	
  (a–g)	
  Digitized	
  oscilloscope	
  tracings	
  of	
  afferent	
  
responsive	
  to	
  mechanical	
  stimuli.	
  Single	
  action	
  potentials	
  were	
  recorded	
  from	
  fine	
  filaments	
  teased	
  from	
  medial	
  or	
  
lateral	
  plantar	
  nerves	
  of	
  control	
  mice	
  while	
  the	
  receptive	
  field	
  was	
  stimulated	
  by	
  a	
  feedback-­‐controlled	
  force	
  
stimulator.	
  Seven	
  consecutive	
  recordings	
  show	
  increasing	
  responses	
  to	
  the	
  ascending	
  series	
  of	
  force	
  (h)	
  stimuli.	
  
The	
  stimulus	
  duration	
  of	
  each	
  pulse	
  was	
  2s	
  and	
  they	
  were	
  delivered	
  at	
  30	
  s	
  intervals.	
  (i)	
  Comparison	
  of	
  mechanical	
  
response	
  thresholds	
  between	
  <6	
  months	
  old	
  (n=57),	
  >18	
  months	
  (n=18)	
  rats.	
  	
  
2	
  Senescent	
  rats	
  have	
  longer	
  latency	
  in	
  responses	
  to	
  inflammatory	
  soup.	
  
The	
  onset	
  of	
  neuronal	
  response	
  to	
  chemical	
  stimulation	
  was	
  significantly	
  delayed	
  in	
  the	
  afferents	
  from	
  
senescent	
  rats.	
  In	
  the	
  aged	
  mechano-­‐responsive	
  C-­‐nociceptors	
  the	
  response	
  latency	
  to	
  inflammatory	
  
soup	
  (median:	
  15	
  seconds,	
  (IQR:	
  9-­‐23	
  seconds))	
  was	
  significantly	
  longer	
  than	
  that	
  in	
  the	
  younger	
  skin	
  
(median:	
  10	
  seconds,	
  (IQR:	
  8-­‐14	
  seconds))	
  (p	
  <	
  0.05,	
  Mann–Whitney	
  U-­‐test),	
  while	
  the	
  magnitude	
  of	
  the	
  
response	
  was	
  not	
  different	
  between	
  the	
  two	
  age	
  groups.	
  Intensity	
  measured	
  by	
  total	
  net	
  spikes	
  in	
  the	
  
aged	
  skin	
  (median:	
  210.5	
  (IQR:	
  157.3–281.5),	
  n	
  =	
  20)	
  was	
  no	
  different	
  from	
  that	
  in	
  the	
  young	
  skins	
  
(median:	
  194.0	
  (IQR:	
  139.3-­‐319.8),	
  n	
  =	
  44,	
  p	
  =0.93,	
  Mann–Whitney	
  U-­‐test).	
  	
  
Our	
  observation	
  suggests	
  that	
  initiation	
  of	
  chemosensitivity	
  within	
  afferents	
  from	
  senescent	
  rats	
  is	
  slow	
  
but	
  once	
  they	
  are	
  activated	
  they	
  can	
  produce	
  a	
  same	
  response	
  as	
  afferents	
  from	
  younger	
  rats,	
  which	
  
were	
  proved	
  by	
  the	
  same	
  numbers	
  of	
  total	
  net	
  spikes	
  induced	
  by	
  inflammatory	
  soup	
  in	
  young	
  and	
  aged	
  
rats.	
  
 	
   	
  
<6 >18new latency
P=0.018
latency(sec)
<6
m
onth
>18
m
onth
0
10
20
30
40
50
	
  	
  
<6 month >18 month peak frequency no significan
P=0.56
peakfrequency
<6
m
onth
>18
m
onth
0
5
10
15
20
25
	
  	
  	
  	
  
chemi net <6 >18
p=0.78
Totalspikes
<
6
m
onth
>
18
m
onth
0
200
400
600
	
  
Figure	
  2	
  Specimen	
  records	
  from	
  4	
  single	
  primary	
  afferents	
  2	
  months	
  (a),	
  6	
  months	
  (b),	
  18	
  months	
  (C)	
  and	
  
26	
  months	
  (d)	
  rat	
  hairy	
  skin	
  during	
  trials	
  of	
  inflammatory	
  (mixture	
  of	
  chemicals	
  present	
  in	
  an	
  
inflammatory	
  condition).	
  Ordinate:	
  frequency	
  of	
  discharges;	
  ‘inflammatory	
  soup’	
  was	
  applied	
  for	
  1	
  min.	
  
Comparison	
  of	
  latencies(e),	
  which	
  was	
  calculated	
  with	
  time	
  from	
  onset	
  of	
  chemical	
  application	
  to	
  
appearance	
  of	
  clear	
  response.	
  (f)	
  Comparison	
  of	
  mean	
  frequency	
  (Mann-­‐Whitney	
  test)	
  (g)	
  total	
  spikes	
  
during	
  a	
  response.	
  
3	
  Inflammatory	
  soups	
  sensitize	
  mechanical	
  responses	
  of	
  both	
  young	
  and	
  senescent	
  rats.	
  However	
  
young	
  rats	
  show	
  longer	
  and	
  stronger	
  sensitization.	
  	
  
Application	
  of	
  inflammatory	
  soup	
  had	
  sensitization	
  effect	
  on	
  mechanical	
  responses.	
  Before	
  and	
  after	
  
inflammatory	
  soup	
  application,	
  a	
  series	
  of	
  mechanical	
  stimulation	
  were	
  applied	
  to	
  get	
  mechanical	
  
response	
  curve.	
  Inflammatory	
  soup	
  was	
  super	
  perfused	
  for	
  1	
  min.	
  	
  The	
  mechanical	
  stimulus	
  response	
  
curves	
  before	
  and	
  after	
  inflammatory	
  soup	
  application	
  for	
  young	
  rats	
  (n=34),	
  and	
  aged	
  rats	
  (n=12)	
  are	
  
respectively	
  shown	
  in	
  a,b.	
  Ordinate:	
  total	
  spikes/stimulation.	
  
We	
  compared	
  the	
  spikes	
  number	
  between	
  the	
  baseline	
  mechanical	
  responses	
  of	
  nerve	
  fibers	
  and	
  that	
  of	
  
after	
  inflammatory	
  soup	
  application	
  of	
  the	
  same	
  fiber.	
  	
  All	
  numbers	
  were	
  counted	
  at	
  the	
  same	
  force	
  
level	
  on	
  the	
  same	
  fiber	
  before	
  and	
  after	
  chemical	
  soup	
  application.	
  Therefore,	
  even	
  after	
  inflammatory	
  
soup	
  application,	
  the	
  same	
  fiber	
  might	
  fire	
  at	
  different	
  threshold	
  force,	
  mostly	
  at	
  a	
  lower	
  threshold;	
  we	
  
still	
  counted	
  the	
  number	
  of	
  spikes	
  that	
  occurred	
  at	
  the	
  same	
  force	
  level	
  as	
  the	
  thresholds	
  and	
  
stimulation	
  intensities	
  indicated	
  by	
  baseline	
  mechanical	
  responses.	
  
	
  
	
  
In	
  the	
  hairy	
  skin	
  preparation,	
  application	
  of	
  the	
  chemical	
  soup	
  caused	
  the	
  afferent	
  firing	
  rate	
  to	
  be	
  
significantly	
  increased	
  during	
  controlled	
  mechanical	
  stimuli.	
  (One	
  sample	
  t-­‐test).	
  The	
  soup	
  enhanced	
  
firing	
  rate	
  in	
  young	
  rats	
  during	
  controlled	
  mechanical	
  stimuli.	
  	
  The	
  percentages	
  of	
  spikes	
  compared	
  to	
  
baseline	
  in	
  each	
  phases	
  are:	
  s1:	
  163.4%	
  s2:225%;	
  s3:	
  199%;	
  s4:190%,	
  s5:181%;	
  s6:141%,	
  which	
  are	
  
significantly	
  higher	
  from	
  s2	
  to	
  s5	
  compared	
  to	
  baseline	
  (Fig.	
  3).	
  In	
  aged	
  rats,	
  the	
  percentages	
  are:	
  91%,	
  
88%,	
  132%,	
  184%,	
  161%,	
  and	
  128%	
  respectively.	
  	
  In	
  aged	
  skin,	
  during	
  the	
  s1,	
  s2,	
  s3,	
  s5	
  and	
  s6	
  phase	
  of	
  
controlled	
  stimulation	
  after	
  soup,	
  there	
  was	
  no	
  significant	
  change	
  in	
  activity	
  (Fig.	
  3).	
  Compared	
  to	
  young	
  
animals,	
  the	
  sensitizing	
  effect	
  of	
  the	
  chemical	
  soup	
  on	
  the	
  old	
  animals	
  was	
  only	
  seen	
  significant	
  at	
  S4	
  
after	
  soup	
  administration.	
  	
  
	
  Also,	
  the	
  percentages	
  of	
  changes	
  in	
  firing	
  rates	
  are	
  different.	
  Compare	
  to	
  aged	
  skin,	
  the	
  extent	
  of	
  
increases	
  in	
  s1	
  to	
  s2	
  in	
  young	
  skin	
  were	
  higher	
  (s1	
  P=0.047,	
  s2	
  P=0.037)	
  (Fig	
  3	
  c).	
  
A	
  specimen	
  recording	
  showing	
  the	
  excitatory	
  effect	
  of	
  soup	
  on	
  afferent	
  nerve	
  activity	
  during	
  controlled	
  
stimulation	
  of	
  a	
  young	
  and	
  old	
  rat	
  can	
  be	
  seen	
  in	
  Fig.	
  3.	
  
	
  
Figure	
  3	
  
	
  	
  	
  
Specimen	
  demonstrating	
  the	
  sensitizing	
  effect	
  of	
  sp	
  during	
  normal	
  and	
  stimulation	
  is	
  shown	
  in	
  fig	
  a,b.	
  	
  	
  
Application	
  of	
  inflammatory	
  soup	
  had	
  sensitization	
  effect	
  on	
  mechanical	
  responses.	
  Before	
  and	
  after	
  
inflammatory	
  soup	
  application,	
  a	
  series	
  of	
  mechanical	
  stimulation	
  were	
  applied	
  to	
  get	
  mechanical	
  
response	
  curve.	
  Inflammatory	
  soup	
  was	
  super	
  perfused	
  for	
  1	
  min.	
  	
  The	
  mechanical	
  stimulus	
  response	
  
curves	
  before	
  and	
  after	
  inflammatory	
  soup	
  application	
  for	
  young	
  rats	
  (n=34),	
  and	
  aged	
  rats	
  (n=12)	
  are	
  
respectively	
  shown	
  in	
  a,b,c.	
  Ordinate:	
  total	
  spikes/stimulation.	
  
	
  
<6 mon sensitization
s1 s2 s3 s4 s5 s6
0
50
100
150
200
250
Legend
Legend
*** ***
*
***
**
*
>18 mon sensitization
s1 s2 s3 s4 s5 s6
0
50
100
150
200
250
Legend
Legend*
*
	
  	
  	
  
	
  	
  	
  	
  	
  
% of mech sensitization<6 >18
s1
s2
s3
s4
s5
s6
-50
0
50
100
150
<6 month
>18 month
** #
*
#
** *** *** **
*
	
  	
  	
  	
  
baseline and % s2 <6 >18 m*
%ofBaseline
B
aseline
young
rats
s2
aftersoup
young
rats
s2
B
aseline
aged
rats
s2
aftersoup
aged
rats
s2
-50
0
50
100
150 **
NS
	
  	
  
baseline and % s4 <6 >18 m*
%ofBaseline
B
aseline
young
rats
s4
aftersoup
young
rats
s4
B
aseline
aged
rats
s4
aftersoup
aged
rats
s4
0
50
100
150
*** *
	
  
	
  
Fig	
  3	
  Effect	
  of	
  inflammatory	
  soup	
  (10-­‐8
M)	
  on	
  skin	
  afferent	
  activity	
  in	
  young	
  (black	
  squares)	
  and	
  aged	
  
(open	
  triangles)	
  rats.	
  Neural	
  activity	
  is	
  shown	
  in	
  response	
  to	
  mechanical	
  stimulation	
  of	
  the	
  skin	
  
compared	
  to	
  pre-­‐soup	
  control	
  (represented	
  by	
  solid	
  line	
  set	
  at	
  0%).	
  The	
  sensitizing	
  effect	
  of	
  
inflammatory	
  chemicals	
  was	
  seen	
  in	
  s1-­‐s6	
  in	
  young	
  skin,	
  although	
  it	
  is	
  only	
  seen	
  in	
  s4	
  in	
  aged	
  skin.	
  Data	
  
are	
  shown	
  as	
  mean	
  ±	
  SEM.	
  *P	
  <	
  0.05;	
  one	
  sample	
  t-­‐test;	
  n=34	
  fibers	
  for	
  young	
  rats;	
  n=12	
  fibers	
  for	
  aged	
  
rats.	
  	
