2018/03/03
Tokyo.R #68 LT
@419kfj
Kazuo.fujimoto2007@gmail.com
•
• 1
• 2
• 4 *
1.
2.
3.
•
4.
•
* 2010 p2-
2018/3/3 Tokyo.R#68 LT 2
Q1
• 57
http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei12/dl/stress-check_j.pdf
2018/3/3 Tokyo.R#68 LT 3
??
• 1 2 3 4
•
• 1 2 3 4
• 1 2 3 4
•
•
•
• http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei12/pdf
/150803-1.pdf
2018/3/3 Tokyo.R#68 LT 4
……
2018/3/3 Tokyo.R#68 LT 5
1 2 3 4
1 2 3 4
1 2 3 4
1 2 =1
………
•
2018/3/3 Tokyo.R#68 LT 6
P105
•
•
MCA
• 2011
• HCPC
• MCA
•
•
2018/3/3 Tokyo.R#68 LT 7
2018/3/3 Tokyo.R#68 LT 8
p105
•
•
•
•
•
=
2018/3/3 Tokyo.R#68 LT 9
FactoMineR PCA( )
2018/3/3 Tokyo.R#68 LT 10
library(FactoMineR)
.d <- matrix(c(2,4,5,
1,5,1,
5,3,4,
2,2,3,
3,5,5,
4,3,2,
4,4,3,
1,2,1,
3,3,2,
5,5,3),byrow=TRUE,10,3,
dimnames = list( =c(" "," "," "," ",
" "," "," "," ",
" "," "),
=c(" "," "," ")))
res.PCA <- PCA(.d)
plot.PCA(res.PCA,choix = "var")
plot.PCA(res.PCA,choix = "ind",col.ind = 1:10)
2018/3/3 Tokyo.R#68 LT 11
2018/3/3 Tokyo.R#68 LT 12
PCA
2018/3/3 Tokyo.R#68 LT 13
13 1.6234449↑
13 1.510711
12 1.033449
11 0.7504515↑
11 0.6377176
9 -0.2916428
8 -0.6957621
7 -1.0267387↑
7 -1.1082693
4 -2.4333611
5 1
•
•
• Greenacre
•
• MCA
•
•
• MCA
PCA
2018/3/3 Tokyo.R#68 LT 14
factor
2018/3/3 Tokyo.R#68 LT 15
tribble( ~ ,~ ,~ ,~ ,
#---------------
" ", 2,4,5,
" ", 1,5,1,
" ", 5,3,4,
" ", 2,2,3,
" ", 3,5,5,
" ", 4,3,2,
" ",4,4,3,
" ", 1,2,1,
" ",3,3,2,
" ", 5,5,3 ) %>%
mutate_all(.funs=factor) %>% as.data.frame %>%
column_to_rownames(' ') -> .d.f
# tibble column_to_rownames
Setting row names on a tibble is
deprecated.
data.frame
column_to_rownames
MCA
2018/3/3 Tokyo.R#68 LT 16
res.MCA <-MCA(.d.f,graph = FALSE)
plot.MCA(res.MCA,axes = c(1,2),autoLab="yes",col.ind = rep(2,10),
col.var = c(rep(3,5),rep(4,4),rep(5,5)),
title=" - 1:2 ",cex=0.9)
2018/3/3 Tokyo.R#68 LT 17
• Dim1
• _5 _1
•
•
•
• 5,3 4,2
•
• 1 5
•
• 5,3 4
2018/3/3 Tokyo.R#68 LT 18
• PCA
•
• CA/MCA
•
•
•
•
2018/3/3 Tokyo.R#68 LT 19
res.MCA
Result summary(res.MCA)
res.MCA
t <- res.MCA$var$coord[1:5,1]
t <- res.MCA$var$coord[6:9,1]
t <- res.MCA$var$coord[10:14,1]
_1 _2 _3 _4 _5
-1.5368811 -0.4624864 0.6398921 0.7685653 0.5909102
_2 _3 _4 _5
-1.20152575 1.23897692 0.02087463 -0.45187617
_1 _2 _3 _4 _5
-1.53688111 1.26353808 -0.15942396 1.18985460 -0.08244833
2018/3/3 Tokyo.R#68 LT 20
result
• MCA (factor)
result
_1 _2 _3 _4 _5
-1.5368811 -0.4624864 0.6398921 0.7685653 0.5909102
_2 _3 _4 _5
-1.2015258 1.23897692 0.02087463 -0.4518762
_1 _2 _3 _4 _5
-1.5368811 1.26353808 -0.159424 1.1898546 -0.0824483
2018/3/3 Tokyo.R#68 LT 21
.d1 <- data.frame( t[.d.f$ ], t[.d.f $ ], t[.d.f $ ])
rownames(.d1) <- c(" "," "," "," ",
" "," ", " ",
" "," "," ")
.d1
2018/3/3 Tokyo.R#68 LT 22
-0.462 0.021 -0.082
-1.537 -0.452 -1.537
0.591 1.239 1.190
-0.462 -1.202 -0.159
0.640 -0.452 -0.082
0.769 1.239 1.264
0.769 0.021 -0.159
-1.537 -1.202 -1.537
0.640 1.239 1.264
0.591 -0.452 -0.159
2018/3/3 Tokyo.R#68 LT 23
2018/3/3 Tokyo.R#68 LT 24
MCA PCA
2018/3/3 Tokyo.R#68 LT 25
2018/3/3 Tokyo.R#68 LT 26
> round(cor(.d),3)
1.000 0.191 0.36
0.191 1.000 0.30
0.360 0.300 1.00
> round(cor(.d2),3)
2 2 2
2 1.00 0.630 0.820
2 0.63 1.000 0.852
2 0.82 0.852 1.000
Eigenvalues Dim.1 Dim.2 Dim.3
Variance 1.573 0.814 0.613
% of var. 52.428 27.134 20.438
Cumulative % of
var.
