SlideShare a Scribd company logo
1 of 60
CS-211 Advanced Crop
Production and Management
Production Practices for Legumes
Learning objectives
 Identify legumes and its uses
 Describe the soil and climatic requirement of mungbean and peanut
 Explain the cultural practices of mungbean and peanut
 Why Legumes?
 Legumes are plants in the family Fabaceae (or Leguminosae). When
used as a dry grain, the seed is also called a pulse. Legumes are
grown agriculturally, primarily for human consumption, for livestock
forage and silage, and as soil-enhancing green manure.
 Beans, soybeans, peas, chickpeas, peanuts, lentils, lupins, carob, ta
marind, alfalfa, and clover are the well-know Legumes.
 Legumes are notable in that most of them have symbiotic nitrogen-
fixing bacteria in structures called root nodules. For that reason, they
play a key role in crop rotation.
Importance of legumes
 Legumes in human nutrition
 Legumes for animal nutrition
 Legumes for crop and soil improvement (nitrogen fixing)
 Legumes can be incorporated into cereal cropping system
-Green manuring
-intercropping
-grain-legumes rotation
-leguminous shrubs
Nitrogen fixation
 Legume nitrogen fixation starts with the formation of a nodule. The rhizobia bacteria
((Rhizobiaceae and Proteobacteria) in the soil invade the root and multiply within its
cortex cells and convert atmospheric nitrogen gas into a plant-useable form of nitrogen
(nitrogen fixation is the process that changes nitrogen gas N2 into biologically useful
ammonium NH3., NH4+).
 Plants receive access to nitrogen in a form that they need for their growth and, in
exchange, the bacteria receive energy to support bacterial growth in the form of carbon
from plant photosynthesis as well as physical protection within the root nodules. As a
result of this symbiotic process, legumes tend to be higher in nitrogen than other plant
species, which can improve soil nitrogen availability, reduce (often eliminate) the need for
nitrogen fertilizers, and increase the protein content of legume seeds that can be
beneficial for human health.
Mungbean Production Practices
WHY MUNG BEAN?
Mung bean (Vigna radiata L.) is one of the cheapest sources of plant protein.
It is also a good source of minerals such as calcium and sodium and high in
vitamins A, B & C. It is a drought-tolerant crop and requires a warm climate
during its growing period. The temperature and humidity prevailing in the
country is suited for optimum yields.
It is a raw material in processing products such as sprout production,
sotanghon manufacturing, hopia processing, and as ingredients in dishes like
soups, porridge, snacks, bread, noodles and ice cream. It can be processed as
starch, flour and paste and the crop itself can be used as fodder and cover
crop.
TOP 5 MAJOR MUNG BEAN PRODUCING REGIONS IN 2021
The top major mung bean producing regions are Region I with 1 3, 1 81 .32 MT,
Region Il with 6,859.87 MT, Region Ill with 6,596.57 MT, Region vi with 2,952.52
MT and ARMM with 2,809.77 MT. At 36.36%, the 'locos Region produced more
than one-third of the country's total mung bean production in 2021.
MARKET POTENTIAL
 Mung bean is marketable crop and demands a good price which gives farmers
sustainable livelihood. Its agronomic characteristics permit to fit in various
cropping systems as an intercrop, rotation and relay crop.
 Most of the regions in the Philippines cannot meet their respective demand for
mung bean. There are also emerging opportunities in the international market.
Japan, for example, is looking for alternative suppliers. The vegetarian segment
of the population is also a potential market.
Nutritional Values
Mungbean is rich in easily digestible protein (24%). It adds much-needed diversity to the
cereal-based diets of the poor. The protein is easily digested and is of a high
quality, making it based food preparations especially good for children, elderly people
and invalids.
It also contains vitamin A (94 mg), iron (7.3 mg), calcium (124 mg), zinc (3
mg) and folate (549 mg) per 100 grams dry seeds. Mungbeans are also high in vitamins
B1, B2 and C and niacin.