  
	
  
Discussion	
  
Ageing	
  is	
  of	
  interest	
  because	
  ageing	
  influences	
  morphological	
  and	
  functional	
  features	
  of	
  cutaneous	
  
mechanical	
  transducers	
  and	
  mechanosensitive	
  ion	
  channels,	
  sensory	
  innervation,	
  neurotransmitters	
  and	
  
even	
  vascular	
  system	
  in	
  the	
  skin(Ageing	
  Res	
  Rev.	
  2014	
  Jan;13C:90-­‐99.Effect	
  of	
  ageing	
  on	
  tactile	
  
transduction	
  processes.	
  Decorps	
  J.).	
  Some	
  age-­‐related	
  disappearances	
  in	
  epidermal	
  C-­‐fiber	
  endings	
  were	
  
previously	
  reported	
  to	
  be	
  earlier	
  or	
  more	
  markedly	
  than	
  those	
  in	
  myelinated	
  fiber	
  endings	
  (Pare	
  et	
  al.,	
  
2007	
  and	
  Ceballos	
  et	
  al.,	
  1999). The	
  response	
  to	
  chemical	
  is	
  of	
  interest	
  because	
  ageing	
  might	
  have	
  
notable	
  effect	
  on	
  different	
  response	
  to	
  endogenous	
  or	
  exogenous	
  substance	
  such	
  as	
  bradykinin,	
  
histamine,	
  and	
  prostaglandin.	
  In	
  addition,	
  there	
  could	
  be	
  different	
  sensitization	
  process	
  in	
  aged	
  
compared	
  with	
  young	
  animals.	
  
The	
  present	
  study	
  assessed	
  in	
  rats	
  whether	
  there	
  is	
  an	
  ageing	
  related	
  pain	
  sensation	
  change.	
  We	
  found	
  
that	
  although	
  the	
  net	
  intensity	
  has	
  no	
  difference	
  between	
  young	
  and	
  senescent	
  rats,	
  aged	
  rats	
  
developed	
  a	
  relative	
  longer	
  latency	
  in	
  response	
  to	
  chemical	
  stimulus.	
  In	
  addition,	
  young	
  rats	
  showed	
  
lower	
  mechanical	
  threshold	
  and	
  stronger	
  mechanical	
  response	
  to	
  stimulation.	
  Also	
  young	
  rats	
  presented	
  
a	
  stronger	
  sensitization	
  of	
  mechanical	
  response	
  after	
  chemical	
  stimulation	
  compared	
  to	
  senescent	
  rats.	
  
It	
  is	
  generally	
  agreed	
  that	
  the	
  cool	
  and	
  warm	
  detection	
  thresholds	
  assess	
  the	
  function	
  of	
  small	
  
myelinated	
  Aδ	
  fibres	
  and	
  unmyelinated	
  C	
  fibres,	
  whereas	
  sensitivities	
  to	
  vibration	
  and	
  tactile	
  stimulation	
  
assess	
  the	
  function	
  of	
  large	
  myelinated	
  fibres,	
  respectively	
  (Campero	
  et	
  al.,	
  1996	
  and	
  Verdugo	
  and	
  
Ochoa,	
  1992).	
  Abnormalities	
  of	
  the	
  sensory	
  system,	
  such	
  as	
  detection	
  thresholds,	
  nerve	
  conduction	
  
velocities,	
  structural	
  changes	
  of	
  sensory	
  fibres	
  can	
  also	
  develop	
  because	
  of	
  ageing.	
  For	
  example,	
  modest	
  
functional	
  abnormality	
  of	
  small	
  sensory	
  fibres	
  was	
  shown	
  in	
  the	
  older	
  subjects,	
  who	
  displayed	
  increased	
  
warm	
  detection	
  threshold	
  compared	
  to	
  young	
  adults	
  (Fromy	
  et	
  al.,	
  2010).	
  Also	
  the	
  degree	
  of	
  activity-­‐
dependent	
  conduction	
  velocity	
  slowing	
  in	
  response	
  to	
  high	
  frequency	
  stimulation	
  was	
  more	
  pronounced	
  
in	
  aged	
  subjects	
  (Namer,	
  2009).	
  These	
  changes	
  in	
  the	
  axonal	
  properties	
  of	
  C-­‐fibres	
  in	
  aged	
  subjects	
  are	
  
compatible	
  with	
  hypoexcitability	
  of	
  the	
  fibers.	
  
Decreased	
  mechanical	
  response	
  
It	
  was	
  suggested	
  that	
  the	
  ratio	
  of	
  mechano-­‐responsive	
  fibres	
  to	
  mechano-­‐insensitive	
  fibres	
  was	
  shifted	
  
in	
  favor	
  of	
  the	
  mechano-­‐insensitive	
  fibres	
  in	
  older	
  subjects	
  (Namer	
  et	
  al.,	
  2009	
  and	
  Orstavik	
  et	
  al.,	
  2006,	
  
Taguchi	
  2010	
  pain).	
  However,	
  since	
  we	
  used	
  the	
  probe	
  stimulation	
  to	
  identify	
  only	
  mechano-­‐responsive	
  
C-­‐fibers	
  instead	
  of	
  electrically	
  identifying	
  both	
  mechano-­‐responsive	
  and	
  mechano-­‐insensitive	
  C-­‐fiber	
  
population,	
  we	
  did	
  not	
  see	
  such	
  a	
  ratio	
  shifting.	
  But	
  we	
  found	
  much	
  less	
  mechano-­‐responsive	
  fibers	
  (22)	
  
in	
  our	
  aged	
  group	
  compared	
  with	
  young	
  rats	
  (64)	
  which	
  might	
  partially	
  be	
  explained	
  by	
  the	
  ratio	
  shifting	
  
from	
  mechano-­‐responsive	
  dominant	
  fibres	
  to	
  mechano-­‐insensitive	
  fibres.	
  
Our	
  results	
  showed	
  a	
  higher	
  mechanical	
  threshold	
  of	
  response	
  in	
  the	
  aged	
  group	
  in	
  comparison	
  to	
  
young	
  rats,	
  which	
  is	
  well	
  in	
  line	
  with	
  the	
  previous	
  observation	
  in	
  SD	
  rats	
  (Taguchi	
  2010	
  pain).	
  The	
  
mechanical	
  response	
  of	
  individual	
  mechano-­‐responsive	
  c	
  fibres	
  tends	
  to	
  decrease	
  with	
  age.	
  This	
  may	
  
resulted	
  from	
  following	
  reasons:	
  First,	
  the	
  ageing	
  effects	
  on	
  the	
  structure	
  and	
  function	
  of	
  these	
  
mechanosensitive	
  ion	
  channels	
  could	
  contribute	
  to	
  the	
  age-­‐related	
  mechano-­‐	
  response.	
  Activation	
  of	
  
mechanosensitive	
  ion	
  channels	
  is	
  important	
  for	
  the	
  detection	
  of	
  mechanical	
  stimuli	
  required	
  for	
  
transduction	
  to	
  electrical	
  signals	
  in	
  sensory	
  neurons.	
  Expression	
  of	
  sodium	
  channel	
  Nav1.8	
  and	
  TRPV1	
  
expression	
  has	
  been	
  shown	
  to	
  be	
  lowered	
  in	
  cutaneous	
  nerves	
  of	
  aged	
  mice	
  (Wang	
  s,	
  neurobiol	
  Aging,	
  
2006)	
  and	
  is	
  related	
  to	
  reduced	
  thermal	
  sensitivity.	
  The	
  GFRalpha3	
  receptor,	
  which	
  binds	
  the	
  growth	
  
factor	
  artemin	
  and	
  is	
  expressed	
  by	
  TRPV1-­‐positive	
  neurons,	
  was	
  also	
  decreased	
  in	
  the	
  DRG	
  of	
  aged	
  
animals.	
  These	
  findings	
  indicate	
  that	
  loss	
  of	
  thermal	
  sensitivity	
  in	
  aging	
  animals	
  may	
  result	
  from	
  a	
  
decreased	
  level	
  of	
  TRPV1	
  and	
  Nav1.8	
  and	
  decreased	
  trophic	
  support	
  that	
  inhibits	
  efficient	
  transport	
  of	
  
channel	
  proteins	
  to	
  peripheral	
  afferents.	
  Beside,	
  some	
  findings	
  have	
  shown	
  that	
  selective	
  TRPV1	
  
antagonists	
  cause	
  a	
  reduction	
  in	
  both	
  thermal	
  and	
  mechanical	
  hyperalgesia	
  and	
  TRPV1	
  also	
  plays	
  a	
  role	
  
in	
  mechanical	
  hyperalgesia	
  (Pomonis	
  et	
  al.,	
  2003;	
  Walker	
  et	
  al.,	
  2003;	
  Tang	
  et	
  al.,	
  2007;	
  Btesh	
  J,	
  2013).	
  	
  
ASIC	
  3channel	
  has	
  also	
  been	
  shown	
  to	
  detect	
  some	
  cutaneous	
  touch	
  and	
  painful	
  stimuli	
  (Fromy,	
  2012).	
  
Other	
  ion	
  channels	
  such	
  as	
  TRPA1,	
  MEC4/MEC-­‐10	
  and	
  two-­‐pore	
  domain	
  potassium	
  (K+)-­‐selective	
  
channels	
  (such	
  as	
  TREK1	
  and	
  TRAAK)	
  might	
  also	
  be	
  playing	
  as	
  a	
  neuronal	
  mechanosensitive	
  channel	
  
(Decorps	
  J,	
  2014).	
  Although	
  the	
  ageing	
  effects	
  on	
  the	
  structure	
  and/or	
  the	
  function	
  of	
  these	
  
mechanosensitive	
  ion	
  channels	
  are	
  not	
  described,	
  one	
  can	
  speculate	
  that	
  they	
  could	
  contribute	
  to	
  the	
  
age-­‐related	
  tactile	
  defect.	
  
Second,	
  changes	
  in	
  the	
  physical	
  properties	
  of	
  aged	
  skin	
  may	
  influence	
  the	
  nociceptor	
  response.	
  There	
  
are	
  pronounced	
  age-­‐induced	
  changes	
  in	
  the	
  viscoelastic	
  properties	
  of	
  the	
  skin	
  and	
  underlying	
  tissue.	
  
Profound	
  differences	
  in	
  some	
  mechanical	
  properties	
  of	
  the	
  skin	
  were	
  found	
  between	
  young	
  and	
  adult	
  
rats.	
  The	
  compliance	
  of	
  the	
  skin	
  is	
  decreased	
  in	
  adult	
  rats	
  when	
  compared	
  with	
  young	
  rats18
(Baumann	
  
KI,	
  Hamann	
  W,	
  Leung	
  MS:	
  Mechanical	
  properties	
  of	
  skin	
  and	
  responsiveness	
  of	
  slowly	
  adapting	
  type	
  I	
  
mechanoreceptors	
  in	
  rats	
  at	
  different	
  ages.	
  J	
  Physiol	
  1986;	
  371:	
  329-­‐37)	
  
During	
  rats’	
  adulthood,	
  there	
  was	
  a	
  subsequent	
  tortuosity	
  of	
  the	
  distorted	
  elastic	
  fibers	
  which	
  have	
  lost	
  
their	
  original	
  elasticity	
  and	
  interlock	
  with	
  the	
  collagen	
  bundles.	
  Interlocking	
  of	
  both	
  collagen	
  and	
  elastic	
  
fibers	
  decrease	
  tissue	
  compliance19
(Imayama	
  S.	
  Am	
  J	
  Pathol	
  1989).	
  In	
  human	
  being,	
  the	
  thickness	
  of	
  the	
  
dermis	
  also	
  decreases	
  with	
  age	
  and	
  this	
  is	
  accompanied	
  by	
  a	
  decrease	
  in	
  number	
  of	
  mast	
  cells	
  and	
  
fibroblasts,	
  and	
  a	
  decrease	
  in	
  the	
  generation	
  of	
  collagen,	
  elastin,	
  glycosaminoglycans,	
  and	
  hyaluronic	
  
acid.	
  It	
  is	
  thought	
  that	
  changes	
  in	
  the	
  amount	
  of	
  collagen,	
  alterations	
  in	
  tissue	
  reactive	
  oxygen	
  species	
  or	
  
decreases	
  in	
  the	
  amount	
  of	
  fibroblast-­‐collagen	
  linkage	
  may	
  result	
  in	
  a	
  diminished	
  ability	
  of	
  the	
  skin	
  to	
  
detect	
  or	
  propagate	
  mechanical	
  stimuli;	
  however,	
  it	
  has	
  not	
  yet	
  been	
  investigated.	
  20
	
  (Wu	
  M:	
  Effect	
  of	
  
aging	
  on	
  cellular	
  mechanotransduction.	
  Ageing	
  Res	
  Rev	
  2011).	
  	