52.428 79.562 100
2018/3/3 Tokyo.R#68 LT 27
Eigenvalues Dim.1 Dim.2 Dim.3
Variance 2.538 0.371 0.091
% of var. 84.597 12.375 3.028
Cumulative % of
var.
84.597 96.972 100
1 5
PCA
MCA
PCA
p112 114
Eigenvalues Dim.1 Dim.2 Dim.3
Variance 1.573 0.814 0.613
% of var. 52.428 27.134 20.438
Cumulative % of
var.
52.428 79.562 100
2018/3/3 Tokyo.R#68 LT 28
Eigenvalues Dim.1 Dim.2 Dim.3
Variance 2.538 0.371 0.091
% of var. 84.597 12.375 3.028
Cumulative % of
var.
84.597 96.972 100
2018/3/3 Tokyo.R#68 LT 29
PCA
1 13 1.623 ↑ 2.053
2 13 1.511 1.973
3 12 1.033 1.896
4 11 0.750 ↑ 0.395
5 11 0.638 0.066
6 9 -0.292 -0.013
7 8 -0.696 -0.329
8 7 -1.027 ↑ -1.145
9 7 -1.108 -2.213
10 4 -2.433 -2.684
1-5 PCA PCA
,2011,
Clausen.S.E,1998,”Applied Correspondence Analysis an Intoduction”,SAGE Publication,
( ,2015, )
Greenacre.M.J,2017,”Correspondence Analysis in Practice 3rd Edition”,CRC
Hand, David J,2016,“Measurement”, very short introduction ,oxford university press
Francois Husson, Sebastien Le, Jérôme Pagès,2017,” Exploratory Multivariate Analysis
by Example Using R, Second Edition”, Chapman and Hall/CRC
,2004(1981), 3
p293−294,
,2007, ― ,
,2010, ―
,
,2014,
, 41 2
81
URL=https://www.jstage.jst.go.jp/article/jbhmk/41/2/41_89/_pdf/-char/ja
,2006,
2018/3/3 Tokyo.R#68 LT 30

その数量化、大丈夫ですか?

  • 1.
  • 2.
    • • 1 • 2 •4 * 1. 2. 3. • 4. • * 2010 p2- 2018/3/3 Tokyo.R#68 LT 2
  • 3.
  • 4.
    ?? • 1 23 4 • • 1 2 3 4 • 1 2 3 4 • • • • http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei12/pdf /150803-1.pdf 2018/3/3 Tokyo.R#68 LT 4
  • 5.
    …… 2018/3/3 Tokyo.R#68 LT5 1 2 3 4 1 2 3 4 1 2 3 4 1 2 =1 ………
  • 6.
  • 7.
    P105 • • MCA • 2011 • HCPC •MCA • • 2018/3/3 Tokyo.R#68 LT 7
  • 8.
  • 9.
  • 10.
    FactoMineR PCA( ) 2018/3/3Tokyo.R#68 LT 10 library(FactoMineR) .d <- matrix(c(2,4,5, 1,5,1, 5,3,4, 2,2,3, 3,5,5, 4,3,2, 4,4,3, 1,2,1, 3,3,2, 5,5,3),byrow=TRUE,10,3, dimnames = list( =c(" "," "," "," ", " "," "," "," ", " "," "), =c(" "," "," "))) res.PCA <- PCA(.d) plot.PCA(res.PCA,choix = "var") plot.PCA(res.PCA,choix = "ind",col.ind = 1:10)
  • 11.
  • 12.
  • 13.
    PCA 2018/3/3 Tokyo.R#68 LT13 13 1.6234449↑ 13 1.510711 12 1.033449 11 0.7504515↑ 11 0.6377176 9 -0.2916428 8 -0.6957621 7 -1.0267387↑ 7 -1.1082693 4 -2.4333611
  • 14.
    5 1 • • • Greenacre • •MCA • • • MCA PCA 2018/3/3 Tokyo.R#68 LT 14
  • 15.
    factor 2018/3/3 Tokyo.R#68 LT15 tribble( ~ ,~ ,~ ,~ , #--------------- " ", 2,4,5, " ", 1,5,1, " ", 5,3,4, " ", 2,2,3, " ", 3,5,5, " ", 4,3,2, " ",4,4,3, " ", 1,2,1, " ",3,3,2, " ", 5,5,3 ) %>% mutate_all(.funs=factor) %>% as.data.frame %>% column_to_rownames(' ') -> .d.f # tibble column_to_rownames Setting row names on a tibble is deprecated. data.frame column_to_rownames
  • 16.