Mungbean Varieties
Pag-asa 3- seed color is shiny yellow, seed yield of 1.15 tons/ha and contain
23.58% protein and 57.1 carbohydrate
Pag-asa 7- glossy green seed, produce .6 tons/ha, 22.05% protein and 58.35%
carbohydrate
Pag-asa 9- shiny green seeds, seed yield 1.3 tons/ha and 15.52% protein and
37% starch
Cultivation
Soil and Climatic Requirements
Mungbean is a dry season crop and can be grown best in rotation with rice or corn in an
optimum temperature ranging from 20 to30oC. It needs plenty of sunlight and a daylength of
11.5 to 13.0 hours. It can be profitably grown in different types of soil with pH ranging from
5.8 to 6.5.
In the Philippines, mungbean can be grown during the wet season (May-June); dry season
(September-October); and late dry season (February-March). High humidity brought about by
continuous rains could severely reduce the quality of harvested seeds.
Cultural Management Practices
Land Preparation
Prepare the land thoroughly so that mungbean seeds can germinate uniformly,
establish rapidly, and compete well with weeds. For the uplands, prepare the soil
thoroughly by plowing alternated with harrowing at weekly interval. For post-rice
culture, zero or minimum tillage can be practiced.
Planting
Drill the seeds along shallow furrows spaced 60 centimeters apart. Twenty (20)
kgs of seeds is enough to plant a hectare. If seed inoculant is available, moisten the seeds
with water, then mix the inoculant until all seeds are coated. Keep the newly inoculated
seeds under shade until they are planted.
At planting, sufficient soil moisture is necessary so that the seeds can germinate
uniformly. For post-rice culture, flood the paddy 1-2 days before planting. Then, drain
the water before broadcasting the seeds.
Water Management
Mungbean is relatively tolerant to drought. However, it needs sufficient amount
of water during its critical stages of growth and development (germination, vegetative,
flowering and pod-filling stages).
The daily water requirement of mungbean differs, depending on intensity of
solar radiation and rate of evaporation. In general, the crop requires 3.5 millimeters of water
per day or about 410 millimeters per cropping season.
Nutrient Management
Mungbean obtains nitrogen through its symbiosis with the N-fixing bacteria in
the roots. Excessive nitrates from applied fertilizer will restrict N fixation.
In commercial production of mungbean, fertilization rate and type of applica-
tion depends on the results of soil analysis. However, in the absence of such analysis and
during dry season cropping, basal application of three bags (150 kgs of complete ferti-
lizer (14-14-14) per hectare is recommended for heavy soils (loam to clay loam), and
four bags (200 kgs) for light soils (sandy to sandy loam). You can also apply organic
fertilizer if you want to produce mungbean organically as well as to improve the soil
conditions.
It is recommended to inoculate the seeds with appropriate Rhizobia strain ino-
culant right before planting. Then apply only 20 kgs per hectare of nitrogen which can
be supplied by 150 kgs of Triple14.
Crop Protection
A. Insect Pests
1. Bean fly (Melanagromyza sojae Zehntner) – the most destructive insect
pest in early vegetative stage. It inserts its eggs into the cotyledonary leaves.
The emerging larva tunnels from the leaves towards the stem and pupate
within the stem just slightly above the soil surface, eventually causing wilting
and stunting of the plants.
2. Aphids (Aphis glycines Matsumura) – can damage the
young plants. It can also transmit deadly viruses.
3. Pod borer (Etiella zinckenella Treitschke) – lays its eggs on the petals or sepals.
The larva feeds on the flower buds or immature seeds within the pods.
4. Green Soldier Bug or stinkbugs (Nezara viridula L.)- observed unusually high
populations of this pest (3-4 insects/ meter row) uniformly over an entire field when
pods are still green.
5. Bruchids (Callosobruchus maculatus) - commonly called pulse beetles or cowpea
weevils. It attacks mungbean both in field and storage but greater losses occur in the
latter. The nutritional quality of the grains deteriorates because of the infestation
rendering making them unmarketable
General Insect Pest Control Strategies
The following are some strategies to control insect pests of mungbean:
1. Insect Pest Identification – to be able to determine what control measure you are going
to employ, know what particular pest to control, its life cycle and nature of damage.
2. Cultural Control - this includes the different field operations that promote favorable
growth of the crop while at the same time could effectively control insect pests by directly
destroying them, or interfere with their normal biological processes and make the
environment unpleasant for the insect pests such as sanitation and crop rotation.
3. Mechanical Control - involves the use of special equipment or operations. Generally, this
gives immediate and tangible results. Examples: handpicking and light trapping.