  
We	
  also	
  found	
  that	
  in	
  aged	
  rats,	
  the	
  number	
  of	
  impulses	
  (magnitude	
  of	
  response)	
  induced	
  by	
  
mechanical	
  stimulation	
  tend	
  to	
  decrease	
  compared	
  to	
  young	
  rats,	
  which	
  could	
  be	
  due	
  to	
  the	
  following	
  
reasons:	
  	
  First,	
  since	
  there	
  are	
  decreased	
  expression	
  of	
  Nav1.8	
  and	
  TRPV1	
  protein	
  in	
  cutaneous	
  nerves	
  
of	
  aged	
  mice	
  (Wang	
  s,	
  neurobiol	
  Aging,	
  2006).	
  It	
  has	
  been	
  indicated	
  that	
  Nav1.8	
  sodium	
  channels	
  
contribute	
  substantially	
  to	
  action	
  potential	
  electrogenesis	
  in	
  DRG	
  neurons	
  (J	
  Neurophysiol.	
  2001,	
  
Renganathan).	
  It	
  is	
  possible	
  that	
  the	
  age-­‐related	
  expression	
  of	
  Nav1.8	
  could	
  lead	
  to	
  changes	
  in	
  less	
  
action	
  potential	
  electrogenesis	
  in	
  aged	
  rats.	
  Secondly,	
  a	
  decreased	
  sodium-­‐	
  potassium	
  pump	
  activity	
  in	
  
dorsal	
  root	
  in	
  aged	
  mice	
  was	
  observed	
  (Robertson,	
  1993).	
  As	
  it	
  has	
  been	
  suggested	
  this	
  decreased	
  basal	
  
level	
  of	
  pump	
  activity	
  would	
  lead	
  to	
  relatively	
  depolarized	
  membrane	
  potential	
  and	
  higher	
  proportion	
  of	
  
inactivated	
  sodium	
  channels,	
  which	
  would	
  result	
  in	
  hypoexcitability	
  of	
  fires	
  to	
  sensory	
  stimuli	
  (Namer	
  
2009).	
  This	
  could	
  also	
  leads	
  to	
  fewer	
  spikes	
  to	
  mechanical	
  stimulation	
  in	
  aged	
  skin.	
  
Chemical	
  responses	
  and	
  sensitized	
  mechanical	
  response	
  after	
  chemical	
  soup	
  
Although	
  there	
  was	
  no	
  difference	
  between	
  young	
  and	
  aged	
  rats	
  with	
  the	
  net	
  spikes	
  induced	
  by	
  chemical	
  
stimulation,	
  activities	
  of	
  nociceptors	
  in	
  response	
  to	
  chemicals	
  (bradykinin,	
  histamine,	
  serotonin,	
  and	
  
prostaglandin	
  E2)	
  have	
  changed	
  with	
  ageing	
  shown	
  by	
  a	
  longer	
  latency	
  in	
  the	
  aged	
  rats.	
  Our	
  finding	
  is	
  
supported	
  by	
  previous	
  report	
  that	
  latency	
  of	
  mechanoresponsive	
  C	
  fibers	
  to	
  10uM	
  bradykinin	
  was	
  
significantly	
  longer	
  in	
  the	
  aged	
  SD	
  rats	
  (Taguchi,	
  2010).	
  
Also,	
  our	
  results	
  showed	
  that	
  after	
  chemical	
  soup	
  the	
  mechanical	
  responses	
  are	
  enhanced	
  both	
  in	
  young	
  
and	
  old	
  rats.	
  Previous	
  report	
  showed	
  that	
  local	
  application	
  of	
  SP	
  had	
  a	
  sensitizing	
  effect	
  on	
  joint	
  
afferents	
  in	
  response	
  to	
  movements	
  in	
  old	
  animals	
  (McDougall	
  JJ,	
  2007).	
  Here,	
  our	
  results	
  first	
  time	
  
showed	
  that	
  this	
  sensitization	
  was	
  more	
  prominent	
  in	
  young	
  rats	
  than	
  old	
  rats,	
  which	
  was	
  evidenced	
  by	
  
stronger	
  enhanced	
  mechanical	
  responses	
  in	
  young	
  rats.	
  We	
  found	
  that	
  percentages	
  of	
  changes	
  in	
  firing	
  
rates	
  induced	
  by	
  inflammatory	
  soup	
  were	
  higher	
  in	
  young	
  rats	
  than	
  in	
  aged	
  rats.	
  Also	
  the	
  increased	
  
firing	
  could	
  be	
  seen	
  in	
  all	
  mechanical	
  stimulation	
  phases	
  including	
  s1	
  to	
  s6,	
  where	
  in	
  aged	
  rats,	
  it	
  was	
  
only	
  seen	
  in	
  s4.	
  	
  	
  
One	
  reason	
  for	
  a	
  longer	
  latency	
  of	
  inflammatory	
  mediator	
  induced	
  response	
  and	
  weakened	
  sensitization	
  
in	
  senescent	
  skin	
  might	
  result	
  from	
  the	
  reduced	
  expressions	
  of	
  receptor	
  molecules	
  and	
  transducers	
  such	
  
as	
  TRPV1,	
  bradykinin	
  receptors,	
  histamine	
  receptors	
  and	
  serotonin	
  receptors,	
  prostaglandin	
  receptors.	
  
Indeed,	
  in	
  rat	
  spinal	
  cord,	
  study	
  using	
  quantitative	
  immunohistochemistry	
  for	
  serotonin	
  (5-­‐HT)	
  and	
  
tyrosine	
  hydroxylase	
  (TH)	
  in	
  male	
  Wistar	
  rats	
  of	
  3	
  and	
  24	
  months	
  revealed	
  significant	
  age-­‐associated	
  
declines	
  in	
  the	
  monoaminergic	
  innervation	
  (Ranson,	
  R.	
  N.,2003,	
  Age-­‐associated	
  changes	
  in	
  the	
  
monoaminergic	
  innervation	
  of	
  rat	
  lumbosacral	
  spinal	
  cord.	
  Brain	
  Res).	
  	
  In	
  the	
  dorsal	
  root	
  ganglia	
  of	
  aged	
  
rats,	
  SP-­‐like	
  immunoreactivity	
  significantly	
  reduced	
  compared	
  to	
  young	
  adults	
  (Bergman,	
  1996).	
  
Although	
  there	
  are	
  no	
  study	
  available	
  as	
  for	
  the	
  age-­‐related	
  changes	
  of	
  bradykinin,	
  serotonin	
  and	
  
prostaglandin	
  E2	
  expressions	
  in	
  aged	
  rats,	
  it	
  has	
  been	
  shown	
  that	
  TRPV1	
  expression	
  in	
  peripheral	
  nerve	
  
is	
  lower	
  in	
  aged	
  mice	
  (Wang	
  s,	
  neurobiol	
  Aging,	
  2006).	
  This	
  created	
  a	
  possibility	
  that	
  reduced	
  TRPV1	
  
expression	
  with	
  ageing	
  might	
  lead	
  to	
  decreased	
  bradykinin-­‐evoked	
  and	
  prostaglandin-­‐evoked	
  nociceptor	
  
excitation	
  and	
  bradykinin-­‐induced	
  mechanical	
  hyperalgesia.	
  
Bradykinin	
  is	
  produced	
  in	
  response	
  to	
  tissue	
  injury,	
  inflammation,	
  or	
  ischemia	
  and	
  binds	
  to	
  PLC	
  coupled	
  
(BK2)	
  receptors	
  on	
  sensory	
  neurons	
  (McMahon	
  et	
  al.,	
  2006).	
  Bradykinin	
  elicits	
  acute	
  pain	
  through	
  
immediate	
  excitation	
  of	
  nociceptors,	
  followed	
  by	
  a	
  longer	
  lasting	
  sensitization	
  to	
  thermal	
  and	
  
mechanical	
  stimuli	
  (Dray	
  and	
  Perkins,	
  1993).	
  Genetic	
  and	
  electrophysiological	
  studies	
  suggest	
  that	
  
bradykinin-­‐evoked	
  thermal	
  hypersensitivity	
  is	
  produced	
  through	
  PLC-­‐mediated	
  potentiation	
  of	
  TRPV1	
  
(Cesare	
  et	
  al.,	
  1999;	
  Chuang	
  et	
  al.,	
  2001;	
  Premkumar	
  and	
  Ahern,	
  2000).	
  	
  Several	
  studies	
  have	
  suggested	
  
that	
  TRPV1	
  is	
  essential	
  to	
  the	
  BK-­‐evoked	
  responses	
  (Shin	
  et	
  al.,	
  2002;	
  Ferreira	
  et	
  al.,	
  2004,	
  Neurosci	
  Res.	
  
2008	
  Katanosaka	
  K).	
  In	
  addition,	
  histamine-­‐dependent	
  itch	
  is	
  mediated	
  by	
  a	
  subset	
  of	
  C-­‐fiber	
  afferents	
  
that	
  express	
  TRPV1	
  and	
  the	
  histamine	
  receptor	
  (Shim	
  WS,	
  2007.	
  TRPV1	
  mediates	
  histamine-­‐induced	
  
itching	
  via	
  the	
  activation	
  of	
  phospholipase	
  A2	
  and	
  12-­‐lipoxygenase.	
  J.	
  Neurosci.).	
  	
  
Prostaglandins	
  (PGs),	
  another	
  class	
  of	
  fatty	
  acid	
  derivatives,	
  are	
  produced	
  at	
  sites	
  of	
  inflammation	
  and	
  
mediate	
  inflammatory	
  responses	
  and	
  sensitization	
  by	
  a	
  variety	
  of	
  mechanisms.	
  Protein	
  kinase	
  C	
  (PKC)	
  
and	
  PKA	
  downstream	
  of	
  prostaglandin	
  E2	
  receptors,	
  sensitize/activate	
  multiple	
  molecules	
  including	
  
transient	
  receptor	
  potential	
  vanilloid-­‐1	
  (TRPV1)	
  channels,	
  purinergic	
  P2X3	
  receptors,	
  and	
  voltage-­‐gated	
  
calcium	
  or	
  sodium	
  channels	
  in	
  nociceptors,	
  leading	
  to	
  hyperalgesia	
  (Biol	
  Pharm	
  Bull.	
  2011,Prostaglandin	
  
E2	
  and	
  pain-­‐-­‐an	
  update.	
  Kawabata	
  A).	
  	
  
Recently	
  it	
  was	
  shown	
  that	
  inflammatory	
  mediators	
  such	
  as	
  prostaglandin-­‐E2	
  or	
  bradykinin	
  cause	
  
hyperalgesia	
  by	
  activating	
  cellular	
  kinases	
  that	
  phosphorylate	
  TRPV1,	
  a	
  process	
  that	
  relies	
  on	
  a	
  
scaffolding	
  protein,	
  AKAP79,	
  to	
  target	
  the	
  kinases	
  to	
  TRPV1(J	
  Neurosci.	
  Btesh	
  J,	
  2013).	
  We	
  speculated	
  
that	
  reduced	
  TRPV1	
  expression	
  with	
  ageing	
  could	
  lead	
  to	
  reduced	
  bradykinin-­‐evoked	
  and	
  prostaglandin-­‐
evoked	
  nociceptor	
  excitation	
  and	
  bradykinin-­‐induced	
  mechanical	
  hyperalgesia.	
  Also	
  the	
  histamine	
  
induced	
  C-­‐fiber	
  excitation	
  might	
  decrease	
  with	
  aging	
  since	
  TRPV1	
  expressions	
  are	
  decreased	
  with	
  aging.	
  
One	
  can	
  speculate	
  that	
  the	
  ageing	
  effects	
  on	
  the	
  structure	
  of	
  other	
  ion	
  channels	
  such	
  as	
  TRPA1,	
  could	
  
contribute	
  to	
  the	
  age-­‐related	
  chemical	
  responses.	
  Interestingly,	
  a	
  study	
  showed	
  that	
  the	
  
mechanosensitivity	
  of	
  mouse	
  colon	
  afferent	
  fibers	
  and	
  their	
  sensitization	
  by	
  inflammatory	
  mediators	
  
require	
  TRPV1	
  and	
  ASIC	
  3	
  (J	
  Neurosci.	
  2005	
  Jones	
  RC	
  3rd).	
  And	
  combined	
  genetic	
  and	
  pharmacological	
  
inhibition	
  of	
  TRPV1	
  and	
  P2X3	
  attenuates	
  colorectal	
  hypersensitivity	
  and	
  afferent	
  sensitization	
  by	
  
inflammatory	
  soup	
  was	
  also	
  significantly	
  attenuated	
  (Kiyatkin	
  ME,	
  2013).However,	
  whether	
  this	
  also	
  
applied	
  to	
  aged	
  cutaneous	
  afferents	
  needs	
  to	
  be	
  investigated	
  in	
  the	
  future.	
  