    MCA 2018/3/3 Tokyo.R#68 LT16 res.MCA <-MCA(.d.f,graph = FALSE) plot.MCA(res.MCA,axes = c(1,2),autoLab="yes",col.ind = rep(2,10), col.var = c(rep(3,5),rep(4,4),rep(5,5)), title=" - 1:2 ",cex=0.9)
  • 17.
  • 18.
    • Dim1 • _5_1 • • • • 5,3 4,2 • • 1 5 • • 5,3 4 2018/3/3 Tokyo.R#68 LT 18
  • 19.
  • 20.
    res.MCA Result summary(res.MCA) res.MCA t <-res.MCA$var$coord[1:5,1] t <- res.MCA$var$coord[6:9,1] t <- res.MCA$var$coord[10:14,1] _1 _2 _3 _4 _5 -1.5368811 -0.4624864 0.6398921 0.7685653 0.5909102 _2 _3 _4 _5 -1.20152575 1.23897692 0.02087463 -0.45187617 _1 _2 _3 _4 _5 -1.53688111 1.26353808 -0.15942396 1.18985460 -0.08244833 2018/3/3 Tokyo.R#68 LT 20
  • 21.
    result • MCA (factor) result _1_2 _3 _4 _5 -1.5368811 -0.4624864 0.6398921 0.7685653 0.5909102 _2 _3 _4 _5 -1.2015258 1.23897692 0.02087463 -0.4518762 _1 _2 _3 _4 _5 -1.5368811 1.26353808 -0.159424 1.1898546 -0.0824483 2018/3/3 Tokyo.R#68 LT 21
  • 22.
    .d1 <- data.frame(t[.d.f$ ], t[.d.f $ ], t[.d.f $ ]) rownames(.d1) <- c(" "," "," "," ", " "," ", " ", " "," "," ") .d1 2018/3/3 Tokyo.R#68 LT 22
  • 23.
    -0.462 0.021 -0.082 -1.537-0.452 -1.537 0.591 1.239 1.190 -0.462 -1.202 -0.159 0.640 -0.452 -0.082 0.769 1.239 1.264 0.769 0.021 -0.159 -1.537 -1.202 -1.537 0.640 1.239 1.264 0.591 -0.452 -0.159 2018/3/3 Tokyo.R#68 LT 23
  • 24.
  • 25.
  • 26.
    2018/3/3 Tokyo.R#68 LT26 > round(cor(.d),3) 1.000 0.191 0.36 0.191 1.000 0.30 0.360 0.300 1.00 > round(cor(.d2),3) 2 2 2 2 1.00 0.630 0.820 2 0.63 1.000 0.852 2 0.82 0.852 1.000
  • 27.
    Eigenvalues Dim.1 Dim.2Dim.3 Variance 1.573 0.814 0.613 % of var. 52.428 27.134 20.438 Cumulative % of var. 52.428 79.562 100 2018/3/3 Tokyo.R#68 LT 27 Eigenvalues Dim.1 Dim.2 Dim.3 Variance 2.538 0.371 0.091 % of var. 84.597 12.375 3.028 Cumulative % of var. 84.597 96.972 100 1 5 PCA MCA PCA
  • 28.
    p112 114 Eigenvalues Dim.1Dim.2 Dim.3 Variance 1.573 0.814 0.613 % of var. 52.428 27.134 20.438 Cumulative % of var. 52.428 79.562 100 2018/3/3 Tokyo.R#68 LT 28 Eigenvalues Dim.1 Dim.2 Dim.3 Variance 2.538 0.371 0.091 % of var. 84.597 12.375 3.028 Cumulative % of var. 84.597 96.972 100
  • 29.
    2018/3/3 Tokyo.R#68 LT29 PCA 1 13 1.623 ↑ 2.053 2 13 1.511 1.973 3 12 1.033 1.896 4 11 0.750 ↑ 0.395 5 11 0.638 0.066 6 9 -0.292 -0.013 7 8 -0.696 -0.329 8 7 -1.027 ↑ -1.145 9 7 -1.108 -2.213 10 4 -2.433 -2.684 1-5 PCA PCA
  • 30.
    ,2011, Clausen.S.E,1998,”Applied Correspondence Analysisan Intoduction”,SAGE Publication, ( ,2015, ) Greenacre.M.J,2017,”Correspondence Analysis in Practice 3rd Edition”,CRC Hand, David J,2016,“Measurement”, very short introduction ,oxford university press Francois Husson, Sebastien Le, Jérôme Pagès,2017,” Exploratory Multivariate Analysis by Example Using R, Second Edition”, Chapman and Hall/CRC ,2004(1981), 3 p293−294, ,2007, ― , ,2010, ― , ,2014, , 41 2 81 URL=https://www.jstage.jst.go.jp/article/jbhmk/41/2/41_89/_pdf/-char/ja ,2006, 2018/3/3 Tokyo.R#68 LT 30