	
  
References	
  
1.	
   Edwards	
  RR,	
  Fillingim	
  RB,	
  Ness	
  TJ:	
  Age-­‐related	
  differences	
  in	
  endogenous	
  pain	
  modulation:	
  a	
  
comparison	
  of	
  diffuse	
  noxious	
  inhibitory	
  controls	
  in	
  healthy	
  older	
  and	
  younger	
  adults.	
  Pain	
  2003;	
  101:	
  
155-­‐65	
  
2.	
   Lin	
  YH,	
  Hsieh	
  SC,	
  Chao	
  CC,	
  Chang	
  YC,	
  Hsieh	
  ST:	
  Influence	
  of	
  aging	
  on	
  thermal	
  and	
  vibratory	
  
thresholds	
  of	
  quantitative	
  sensory	
  testing.	
  J	
  Peripher	
  Nerv	
  Syst	
  2005;	
  10:	
  269-­‐81	
  
3.	
   Matysiak	
  M,	
  Ducastelle	
  T,	
  Hemet	
  J:	
  [Morphometric	
  study	
  of	
  variations	
  related	
  to	
  human	
  aging	
  in	
  
pulp	
  unmyelinated	
  and	
  myelinated	
  axons].	
  J	
  Biol	
  Buccale	
  1988;	
  16:	
  59-­‐68	
  
4.	
   Melcangi	
  RC,	
  Magnaghi	
  V,	
  Martini	
  L:	
  Aging	
  in	
  peripheral	
  nerves:	
  regulation	
  of	
  myelin	
  protein	
  
genes	
  by	
  steroid	
  hormones.	
  Prog	
  Neurobiol	
  2000;	
  60:	
  291-­‐308	
  
5.	
   Ochs	
  S:	
  Effect	
  of	
  maturation	
  and	
  aging	
  on	
  the	
  rate	
  of	
  fast	
  axoplasmic	
  transport	
  in	
  mammalian	
  
nerve.	
  Prog	
  Brain	
  Res	
  1973;	
  40:	
  349-­‐62	
  
6.	
   Parhad	
  IM,	
  Scott	
  JN,	
  Cellars	
  LA,	
  Bains	
  JS,	
  Krekoski	
  CA,	
  Clark	
  AW:	
  Axonal	
  atrophy	
  in	
  aging	
  is	
  
associated	
  with	
  a	
  decline	
  in	
  neurofilament	
  gene	
  expression.	
  J	
  Neurosci	
  Res	
  1995;	
  41:	
  355-­‐66	
  
7.	
   Wang	
  S,	
  Davis	
  BM,	
  Zwick	
  M,	
  Waxman	
  SG,	
  Albers	
  KM:	
  Reduced	
  thermal	
  sensitivity	
  and	
  Nav1.8	
  
and	
  TRPV1	
  channel	
  expression	
  in	
  sensory	
  neurons	
  of	
  aged	
  mice.	
  Neurobiol	
  Aging	
  2006;	
  27:	
  895-­‐903	
  
8.	
   Chang	
  YC,	
  Lin	
  WM,	
  Hsieh	
  ST:	
  Effects	
  of	
  aging	
  on	
  human	
  skin	
  innervation.	
  Neuroreport	
  2004;	
  15:	
  
149-­‐53	
  
9.	
   Besne	
  I,	
  Descombes	
  C,	
  Breton	
  L:	
  Effect	
  of	
  age	
  and	
  anatomical	
  site	
  on	
  density	
  of	
  sensory	
  
innervation	
  in	
  human	
  epidermis.	
  Arch	
  Dermatol	
  2002;	
  138:	
  1445-­‐50	
  
10.	
   Lauria	
  G,	
  Holland	
  N,	
  Hauer	
  P,	
  Cornblath	
  DR,	
  Griffin	
  JW,	
  McArthur	
  JC:	
  Epidermal	
  innervation:	
  
changes	
  with	
  aging,	
  topographic	
  location,	
  and	
  in	
  sensory	
  neuropathy.	
  J	
  Neurol	
  Sci	
  1999;	
  164:	
  172-­‐8	
  
11.	
   Bergman	
  E,	
  Fundin	
  BT,	
  Ulfhake	
  B:	
  Effects	
  of	
  aging	
  and	
  axotomy	
  on	
  the	
  expression	
  of	
  
neurotrophin	
  receptors	
  in	
  primary	
  sensory	
  neurons.	
  J	
  Comp	
  Neurol	
  1999;	
  410:	
  368-­‐86	
  
12.	
   Ulfhake	
  B,	
  Bergman	
  E,	
  Edstrom	
  E,	
  Fundin	
  BT,	
  Johnson	
  H,	
  Kullberg	
  S,	
  Ming	
  Y:	
  Regulation	
  of	
  
neurotrophin	
  signaling	
  in	
  aging	
  sensory	
  and	
  motoneurons:	
  dissipation	
  of	
  target	
  support?	
  Mol	
  Neurobiol	
  
2000;	
  21:	
  109-­‐35	
  
13.	
   Verdu	
  E,	
  Ceballos	
  D,	
  Vilches	
  JJ,	
  Navarro	
  X:	
  Influence	
  of	
  aging	
  on	
  peripheral	
  nerve	
  function	
  and	
  
regeneration.	
  J	
  Peripher	
  Nerv	
  Syst	
  2000;	
  5:	
  191-­‐208	
  
14.	
   Lang	
  E,	
  Novak	
  A,	
  Reeh	
  PW,	
  Handwerker	
  HO:	
  Chemosensitivity	
  of	
  fine	
  afferents	
  from	
  rat	
  skin	
  in	
  
vitro.	
  J	
  Neurophysiol	
  1990;	
  63:	
  887-­‐901	
  
15.	
   Kessler	
  W,	
  Kirchhoff	
  C,	
  Reeh	
  PW,	
  Handwerker	
  HO:	
  Excitation	
  of	
  cutaneous	
  afferent	
  nerve	
  
endings	
  in	
  vitro	
  by	
  a	
  combination	
  of	
  inflammatory	
  mediators	
  and	
  conditioning	
  effect	
  of	
  substance	
  P.	
  Exp	
  
Brain	
  Res	
  1992;	
  91:	
  467-­‐76	
  
16.	
   Leem	
  JW,	
  Willis	
  WD,	
  Chung	
  JM:	
  Cutaneous	
  sensory	
  receptors	
  in	
  the	
  rat	
  foot.	
  J	
  Neurophysiol	
  
1993;	
  69:	
  1684-­‐99	
  
17.	
   Khalsa	
  PS,	
  LaMotte	
  RH,	
  Grigg	
  P:	
  Tensile	
  and	
  compressive	
  responses	
  of	
  nociceptors	
  in	
  rat	
  hairy	
  
skin.	
  J	
  Neurophysiol	
  1997;	
  78:	
  492-­‐505	
  
18.	
   Baumann	
  KI,	
  Hamann	
  W,	
  Leung	
  MS:	
  Mechanical	
  properties	
  of	
  skin	
  and	
  responsiveness	
  of	
  slowly	
  
adapting	
  type	
  I	
  mechanoreceptors	
  in	
  rats	
  at	
  different	
  ages.	
  J	
  Physiol	
  1986;	
  371:	
  329-­‐37	
  
19.	
   Imayama	
  S,	
  Braverman	
  IM:	
  A	
  hypothetical	
  explanation	
  for	
  the	
  aging	
  of	
  skin.	
  Chronologic	
  
alteration	
  of	
  the	
  three-­‐dimensional	
  arrangement	
  of	
  collagen	
  and	
  elastic	
  fibers	
  in	
  connective	
  tissue.	
  Am	
  J	
  
Pathol	
  1989;	
  134:	
  1019-­‐25	
  
20.	
   Wu	
  M,	
  Fannin	
  J,	
  Rice	
  KM,	
  Wang	
  B,	
  Blough	
  ER:	
  Effect	
  of	
  aging	
  on	
  cellular	
  mechanotransduction.	
  
Ageing	
  Res	
  Rev	
  2011;	
  10:	
  1-­‐15	
  
	
  
	
  

More Related Content

What's hot

Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...
Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...
Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...Stylianos Kouvaros
 
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...Stylianos Kouvaros
 
Neuropsychopharmacology 2015 dissociation of the role of infralimbic cortex...
Neuropsychopharmacology 2015   dissociation of the role of infralimbic cortex...Neuropsychopharmacology 2015   dissociation of the role of infralimbic cortex...
Neuropsychopharmacology 2015 dissociation of the role of infralimbic cortex...Walaa Awad
 
NKCC1 Poster for SIRS 2010
NKCC1 Poster for SIRS 2010NKCC1 Poster for SIRS 2010
NKCC1 Poster for SIRS 2010lrt5000
 
Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Rana ZEINE, MD, PhD, MBA
 
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...InsideScientific
 
Parodi et al 2008 veneno y neuronas
Parodi et al 2008 veneno y neuronasParodi et al 2008 veneno y neuronas
Parodi et al 2008 veneno y neuronasJorge Parodi
 
What happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_marsWhat happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_marsSérgio Sacani
 
2011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-372011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-37Monica Ghidinelli
 
Crimson Publishers-More than Meets the Eye: Biological Clocks
 Crimson Publishers-More than Meets the Eye: Biological Clocks Crimson Publishers-More than Meets the Eye: Biological Clocks
Crimson Publishers-More than Meets the Eye: Biological ClocksCrimsonpublishersMSOR
 
Annotated bibliography final 13 n.r.e
Annotated bibliography final 13 n.r.eAnnotated bibliography final 13 n.r.e
Annotated bibliography final 13 n.r.eNicole Rivera
 

What's hot (20)

Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...
Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...
Kouvaros S and Papatheodoropoulos C, (2016). Major dorsoventral differences i...
 
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...
Kouvaros S. et al (2015). Hippocampal sharp waves and ripples. Effects of agi...
 
Neuropsychopharmacology 2015 dissociation of the role of infralimbic cortex...
Neuropsychopharmacology 2015   dissociation of the role of infralimbic cortex...Neuropsychopharmacology 2015   dissociation of the role of infralimbic cortex...
Neuropsychopharmacology 2015 dissociation of the role of infralimbic cortex...
 
NKCC1 Poster for SIRS 2010
NKCC1 Poster for SIRS 2010NKCC1 Poster for SIRS 2010
NKCC1 Poster for SIRS 2010
 
7477.full
7477.full7477.full
7477.full
 
Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001
 
Pelizaeus–Merzbacher disease
Pelizaeus–Merzbacher diseasePelizaeus–Merzbacher disease
Pelizaeus–Merzbacher disease
 
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...
Respiration in Anesthetized Mice: Evidence-Based Recommendations for Improved...
 
Varney_2015
Varney_2015Varney_2015
Varney_2015
 
Parodi et al 2008 veneno y neuronas
Parodi et al 2008 veneno y neuronasParodi et al 2008 veneno y neuronas
Parodi et al 2008 veneno y neuronas
 
Neurons vs Germline
Neurons vs GermlineNeurons vs Germline
Neurons vs Germline
 
2007 sdarticlenon-biotin
2007 sdarticlenon-biotin2007 sdarticlenon-biotin
2007 sdarticlenon-biotin
 
Developmental neuroanatomy and neurophysiology of pain
Developmental neuroanatomy and neurophysiology of painDevelopmental neuroanatomy and neurophysiology of pain
Developmental neuroanatomy and neurophysiology of pain
 
nihms419319
nihms419319nihms419319
nihms419319
 
What happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_marsWhat happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_mars
 
2011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-372011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-37
 
Novel Neuroplasticity
Novel NeuroplasticityNovel Neuroplasticity
Novel Neuroplasticity
 
Crimson Publishers-More than Meets the Eye: Biological Clocks
 Crimson Publishers-More than Meets the Eye: Biological Clocks Crimson Publishers-More than Meets the Eye: Biological Clocks
Crimson Publishers-More than Meets the Eye: Biological Clocks
 
Annotated bibliography final 13 n.r.e
Annotated bibliography final 13 n.r.eAnnotated bibliography final 13 n.r.e
Annotated bibliography final 13 n.r.e
 
My papers
My papersMy papers
My papers
 

Similar to Age-Related Changes in Skin Nociceptor Function

JofNeuroscience2000
JofNeuroscience2000JofNeuroscience2000
JofNeuroscience2000Laura Murphy
 
5xZX5QMvYNsNBxwt7K673hR.pdf
5xZX5QMvYNsNBxwt7K673hR.pdf5xZX5QMvYNsNBxwt7K673hR.pdf
5xZX5QMvYNsNBxwt7K673hR.pdfIndah Gitaswari
 
C. elegans Lab Report FINAL!!!!
C. elegans Lab Report FINAL!!!!C. elegans Lab Report FINAL!!!!
C. elegans Lab Report FINAL!!!!Kian Bagheri
 
Bitstream 2027.42_44523_1_10753_2004_article_415307
 Bitstream 2027.42_44523_1_10753_2004_article_415307 Bitstream 2027.42_44523_1_10753_2004_article_415307
Bitstream 2027.42_44523_1_10753_2004_article_415307Ilya Almazov
 
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...M. Luisetto Pharm.D.Spec. Pharmacology
 
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...M. Luisetto Pharm.D.Spec. Pharmacology
 
Nbic project proposal power point lok
Nbic project proposal power point lokNbic project proposal power point lok
Nbic project proposal power point lokLokesh Agrawal
 
2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 tOscar Moreno
 
The Role Of Cytokines On Immune Privilege
The Role Of Cytokines On Immune PrivilegeThe Role Of Cytokines On Immune Privilege
The Role Of Cytokines On Immune PrivilegeKaty Allen
 
luisetto m. brain response in some systemic immune condition-toxicological as...
luisetto m. brain response in some systemic immune condition-toxicological as...luisetto m. brain response in some systemic immune condition-toxicological as...
luisetto m. brain response in some systemic immune condition-toxicological as...M. Luisetto Pharm.D.Spec. Pharmacology
 
Bioelectronic medicines
Bioelectronic medicinesBioelectronic medicines
Bioelectronic medicinesKalyaniOvhal
 
Tzekov_PLOSOne_2016 Publication Roskamp.PDF
Tzekov_PLOSOne_2016 Publication Roskamp.PDFTzekov_PLOSOne_2016 Publication Roskamp.PDF
Tzekov_PLOSOne_2016 Publication Roskamp.PDFMegan Orlando
 
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_Stimuli
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_StimuliA_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_Stimuli
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_StimuliAmber Anger
 

Similar to Age-Related Changes in Skin Nociceptor Function (20)

JofNeuroscience2000
JofNeuroscience2000JofNeuroscience2000
JofNeuroscience2000
 
paper 2016
paper 2016paper 2016
paper 2016
 
ISX9 - Karthik Gopalakrishnan
ISX9 - Karthik GopalakrishnanISX9 - Karthik Gopalakrishnan
ISX9 - Karthik Gopalakrishnan
 
5xZX5QMvYNsNBxwt7K673hR.pdf
5xZX5QMvYNsNBxwt7K673hR.pdf5xZX5QMvYNsNBxwt7K673hR.pdf
5xZX5QMvYNsNBxwt7K673hR.pdf
 
C. elegans Lab Report FINAL!!!!
C. elegans Lab Report FINAL!!!!C. elegans Lab Report FINAL!!!!
C. elegans Lab Report FINAL!!!!
 
Genetics (2001)
Genetics (2001)Genetics (2001)
Genetics (2001)
 
Bitstream 2027.42_44523_1_10753_2004_article_415307
 Bitstream 2027.42_44523_1_10753_2004_article_415307 Bitstream 2027.42_44523_1_10753_2004_article_415307
Bitstream 2027.42_44523_1_10753_2004_article_415307
 
jbmr
jbmrjbmr
jbmr
 
Effect of Deltamethrin Toxicity on Rat Retina and Examination of FAS and NOS ...
Effect of Deltamethrin Toxicity on Rat Retina and Examination of FAS and NOS ...Effect of Deltamethrin Toxicity on Rat Retina and Examination of FAS and NOS ...
Effect of Deltamethrin Toxicity on Rat Retina and Examination of FAS and NOS ...
 
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...
Luisetto m, behzad n, ghulam r. brain response in some systemic immune condit...
 
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...
Jpcr luisetto m, naseer a, ghulam r m, ahmed yesvi, farhan a k, et al. endoge...
 
Nbic project proposal power point lok
Nbic project proposal power point lokNbic project proposal power point lok
Nbic project proposal power point lok
 
EGR 183 Bow Tie Presentation
EGR 183 Bow Tie PresentationEGR 183 Bow Tie Presentation
EGR 183 Bow Tie Presentation
 
2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t
 
The Role Of Cytokines On Immune Privilege
The Role Of Cytokines On Immune PrivilegeThe Role Of Cytokines On Immune Privilege
The Role Of Cytokines On Immune Privilege
 
jbc1998
jbc1998jbc1998
jbc1998
 
luisetto m. brain response in some systemic immune condition-toxicological as...
luisetto m. brain response in some systemic immune condition-toxicological as...luisetto m. brain response in some systemic immune condition-toxicological as...
luisetto m. brain response in some systemic immune condition-toxicological as...
 
Bioelectronic medicines
Bioelectronic medicinesBioelectronic medicines
Bioelectronic medicines
 
Tzekov_PLOSOne_2016 Publication Roskamp.PDF
Tzekov_PLOSOne_2016 Publication Roskamp.PDFTzekov_PLOSOne_2016 Publication Roskamp.PDF
Tzekov_PLOSOne_2016 Publication Roskamp.PDF
 
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_Stimuli
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_StimuliA_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_Stimuli
A_Biopac_Analysis_of_Physiological_Responses_to_Disgusting_Stimuli
 

Age-Related Changes in Skin Nociceptor Function

  • 1. Age-­‐related  changes  in  the  primary  afferent  function  in  vitro   Liang  Huang,  Ratan  Banik   New  Jersey  Neuroscience  Institute   Abstract   The  altered  pain  perception  and  the  cutaneous  nociception  elicited  by  noxious  stimuli  to  the  skin  during   senescence  are  not  well  understood,  and  it  is  thought  that  this  could  in  part  be  due  to  changes  in   peripheral  pain  sensing  processes.  We  systematically  examined  cutaneous  nociceptor  responses  and   nociceptive  behaviors  in  young  (2-­‐6  months)  and  in  aged  (18-­‐26  months)  F334/N  rats.  C-­‐fiber   nociceptors  in  the  skin  were  identified  by  mechanical  stimulation,  and  extracellularly  recorded  from   hind  paw  skin-­‐saphenous  nerve  preparations  in  vitro.  The  aim  of  the  present  study  was  to  investigate   the  activities  of  aged  skin  nociceptors  systematically  to  mechanical,  chemical  stimuli,  and  to  compare   with  the  data  from  young  animals.  Mechanical  threshold  measured  by  a  ramp  mechanical  stimulus  in   the  aged  skin  was  significantly  higher  than  that  in  the  younger  skin.  The  latency  to  chemical  stimulations   tended  to  be  longer.    In  addition,  the  magnitude  of  the  chemical  response  during  the  60s  chemical   stimulus  was  not  significantly  different.  In  contrast,  the  numbers  of  total  net  discharges  induced  by   chemical  (bradykinin,  prostaglandin,  serotonin,  histamine)  stimuli  were  not  different  with  the  different   ages.  After  sensitization  by  chemicals,  the  young  rats  displayed  a  stronger  and  longer   mechanosensitization.  This  showed  for  the  first  time  that  not  only  receptive  properties  of  afferent   terminals  but  also  mechanical  sensitizations  by  chemicals  in  axons  are  changed  in  aged  rats.  These   results  showed  decreased  mechanical  and  chemical  responses  in  skin  C-­‐afferents  in  the  aged  rats.   Introduction     With  advancing  age,  a  decline  in  the  sensation  is  well  reported  to  occur.  Ageing  influences  on   morphological  and  functional  features  of  cutaneous  mechanical  transducers  and  mechanosensitive  ion   channels,  sensory  innervation,  neurotransmitters  and  even  vascular  system  required  to  ensure  efferent   function  of  the  afferent  nerve  fibres  in  the  skin.  This,  in  conjunction  with  effect  of  ageing  on  the  skin  per   se  and  central  nervous  system,  could  significantly  affect  the  skin  sensation  among  the  ageing   population.  However,  little  is  known  about  the  peripheral  neural  mechanisms  of  skin  nociception  in  the   aged.   Ageing  is  associated  with  reductions  of  the  principal  functions  of  the  skin,  including  protection,   excretion,  secretion,  absorption,  thermoregulation,  pigmentogenesis,  and  regulation  of  immunological   processes  and  wound  repair.  Ageing  is  also  associated  with  a  progressive  decline  in  cutaneous  thermal,   vibratory  and  mechanical  sensory  perception  (Guergova  S.,  Thermal  sensitivity  in  the  elderly:  a  review   Ageing  Res.  Rev.,  10  (2011),  Lin  Y.H.,  Influence  of  aging  on  thermal  and  vibratory  thresholds  of   quantitative  sensory  testing.  J.  Peripher.  Nerv.  Syst.,  2005  and  Taguchi,  2010).  However,  the  change  with   age  in  pain  perception  in  humans  and  the  nociceptive  behaviors  in  animals  elicited  by  noxious  stimuli  to   the  skin  are  not  well  understood,  and  little  is  known  about  the  peripheral  neural  mechanisms  of   cutaneous  nociception  in  the  aged  and  responses  to  mechanical  stimulation  and  to  inflammatory  soup  
  • 2. were  not  recorded.  The  sensitizations  of  mechanical  response  by  inflammatory  soup  from  different  age   groups  remain  unclear.  To  date,  nearly  all  attempts  to  characterize  aged  afferent  fibers  have  utilized   structural,  biochemical,  or  molecular  measures1-­‐12 .  Morphologic  studies  reported  several  abnormalities   after  aging  such  as  demyelination,  axonal  atrophy,  reduction  in  the  expression  of  cytoskeletal   proteins5,9,10 .  Biochemical  studies  found  reduction  of  neuropeptide  expression13  and  molecular  studies   found  reduction  in  the  expression  of  the  molecules  necessary  for  transduction  of  natural  stimuli6,7,11 .   Using  an  in  vitro  skin-­‐saphenous  nerve  preparation,  single-­‐fiber  recordings  were  made  from  mechano-­‐ heat  sensitive  C-­‐fiber  nociceptors  innervating  rat  glabrous  hind  paw  skin,  and  their  responses  were   compared  with  those  obtained  from  different  age  groups.  Responses  to  mechanical  stimulation  and  to   inflammatory  soup  were  tested.  The  sensitizations  of  mechanical  response  by  inflammatory  soup  from   different  age  groups  were  also  investigated.   Methods   Animals    Experiments  were  performed  on  52  male  F344/N  rats  of  various  ages.  Two  months  (n=13),  6  months   (n=22),      18  months  (n=6),  and  26  month  (n=11)  old  rats  were  purchased  from  National  Institute  of   Aging,  Bethesda,  Maryland,  USA.    Two  to  four  animals  were  placed   in  plastic  cages  with  sawdust  bedding   and  housed  in  a  climate-­‐controlled  room  under  a  14/10  hr  light/dark  cycle.  The  Animal  Care  and  Use   Committee  at  The  Seton  Hall  University,  South  Orange,  New  Jersey,  USA  has  approved  experiments,  and   the  animals  were  treated  in  accordance  with  the  Ethical  Guidelines  for  Investigations  of  Experimental   Pain  in  Conscious  Animals.   Organ  bath     Electrophysiological  recordings  were  performed  in  animals.  Animals  were  killed  using  CO2  inhalation;   then  hairy  skin  of  the  rat  hind  paw  and  its  intact  saphenous  nerve  were  dissected  free  from  muscles  and   tendons.  The  preparation  was  then  placed  in  an  organ  bath  and  was  continuously  super  fused  with  a   modified  Krebs-­‐Henseleit  solution  (in  mM:  110.9  NaCl,  4.8  KCl,  2.5  CaCl2,  1.2  MgSO4,  1.2  KH2So4,  24.4   NaHCO3,  and  20  glucose),  which  was  saturated  with  a  gas  mixture  of  95%  O2  and  5%  CO2.  The   temperature  of  the  bath  solution  was  maintained  at  34  ±  1°C.  After  dissection,  the  preparation  was   placed  with  ‘epidermal  side  down’.  The  nerves  attached  to  the  skin  were  drawn  through  one  small  hole   to  the  second  chamber,  which  was  filled  with  liquid  paraffin.  The  nerves  were  placed  on  a  fixed  mirror,   their  sheaths  removed  and  nerve  filaments  repeatedly  teased  to  allow  single  fiber  recording  to  be  made   by  using  double-­‐platinum  electrodes  (one  for  recording  and  another  for  reference).  Single  nociceptive   afferent  fibers  were  recorded  extracellularly  with  a  differential  amplifier  (DAM50,  Harvard  Apparatus,   Holliston,  MA).  Neural  activity  was  amplified  and  filtered  using  standard  techniques.  Amplified  signals   were  led  to  a  digital  oscilloscope  and  an  audio  monitor  and  fed  into  PC  computer  via  a  data  acquisition   system  (spike2/CED1401  program).  Action  potentials  collected  on  a  computer  were  analyzed  off-­‐line   with  a  template  matching  function  of  spike  2  software.   Identification  of  afferents  
  • 3. The  search  strategy  was  mechanical  stimulation  by  a  fire-­‐polished  glass  rod;  thus,  mechanosensitive   afferents  were  characterized.  Only  units  with  a  clearly  distinguished  signal  to  noise  ratio  were  further   studied.  Rapidly  adapting,  low  threshold  A-­‐β  and  D-­‐hair  fibers  were  not  studied.  After  the  initial   assessment,  fibers  were  evaluated  for  their  responsiveness  to  controlled  mechanical  stimuli  and  a   cocktail  of  chemicals,  previously  termed  as  ‘inflammatory  soup’.  In  this  study,  ingredients  of  this  soup   and  concentrations  were  different  from  other  studies  and  the  pH  was  normal  (7.4).  Aliquots  (20  µl)  of   chemical  cocktail  were  prepared  by  combining  bradykinin,  serotonin,  and  histamine  dissolved  in  distilled   water  with  prostaglandin  E2  dissolved  in  dimethyl  sulfoxide  (DMSO)  and  stored  at  -­‐20°C.  The  aliquots   were  diluted  to  final  concentration  (10  µM)  in  neutral  (7.4)  Krebs’  solution  on  the  day  of  the  experiment.   All  chemicals  were  obtained  from  Sigma-­‐Aldrich  (St.  Louis,  MO).  The  decision  to  use  10  µM   concentration  of  the  soup  was  based  on  the  results  of  published  studies  (14,15 ).     Conduction  Velocity  and  Fiber  Categorization    In this study we concentrated on the C-fiber nociceptors. The  conduction  velocity  was  always   measured  at  the  end  of  the  experiment  to  avoid  damage  to  the  receptive  field  or  alteration  of  fiber   properties.  The  conduction  velocity  of  the  axon  was  determined  by  monopolar  electrical  stimulation   through  an  epoxy-­‐coated  electrode.  The  electrical  stimulation  (1-­‐20  V  at  0.2-­‐1  Hz  for  0.5-­‐2  ms)  was   delivered  at  the  sensitive  spot  of  a  receptive  field.  The  intensity  of  the  stimulus  started  form  0.1  V  and   gradually  increased  until  the  similar  shape  spike  appeared.  The  distance  between  receptive  field  and  the   recording  electrode  (conduction  distance)  was  divided  by  the  latency  of  the  action  potential  (stimulus   artifact  to  the  appearance  to  spike).   The  fibers  were  classified  using  criteria  from  Leem  et  al.16  Afferent  fibers  conducting  slower  than  2.5  m/s   were  classified  as  C-­‐fibers,  those  conducting  between  2.5  m/s  and  24  m/s  as  Aδ-­‐fibers,  and  those   conducting  faster  than  24  m/s  as  Aβ-­‐fibers.  Units  were  classified  as  mechanosensitive  nociceptors  on   the  basis  of  their  graded  response  throughout  the  innocuous  and  noxious  range  of  mechanical  force   stimuli.  Rapidly  adapting  fibers  were  not  studied.   Feedback  –controlled  mechanical  stimulation   To  measure  quantitative  mechanosensitivity,  a  servo  force-­‐controlled  mechanical  stimulator(Series  300B   Dual  Mode  Servo  System;  Aurora  Scientific,  Aurora,  Ontario,  Canada)17 were  used.        A  flat  and  cylindrical   metal  probe  (tip  diameter,  0.7  mm)  attached  to  the  tip  of  the  stimulator  arm  was  placed  just  close  to   the  receptive  field  so  that  no  force  was  generated.  Servo-­‐controlled  mechanical  stimulation  (Series  300B   dual  mode  servo  system,  Aurora  Scientific,  Canada)  was  used  to  measure  mechanosensitivity.    The   computer  controlled  ascending  series  of  square-­‐shaped  force  stimuli  was  applied  to  the  most  sensitive   spot  of  the  receptive  field  at  60-­‐s  intervals.  Since  the  neural  responses  of  cutaneous  mechanosensitive   nociceptors  to  mechanical  stimuli  are  highly  correlated  with  compressive  stress  (force)  than  compressive   strain  (  displacement),17  sustained  force-­‐controlled  stimuli  (  rise  time,  100ms;  duration  of  sustained   force  plateau,  1.9s)  were  applied.  Each  force  stimulus  was  2s  in  duration  and  started  from  zero  to  12,  32,   52,  72,  92,112,132,151,171,191,210mN.  When  an  afferent  produced  a  response  to  a  particular  force   controlled  ramp,  it  received  additional  ascending  series  of  stimuli  to  construct  stimulus  response  curve   (as  shown  in  Fig.  1).  The  total  number  of  spikes  generated  during  ascending  series  of  force  pulses  before  
  • 4. 112mN  is  compared  between  different  age  groups  (see  Fig.  1).  The  mechanical  threshold  of  units  was   determined  when  an  afferent  produced  a  response  to  a  particular  force  controlled  ramp.   Chemical  Stimulation     After  mechanical  stimulation,  chemosensitivity  was  assessed  using  modified  Krebs-­‐Henseleit  solution.  To   restrict  the  chemical  stimuli  to  the  isolated  receptive  field,  a  small  metal  ring  (  internal  diameter,  5  mm;   height,  6  mm;  volume,  0.4  ml),  which  could  seal  by  its  own  weight,  was  used.  In  some  cases,  inert   silicone  grease  was  added  to  ensure  a  waterproof  seal.     After  recording  baseline  for  5  min,  the  metal  ring  was  placed  and  the  Krebs-­‐Henseleit  solution  inside  the   ring  chamber  was  removed  and  a  chemical  cocktail,  commonly  present  in  an  inflammatory  milieu,  was   applied  to  the  receptive  field  for  60  s  with  a  temperature  of  32  °C.  The  RF  was  continuously  superfused   with  Krebs  solution  (32  °C)  before  and  after  application  of  chemical  soup.     We  compared  the  latencies  for  a  response  which  was  calculated  with  time  from  onset  of  chemical   application  to  appearance  of  two  or  more  consecutive  discharges  exceeding  the  mean  frequency  +  2  SD   of  the  background  discharge  rate  during  the  control  period  (60  s).  We  also  compared  the  mean   frequency  or  total  spikes  during  a  response  between  different  groups  (see  Fig.  2).     Following  chemicals  were  used  to  prepare  this  chemical  cocktail:  bradykinin,  histamine,  serotonin,  and   prostaglandin  E2.  The  pH  of  this  cocktail  was  normal  (7.4).  The  concentrations  are  10-­‐6 M,  these   concentrations  were  determined  according  to  past  literature  (Kessler  W  1992)  and  our  pilot  study.  Ten   min  after  chemical  application,  computer  controlled  ascending  series  of  square-­‐shaped  force  stimuli  was   applied  in  a  few  experiments.  These  data  were  used  to  compare  changes  in  the  mechanical  stimulus   response  before  and  after  chemical  soup  (see  Fig.  3).     Response  criteria  for  chemical  stimulations   When  a  fiber  fulfilled  the  following  criteria,  it  was  defined  to  be  sensitive  to  a  stimulus:  (1)  the  net   increase  in  the  discharge  rate  during  the  application  period  of  60  s  for  chemical  soup  was  more  than  0.1   imp/s  from  the  background  discharge  rate  during  the  control  period  (60  s)  immediately  before   application,  and  (2)  the  instantaneous  discharge  rate  of  two  consecutive  discharges  exceeded  the  mean   +  2  SD  of  the  background  discharge  rate.     Data  analysis   Action  potentials  collected  on  a  computer  were  analyzed  off-­‐line  with  a  template  matching  function  of   spike  2  software.  Quantitative  analysis  was  carried  out  by  counting  total  impulses  generated  in  the   stimulation  period.  In  addition,  average  discharge  frequencies  during  chemical  soup  application  were   also  counted.  Only  good  signal-­‐to-­‐noise  ratio   (>2:1)  was  considered.   Statistical  analysis  
  • 5. Results  are  expressed  as  median  with  interquartile  range  (IQR).  Averaged  response  patterns  of  afferents   are  shown  with  mean  ±  SEM.  Comparisons  of  the  electrophysiological  data  between  the  young  and  the   aged  rats  were  done  using  the  Mann–Whitney  U-­‐test.  Mann–Whitney  U-­‐test  was  also  used  to  compare   baseline  (before  application  of  inflammatory  soup)  spike  numbers  induced  by  mechanical  stimulation   and  the  spike  numbers  after  inflammatory  soup.  All  tests  were  made  with  GraphPad  Prism  software,   version  5  (GraphPad,  San  Diego,  CA).  Values  of  p  <0.05  were  considered  significant.     Results   1  General  properties  of  C-­‐fibers  from  young  and  senescent  animals     127  fibers  were  identified.  86  C-­‐fiber  nociceptors  innervating  the  hairy  skin  of  rat  hindpaw  were  studied:   64  from  the  young  rats  and  22  from  aged  rats.  Conduction  velocity  was  not  different  between  two  age   groups.  The  conduction  velocities  of  the  control  C-­‐fibers  ranged  from  0.1  to  1.5  m/s  (0.54  ±  0.06  m/s,   IQR:  0.1-­‐1.0m/s),  and  those  of  the  aged  C-­‐fibers  were  between  0.1  and  1.2  m/s  (0.59  ±  0.09  m/s   IQR:0.18-­‐1.2m/s).  Part  of  the  reason  we  found  so  few  mechanically  sensitive  and  chemically  sensitive  C-­‐ fibers  in  aged  rats  when  compared  with  young  rats  might  have  been  a  reported  remarkably  decreased   proportion  of  mechano-­‐responsive  C-­‐fibers  and  an  notable  increase  in  the  proportion  of  mechano-­‐ insensitive  C-­‐fibers  in  aged  rats  (Taguchi  2010),  which  phenomenon  is  also  found  in  humans(Namer,   2009).  Since  we  only  identify  the  C-­‐fibers  by  using  manual  probing  with  a  glass  rod,  therefore,  we  found   much  less  mechano-­‐responsive  c-­‐fibers  in  aged  group  in  comparison  with  young  group.     There  was  no  significant  increase  in  the  discharge  rates  of  spontaneous  activity,  which  were  0.05  imp/s   (IQR:  0-­‐0.14  imp/s)  in  young  rats  and  0.02  imp/s  (IQR:  0-­‐0.10  imp/s)  in  old  rats,  respectively.  In  this  study   all  tested  C-­‐fibers  responded  to  the  inflammatory  soup  stimulation,  and  they  had  a  single  spot  like   receptive  field.   2  The  mechanical  thresholds  are  different  between  youth  and  aged  rats.   Although  the  Primary  afferent  response  to  mechanical  stimuli  of  different  age  groups  looks  the  same,   the  mechanical  thresholds  are  different  between  youth  and  aged  rats.  Mechanical  threshold  measured   by  a  train  mechanical  stimulus  in  the  aged  skin  median;  68.44  mN  (IQR:  52.1–92.1  mN),  n  =  18)  was   significantly  higher  than  that  in  the  younger  skin  (median;  52.67  mN  (IQR:  33.6–72.0  mN),  n  =  57,  p  <   0.05,  Mann–Whitney  U-­‐test).  In  addition,  the  magnitude  of  the  mechanical  response  during  the  first  6   stimulus  (from  13mN  to  112mN)  was  significantly  lower  in  the  aged  skin  (22.5  spikes  (IQR:  10.75–34.25   spikes))  than  in  the  young  (31.0spikes  (IQR:  24.25–42  spikes),  p  <  0.05,  Mann–Whitney  U-­‐test).    
  • 6. <6 and >18 mechanical threshold t=0.03 Mech.threshold(mN) young<6 old>18 0 50 100 150 200   112mn mech mag * t=0.048 < 6 m onth > 18 m onth 0 20 40 60 80     Figure  1  Primary  afferent  responses  to  mechanical  stimuli.  (a–g)  Digitized  oscilloscope  tracings  of  afferent   responsive  to  mechanical  stimuli.  Single  action  potentials  were  recorded  from  fine  filaments  teased  from  medial  or   lateral  plantar  nerves  of  control  mice  while  the  receptive  field  was  stimulated  by  a  feedback-­‐controlled  force   stimulator.  Seven  consecutive  recordings  show  increasing  responses  to  the  ascending  series  of  force  (h)  stimuli.   The  stimulus  duration  of  each  pulse  was  2s  and  they  were  delivered  at  30  s  intervals.  (i)  Comparison  of  mechanical   response  thresholds  between  <6  months  old  (n=57),  >18  months  (n=18)  rats.     2  Senescent  rats  have  longer  latency  in  responses  to  inflammatory  soup.   The  onset  of  neuronal  response  to  chemical  stimulation  was  significantly  delayed  in  the  afferents  from   senescent  rats.  In  the  aged  mechano-­‐responsive  C-­‐nociceptors  the  response  latency  to  inflammatory   soup  (median:  15  seconds,  (IQR:  9-­‐23  seconds))  was  significantly  longer  than  that  in  the  younger  skin   (median:  10  seconds,  (IQR:  8-­‐14  seconds))  (p  <  0.05,  Mann–Whitney  U-­‐test),  while  the  magnitude  of  the   response  was  not  different  between  the  two  age  groups.  Intensity  measured  by  total  net  spikes  in  the   aged  skin  (median:  210.5  (IQR:  157.3–281.5),  n  =  20)  was  no  different  from  that  in  the  young  skins   (median:  194.0  (IQR:  139.3-­‐319.8),  n  =  44,  p  =0.93,  Mann–Whitney  U-­‐test).     Our  observation  suggests  that  initiation  of  chemosensitivity  within  afferents  from  senescent  rats  is  slow   but  once  they  are  activated  they  can  produce  a  same  response  as  afferents  from  younger  rats,  which   were  proved  by  the  same  numbers  of  total  net  spikes  induced  by  inflammatory  soup  in  young  and  aged   rats.  
  • 7.       <6 >18new latency P=0.018 latency(sec) <6 m onth >18 m onth 0 10 20 30 40 50     <6 month >18 month peak frequency no significan P=0.56 peakfrequency <6 m onth >18 m onth 0 5 10 15 20 25         chemi net <6 >18 p=0.78 Totalspikes < 6 m onth > 18 m onth 0 200 400 600   Figure  2  Specimen  records  from  4  single  primary  afferents  2  months  (a),  6  months  (b),  18  months  (C)  and   26  months  (d)  rat  hairy  skin  during  trials  of  inflammatory  (mixture  of  chemicals  present  in  an   inflammatory  condition).  Ordinate:  frequency  of  discharges;  ‘inflammatory  soup’  was  applied  for  1  min.   Comparison  of  latencies(e),  which  was  calculated  with  time  from  onset  of  chemical  application  to   appearance  of  clear  response.  (f)  Comparison  of  mean  frequency  (Mann-­‐Whitney  test)  (g)  total  spikes   during  a  response.   3  Inflammatory  soups  sensitize  mechanical  responses  of  both  young  and  senescent  rats.  However   young  rats  show  longer  and  stronger  sensitization.     Application  of  inflammatory  soup  had  sensitization  effect  on  mechanical  responses.  Before  and  after   inflammatory  soup  application,  a  series  of  mechanical  stimulation  were  applied  to  get  mechanical   response  curve.  Inflammatory  soup  was  super  perfused  for  1  min.    The  mechanical  stimulus  response   curves  before  and  after  inflammatory  soup  application  for  young  rats  (n=34),  and  aged  rats  (n=12)  are   respectively  shown  in  a,b.  Ordinate:  total  spikes/stimulation.   We  compared  the  spikes  number  between  the  baseline  mechanical  responses  of  nerve  fibers  and  that  of   after  inflammatory  soup  application  of  the  same  fiber.    All  numbers  were  counted  at  the  same  force   level  on  the  same  fiber  before  and  after  chemical  soup  application.  Therefore,  even  after  inflammatory   soup  application,  the  same  fiber  might  fire  at  different  threshold  force,  mostly  at  a  lower  threshold;  we   still  counted  the  number  of  spikes  that  occurred  at  the  same  force  level  as  the  thresholds  and   stimulation  intensities  indicated  by  baseline  mechanical  responses.      
  • 8. In  the  hairy  skin  preparation,  application  of  the  chemical  soup  caused  the  afferent  firing  rate  to  be   significantly  increased  during  controlled  mechanical  stimuli.  (One  sample  t-­‐test).  The  soup  enhanced   firing  rate  in  young  rats  during  controlled  mechanical  stimuli.    The  percentages  of  spikes  compared  to   baseline  in  each  phases  are:  s1:  163.4%  s2:225%;  s3:  199%;  s4:190%,  s5:181%;  s6:141%,  which  are   significantly  higher  from  s2  to  s5  compared  to  baseline  (Fig.  3).  In  aged  rats,  the  percentages  are:  91%,   88%,  132%,  184%,  161%,  and  128%  respectively.    In  aged  skin,  during  the  s1,  s2,  s3,  s5  and  s6  phase  of   controlled  stimulation  after  soup,  there  was  no  significant  change  in  activity  (Fig.  3).  Compared  to  young   animals,  the  sensitizing  effect  of  the  chemical  soup  on  the  old  animals  was  only  seen  significant  at  S4   after  soup  administration.      Also,  the  percentages  of  changes  in  firing  rates  are  different.  Compare  to  aged  skin,  the  extent  of   increases  in  s1  to  s2  in  young  skin  were  higher  (s1  P=0.047,  s2  P=0.037)  (Fig  3  c).   A  specimen  recording  showing  the  excitatory  effect  of  soup  on  afferent  nerve  activity  during  controlled   stimulation  of  a  young  and  old  rat  can  be  seen  in  Fig.  3.     Figure  3         Specimen  demonstrating  the  sensitizing  effect  of  sp  during  normal  and  stimulation  is  shown  in  fig  a,b.       Application  of  inflammatory  soup  had  sensitization  effect  on  mechanical  responses.  Before  and  after   inflammatory  soup  application,  a  series  of  mechanical  stimulation  were  applied  to  get  mechanical   response  curve.  Inflammatory  soup  was  super  perfused  for  1  min.    The  mechanical  stimulus  response   curves  before  and  after  inflammatory  soup  application  for  young  rats  (n=34),  and  aged  rats  (n=12)  are   respectively  shown  in  a,b,c.  Ordinate:  total  spikes/stimulation.     <6 mon sensitization s1 s2 s3 s4 s5 s6 0 50 100 150 200 250 Legend Legend *** *** * *** ** * >18 mon sensitization s1 s2 s3 s4 s5 s6 0 50 100 150 200 250 Legend Legend* *                 % of mech sensitization<6 >18 s1 s2 s3 s4 s5 s6 -50 0 50 100 150 <6 month >18 month ** # * # ** *** *** ** *         baseline and % s2 <6 >18 m* %ofBaseline B aseline young rats s2 aftersoup young rats s2 B aseline aged rats s2 aftersoup aged rats s2 -50 0 50 100 150 ** NS     baseline and % s4 <6 >18 m* %ofBaseline B aseline young rats s4 aftersoup young rats s4 B aseline aged rats s4 aftersoup aged rats s4 0 50 100 150 *** *     Fig  3  Effect  of  inflammatory  soup  (10-­‐8 M)  on  skin  afferent  activity  in  young  (black  squares)  and  aged   (open  triangles)  rats.  Neural  activity  is  shown  in  response  to  mechanical  stimulation  of  the  skin   compared  to  pre-­‐soup  control  (represented  by  solid  line  set  at  0%).  The  sensitizing  effect  of  
  • 9. inflammatory  chemicals  was  seen  in  s1-­‐s6  in  young  skin,  although  it  is  only  seen  in  s4  in  aged  skin.  Data   are  shown  as  mean  ±  SEM.  *P  <  0.05;  one  sample  t-­‐test;  n=34  fibers  for  young  rats;  n=12  fibers  for  aged   rats.       Discussion   Ageing  is  of  interest  because  ageing  influences  morphological  and  functional  features  of  cutaneous   mechanical  transducers  and  mechanosensitive  ion  channels,  sensory  innervation,  neurotransmitters  and   even  vascular  system  in  the  skin(Ageing  Res  Rev.  2014  Jan;13C:90-­‐99.Effect  of  ageing  on  tactile   transduction  processes.  Decorps  J.).  Some  age-­‐related  disappearances  in  epidermal  C-­‐fiber  endings  were   previously  reported  to  be  earlier  or  more  markedly  than  those  in  myelinated  fiber  endings  (Pare  et  al.,   2007  and  Ceballos  et  al.,  1999). The  response  to  chemical  is  of  interest  because  ageing  might  have   notable  effect  on  different  response  to  endogenous  or  exogenous  substance  such  as  bradykinin,   histamine,  and  prostaglandin.  In  addition,  there  could  be  different  sensitization  process  in  aged   compared  with  young  animals.   The  present  study  assessed  in  rats  whether  there  is  an  ageing  related  pain  sensation  change.  We  found   that  although  the  net  intensity  has  no  difference  between  young  and  senescent  rats,  aged  rats   developed  a  relative  longer  latency  in  response  to  chemical  stimulus.  In  addition,  young  rats  showed   lower  mechanical  threshold  and  stronger  mechanical  response  to  stimulation.  Also  young  rats  presented   a  stronger  sensitization  of  mechanical  response  after  chemical  stimulation  compared  to  senescent  rats.   It  is  generally  agreed  that  the  cool  and  warm  detection  thresholds  assess  the  function  of  small   myelinated  Aδ  fibres  and  unmyelinated  C  fibres,  whereas  sensitivities  to  vibration  and  tactile  stimulation   assess  the  function  of  large  myelinated  fibres,  respectively  (Campero  et  al.,  1996  and  Verdugo  and   Ochoa,  1992).  Abnormalities  of  the  sensory  system,  such  as  detection  thresholds,  nerve  conduction   velocities,  structural  changes  of  sensory  fibres  can  also  develop  because  of  ageing.  For  example,  modest   functional  abnormality  of  small  sensory  fibres  was  shown  in  the  older  subjects,  who  displayed  increased   warm  detection  threshold  compared  to  young  adults  (Fromy  et  al.,  2010).  Also  the  degree  of  activity-­‐ dependent  conduction  velocity  slowing  in  response  to  high  frequency  stimulation  was  more  pronounced   in  aged  subjects  (Namer,  2009).  These  changes  in  the  axonal  properties  of  C-­‐fibres  in  aged  subjects  are   compatible  with  hypoexcitability  of  the  fibers.   Decreased  mechanical  response   It  was  suggested  that  the  ratio  of  mechano-­‐responsive  fibres  to  mechano-­‐insensitive  fibres  was  shifted   in  favor  of  the  mechano-­‐insensitive  fibres  in  older  subjects  (Namer  et  al.,  2009  and  Orstavik  et  al.,  2006,   Taguchi  2010  pain).  However,  since  we  used  the  probe  stimulation  to  identify  only  mechano-­‐responsive   C-­‐fibers  instead  of  electrically  identifying  both  mechano-­‐responsive  and  mechano-­‐insensitive  C-­‐fiber   population,  we  did  not  see  such  a  ratio  shifting.  But  we  found  much  less  mechano-­‐responsive  fibers  (22)   in  our  aged  group  compared  with  young  rats  (64)  which  might  partially  be  explained  by  the  ratio  shifting   from  mechano-­‐responsive  dominant  fibres  to  mechano-­‐insensitive  fibres.  
  • 10. Our  results  showed  a  higher  mechanical  threshold  of  response  in  the  aged  group  in  comparison  to   young  rats,  which  is  well  in  line  with  the  previous  observation  in  SD  rats  (Taguchi  2010  pain).  The   mechanical  response  of  individual  mechano-­‐responsive  c  fibres  tends  to  decrease  with  age.  This  may   resulted  from  following  reasons:  First,  the  ageing  effects  on  the  structure  and  function  of  these   mechanosensitive  ion  channels  could  contribute  to  the  age-­‐related  mechano-­‐  response.  Activation  of   mechanosensitive  ion  channels  is  important  for  the  detection  of  mechanical  stimuli  required  for   transduction  to  electrical  signals  in  sensory  neurons.  Expression  of  sodium  channel  Nav1.8  and  TRPV1   expression  has  been  shown  to  be  lowered  in  cutaneous  nerves  of  aged  mice  (Wang  s,  neurobiol  Aging,   2006)  and  is  related  to  reduced  thermal  sensitivity.  The  GFRalpha3  receptor,  which  binds  the  growth   factor  artemin  and  is  expressed  by  TRPV1-­‐positive  neurons,  was  also  decreased  in  the  DRG  of  aged   animals.  These  findings  indicate  that  loss  of  thermal  sensitivity  in  aging  animals  may  result  from  a   decreased  level  of  TRPV1  and  Nav1.8  and  decreased  trophic  support  that  inhibits  efficient  transport  of   channel  proteins  to  peripheral  afferents.  Beside,  some  findings  have  shown  that  selective  TRPV1   antagonists  cause  a  reduction  in  both  thermal  and  mechanical  hyperalgesia  and  TRPV1  also  plays  a  role   in  mechanical  hyperalgesia  (Pomonis  et  al.,  2003;  Walker  et  al.,  2003;  Tang  et  al.,  2007;  Btesh  J,  2013).     ASIC  3channel  has  also  been  shown  to  detect  some  cutaneous  touch  and  painful  stimuli  (Fromy,  2012).   Other  ion  channels  such  as  TRPA1,  MEC4/MEC-­‐10  and  two-­‐pore  domain  potassium  (K+)-­‐selective   channels  (such  as  TREK1  and  TRAAK)  might  also  be  playing  as  a  neuronal  mechanosensitive  channel   (Decorps  J,  2014).  Although  the  ageing  effects  on  the  structure  and/or  the  function  of  these   mechanosensitive  ion  channels  are  not  described,  one  can  speculate  that  they  could  contribute  to  the   age-­‐related  tactile  defect.   Second,  changes  in  the  physical  properties  of  aged  skin  may  influence  the  nociceptor  response.  There   are  pronounced  age-­‐induced  changes  in  the  viscoelastic  properties  of  the  skin  and  underlying  tissue.   Profound  differences  in  some  mechanical  properties  of  the  skin  were  found  between  young  and  adult   rats.  The  compliance  of  the  skin  is  decreased  in  adult  rats  when  compared  with  young  rats18 (Baumann   KI,  Hamann  W,  Leung  MS:  Mechanical  properties  of  skin  and  responsiveness  of  slowly  adapting  type  I   mechanoreceptors  in  rats  at  different  ages.  J  Physiol  1986;  371:  329-­‐37)   During  rats’  adulthood,  there  was  a  subsequent  tortuosity  of  the  distorted  elastic  fibers  which  have  lost   their  original  elasticity  and  interlock  with  the  collagen  bundles.  Interlocking  of  both  collagen  and  elastic   fibers  decrease  tissue  compliance19 (Imayama  S.  Am  J  Pathol  1989).  In  human  being,  the  thickness  of  the   dermis  also  decreases  with  age  and  this  is  accompanied  by  a  decrease  in  number  of  mast  cells  and   fibroblasts,  and  a  decrease  in  the  generation  of  collagen,  elastin,  glycosaminoglycans,  and  hyaluronic   acid.  It  is  thought  that  changes  in  the  amount  of  collagen,  alterations  in  tissue  reactive  oxygen  species  or   decreases  in  the  amount  of  fibroblast-­‐collagen  linkage  may  result  in  a  diminished  ability  of  the  skin  to   detect  or  propagate  mechanical  stimuli;  however,  it  has  not  yet  been  investigated.  20  (Wu  M:  Effect  of   aging  on  cellular  mechanotransduction.  Ageing  Res  Rev  2011).     We  also  found  that  in  aged  rats,  the  number  of  impulses  (magnitude  of  response)  induced  by   mechanical  stimulation  tend  to  decrease  compared  to  young  rats,  which  could  be  due  to  the  following   reasons:    First,  since  there  are  decreased  expression  of  Nav1.8  and  TRPV1  protein  in  cutaneous  nerves  
  • 11. of  aged  mice  (Wang  s,  neurobiol  Aging,  2006).  It  has  been  indicated  that  Nav1.8  sodium  channels   contribute  substantially  to  action  potential  electrogenesis  in  DRG  neurons  (J  Neurophysiol.  2001,   Renganathan).  It  is  possible  that  the  age-­‐related  expression  of  Nav1.8  could  lead  to  changes  in  less   action  potential  electrogenesis  in  aged  rats.  Secondly,  a  decreased  sodium-­‐  potassium  pump  activity  in   dorsal  root  in  aged  mice  was  observed  (Robertson,  1993).  As  it  has  been  suggested  this  decreased  basal   level  of  pump  activity  would  lead  to  relatively  depolarized  membrane  potential  and  higher  proportion  of   inactivated  sodium  channels,  which  would  result  in  hypoexcitability  of  fires  to  sensory  stimuli  (Namer   2009).  This  could  also  leads  to  fewer  spikes  to  mechanical  stimulation  in  aged  skin.   Chemical  responses  and  sensitized  mechanical  response  after  chemical  soup   Although  there  was  no  difference  between  young  and  aged  rats  with  the  net  spikes  induced  by  chemical   stimulation,  activities  of  nociceptors  in  response  to  chemicals  (bradykinin,  histamine,  serotonin,  and   prostaglandin  E2)  have  changed  with  ageing  shown  by  a  longer  latency  in  the  aged  rats.  Our  finding  is   supported  by  previous  report  that  latency  of  mechanoresponsive  C  fibers  to  10uM  bradykinin  was   significantly  longer  in  the  aged  SD  rats  (Taguchi,  2010).   Also,  our  results  showed  that  after  chemical  soup  the  mechanical  responses  are  enhanced  both  in  young   and  old  rats.  Previous  report  showed  that  local  application  of  SP  had  a  sensitizing  effect  on  joint   afferents  in  response  to  movements  in  old  animals  (McDougall  JJ,  2007).  Here,  our  results  first  time   showed  that  this  sensitization  was  more  prominent  in  young  rats  than  old  rats,  which  was  evidenced  by   stronger  enhanced  mechanical  responses  in  young  rats.  We  found  that  percentages  of  changes  in  firing   rates  induced  by  inflammatory  soup  were  higher  in  young  rats  than  in  aged  rats.  Also  the  increased   firing  could  be  seen  in  all  mechanical  stimulation  phases  including  s1  to  s6,  where  in  aged  rats,  it  was   only  seen  in  s4.       One  reason  for  a  longer  latency  of  inflammatory  mediator  induced  response  and  weakened  sensitization   in  senescent  skin  might  result  from  the  reduced  expressions  of  receptor  molecules  and  transducers  such   as  TRPV1,  bradykinin  receptors,  histamine  receptors  and  serotonin  receptors,  prostaglandin  receptors.   Indeed,  in  rat  spinal  cord,  study  using  quantitative  immunohistochemistry  for  serotonin  (5-­‐HT)  and   tyrosine  hydroxylase  (TH)  in  male  Wistar  rats  of  3  and  24  months  revealed  significant  age-­‐associated   declines  in  the  monoaminergic  innervation  (Ranson,  R.  N.,2003,  Age-­‐associated  changes  in  the   monoaminergic  innervation  of  rat  lumbosacral  spinal  cord.  Brain  Res).    In  the  dorsal  root  ganglia  of  aged   rats,  SP-­‐like  immunoreactivity  significantly  reduced  compared  to  young  adults  (Bergman,  1996).   Although  there  are  no  study  available  as  for  the  age-­‐related  changes  of  bradykinin,  serotonin  and   prostaglandin  E2  expressions  in  aged  rats,  it  has  been  shown  that  TRPV1  expression  in  peripheral  nerve   is  lower  in  aged  mice  (Wang  s,  neurobiol  Aging,  2006).  This  created  a  possibility  that  reduced  TRPV1   expression  with  ageing  might  lead  to  decreased  bradykinin-­‐evoked  and  prostaglandin-­‐evoked  nociceptor   excitation  and  bradykinin-­‐induced  mechanical  hyperalgesia.   Bradykinin  is  produced  in  response  to  tissue  injury,  inflammation,  or  ischemia  and  binds  to  PLC  coupled   (BK2)  receptors  on  sensory  neurons  (McMahon  et  al.,  2006).  Bradykinin  elicits  acute  pain  through   immediate  excitation  of  nociceptors,  followed  by  a  longer  lasting  sensitization  to  thermal  and  
  • 12. mechanical  stimuli  (Dray  and  Perkins,  1993).  Genetic  and  electrophysiological  studies  suggest  that   bradykinin-­‐evoked  thermal  hypersensitivity  is  produced  through  PLC-­‐mediated  potentiation  of  TRPV1   (Cesare  et  al.,  1999;  Chuang  et  al.,  2001;  Premkumar  and  Ahern,  2000).    Several  studies  have  suggested   that  TRPV1  is  essential  to  the  BK-­‐evoked  responses  (Shin  et  al.,  2002;  Ferreira  et  al.,  2004,  Neurosci  Res.   2008  Katanosaka  K).  In  addition,  histamine-­‐dependent  itch  is  mediated  by  a  subset  of  C-­‐fiber  afferents   that  express  TRPV1  and  the  histamine  receptor  (Shim  WS,  2007.  TRPV1  mediates  histamine-­‐induced   itching  via  the  activation  of  phospholipase  A2  and  12-­‐lipoxygenase.  J.  Neurosci.).     Prostaglandins  (PGs),  another  class  of  fatty  acid  derivatives,  are  produced  at  sites  of  inflammation  and   mediate  inflammatory  responses  and  sensitization  by  a  variety  of  mechanisms.  Protein  kinase  C  (PKC)   and  PKA  downstream  of  prostaglandin  E2  receptors,  sensitize/activate  multiple  molecules  including   transient  receptor  potential  vanilloid-­‐1  (TRPV1)  channels,  purinergic  P2X3  receptors,  and  voltage-­‐gated   calcium  or  sodium  channels  in  nociceptors,  leading  to  hyperalgesia  (Biol  Pharm  Bull.  2011,Prostaglandin   E2  and  pain-­‐-­‐an  update.  Kawabata  A).     Recently  it  was  shown  that  inflammatory  mediators  such  as  prostaglandin-­‐E2  or  bradykinin  cause   hyperalgesia  by  activating  cellular  kinases  that  phosphorylate  TRPV1,  a  process  that  relies  on  a   scaffolding  protein,  AKAP79,  to  target  the  kinases  to  TRPV1(J  Neurosci.  Btesh  J,  2013).  We  speculated   that  reduced  TRPV1  expression  with  ageing  could  lead  to  reduced  bradykinin-­‐evoked  and  prostaglandin-­‐ evoked  nociceptor  excitation  and  bradykinin-­‐induced  mechanical  hyperalgesia.  Also  the  histamine   induced  C-­‐fiber  excitation  might  decrease  with  aging  since  TRPV1  expressions  are  decreased  with  aging.   One  can  speculate  that  the  ageing  effects  on  the  structure  of  other  ion  channels  such  as  TRPA1,  could   contribute  to  the  age-­‐related  chemical  responses.  Interestingly,  a  study  showed  that  the   mechanosensitivity  of  mouse  colon  afferent  fibers  and  their  sensitization  by  inflammatory  mediators   require  TRPV1  and  ASIC  3  (J  Neurosci.  2005  Jones  RC  3rd).  And  combined  genetic  and  pharmacological   inhibition  of  TRPV1  and  P2X3  attenuates  colorectal  hypersensitivity  and  afferent  sensitization  by   inflammatory  soup  was  also  significantly  attenuated  (Kiyatkin  ME,  2013).However,  whether  this  also   applied  to  aged  cutaneous  afferents  needs  to  be  investigated  in  the  future.     References   1.   Edwards  RR,  Fillingim  RB,  Ness  TJ:  Age-­‐related  differences  in  endogenous  pain  modulation:  a   comparison  of  diffuse  noxious  inhibitory  controls  in  healthy  older  and  younger  adults.  Pain  2003;  101:   155-­‐65   2.   Lin  YH,  Hsieh  SC,  Chao  CC,  Chang  YC,  Hsieh  ST:  Influence  of  aging  on  thermal  and  vibratory   thresholds  of  quantitative  sensory  testing.  J  Peripher  Nerv  Syst  2005;  10:  269-­‐81   3.   Matysiak  M,  Ducastelle  T,  Hemet  J:  [Morphometric  study  of  variations  related  to  human  aging  in   pulp  unmyelinated  and  myelinated  axons].  J  Biol  Buccale  1988;  16:  59-­‐68   4.   Melcangi  RC,  Magnaghi  V,  Martini  L:  Aging  in  peripheral  nerves:  regulation  of  myelin  protein   genes  by  steroid  hormones.  Prog  Neurobiol  2000;  60:  291-­‐308   5.   Ochs  S:  Effect  of  maturation  and  aging  on  the  rate  of  fast  axoplasmic  transport  in  mammalian   nerve.  Prog  Brain  Res  1973;  40:  349-­‐62   6.   Parhad  IM,  Scott  JN,  Cellars  LA,  Bains  JS,  Krekoski  CA,  Clark  AW:  Axonal  atrophy  in  aging  is   associated  with  a  decline  in  neurofilament  gene  expression.  J  Neurosci  Res  1995;  41:  355-­‐66  
  • 13. 7.   Wang  S,  Davis  BM,  Zwick  M,  Waxman  SG,  Albers  KM:  Reduced  thermal  sensitivity  and  Nav1.8   and  TRPV1  channel  expression  in  sensory  neurons  of  aged  mice.  Neurobiol  Aging  2006;  27:  895-­‐903   8.   Chang  YC,  Lin  WM,  Hsieh  ST:  Effects  of  aging  on  human  skin  innervation.  Neuroreport  2004;  15:   149-­‐53   9.   Besne  I,  Descombes  C,  Breton  L:  Effect  of  age  and  anatomical  site  on  density  of  sensory   innervation  in  human  epidermis.  Arch  Dermatol  2002;  138:  1445-­‐50   10.   Lauria  G,  Holland  N,  Hauer  P,  Cornblath  DR,  Griffin  JW,  McArthur  JC:  Epidermal  innervation:   changes  with  aging,  topographic  location,  and  in  sensory  neuropathy.  J  Neurol  Sci  1999;  164:  172-­‐8   11.   Bergman  E,  Fundin  BT,  Ulfhake  B:  Effects  of  aging  and  axotomy  on  the  expression  of   neurotrophin  receptors  in  primary  sensory  neurons.  J  Comp  Neurol  1999;  410:  368-­‐86   12.   Ulfhake  B,  Bergman  E,  Edstrom  E,  Fundin  BT,  Johnson  H,  Kullberg  S,  Ming  Y:  Regulation  of   neurotrophin  signaling  in  aging  sensory  and  motoneurons:  dissipation  of  target  support?  Mol  Neurobiol   2000;  21:  109-­‐35   13.   Verdu  E,  Ceballos  D,  Vilches  JJ,  Navarro  X:  Influence  of  aging  on  peripheral  nerve  function  and   regeneration.  J  Peripher  Nerv  Syst  2000;  5:  191-­‐208   14.   Lang  E,  Novak  A,  Reeh  PW,  Handwerker  HO:  Chemosensitivity  of  fine  afferents  from  rat  skin  in   vitro.  J  Neurophysiol  1990;  63:  887-­‐901   15.   Kessler  W,  Kirchhoff  C,  Reeh  PW,  Handwerker  HO:  Excitation  of  cutaneous  afferent  nerve   endings  in  vitro  by  a  combination  of  inflammatory  mediators  and  conditioning  effect  of  substance  P.  Exp   Brain  Res  1992;  91:  467-­‐76   16.   Leem  JW,  Willis  WD,  Chung  JM:  Cutaneous  sensory  receptors  in  the  rat  foot.  J  Neurophysiol   1993;  69:  1684-­‐99   17.   Khalsa  PS,  LaMotte  RH,  Grigg  P:  Tensile  and  compressive  responses  of  nociceptors  in  rat  hairy   skin.  J  Neurophysiol  1997;  78:  492-­‐505   18.   Baumann  KI,  Hamann  W,  Leung  MS:  Mechanical  properties  of  skin  and  responsiveness  of  slowly   adapting  type  I  mechanoreceptors  in  rats  at  different  ages.  J  Physiol  1986;  371:  329-­‐37   19.   Imayama  S,  Braverman  IM:  A  hypothetical  explanation  for  the  aging  of  skin.  Chronologic   alteration  of  the  three-­‐dimensional  arrangement  of  collagen  and  elastic  fibers  in  connective  tissue.  Am  J   Pathol  1989;  134:  1019-­‐25   20.   Wu  M,  Fannin  J,  Rice  KM,  Wang  B,  Blough  ER:  Effect  of  aging  on  cellular  mechanotransduction.   Ageing  Res  Rev  2011;  10:  1-­‐15