Biological Control - use of parasites, predators and pathogens to minimize or control the pest.
Every pest species has one or more natural enemies which prevent their population from
increasing to a disastrous level. Example: application of Trichogramma chilonis at the rate of
200 strips per hectare at weekly interval starting 20 days after germination up to flowering
stage.
Chemical Control – most commonly employed to control or kill pests (also known as
pesticides) pesticides should only be used when necessary. It should be integrated with other
forms of pest control.
. Diseases
1. Cercospora Leaf Spot (CLS) – caused by fungus Cercospora sp., which is
prevalent during wet season. The first visible symptom of infection is the
appearance of water-soaked spots on the leaves. The spots then turn tan to
reddish brown necrotic areas with a small gray center. The individual spots may
coalesce causing large dead areas on the leaves.
Powdery Mildew – caused by Erysiphe polygoni; develops under high relative humidity and
cool nights. Its first visible symptom is the appearance of small, white, powdery spots on the
upper surface of the leaf. The whitish fungal growth occupies part or the entire leaf surface.
Infected leaves become yellow, then brown and finally fall off.
Disease Management
• Plant high quality, preferably certified seeds.
• Use recommended seed bed preparation, planting depth, and seeding rates.
• Practice crop rotation with non-legume crops.
• Practice deep plowing to bury plant debris.
• Plant disease resistant cultivars and varieties.
• Employ appropriate crop management practices.
• Disease management is best accomplished using an integrated approach. This
involves incorporating as many of the principles listed above
Weed Control
Weed control is critical when mungbean grows slowly 2-3 weeks after emergence. To minimize weed
growth, fifteen days after planting, off-barring should be done to loosen the soil and eradicate weeds. This
will be followed by hand weeding to totally eradicate remaining weeds. Right after weeding, immediately do
the hilling-up by passing a carabao-drawn plow in between the rows of mungbean crop not only to eradicate
remaining weeds but also to improve plant anchorage.
Harvesting
 Mungbean is harvested by priming. Harvesting is done 60-70 days after planting. Mature pods turn
brown and then black. Begin harvesting as soon as 75% of the pods have dried up. Pick the harvestable pods
by hand. Repeat harvesting every 3 to 5 days. The number of primings (number of harvesting) depends on
the available soil moisture and fertility, and on the condition of the crop.
 Right after harvesting, sun-dry mungbean pods. When pods are sufficiently dry enough, thresh by placing the
dried pods in sack and beating it until all seeds severed from the pods. A mechanical rice thresher may be
used for large scale production. Take precaution not to damage the mungbean seeds. Clean the seeds and
sundry until 12% moisture content is reached
Post Harvest
Storage
 Store mungbean seeds in tight containers or in nylon/jute sack. Store them in a cool,
dry place protected from rodents. Practice good sanitation to prevent storage pest
infestation like weevils. You can also mix dried neem seeds or leaves, or dried hot pepper
(siling labuyo) with the mungbean seeds.
THANK YOU
PRODUCTION PRACTICES FOR PEANUT
PEANUT
 Description
Peanut (Arachis hypogaea L.) or groundnut is an annual herbaceous
plant of the Fabaceae or Legume family.
 Production Trends
Globally, peanut is the 13th most important food crop with 50% of it is
used as raw material for the manufacture of peanut oil, 37% for
confectionery, and 12% for seed purposes. The vegetative part of peanut is
excellent hay for feeding livestock because it is rich in protein and has
better palatability and digestibility than other fodders.
China leads in the production of peanuts, having a share of about 41.5% of overall world
production, followed by India (18.2%) and the United States of America (6.8%). In Europe,
the leading producer is Greece, at roughly 2000 tons per year.
 TOP 5 MAJOR PEANUT PRODUCING REGIONS IN 2019
The top major peanut producing regions are Region I with 1 1,914.50 MT,
Region Il with 3,109.58 MT, Region X with 2,595.21 MT, Region VI with 2,295.86
MT and Region Ill with 1,716.41 MT. At 40.66%, the Ilocos Region produced
almost half of the country's total peanut production.
 WHY PEANUT?
Peanut (Arachis hypogaea L.) is a popular crop in the Philippines. It can be
grown throughout the year provided inputs, especially the water
requirement, is adequately available.
Peanut is an inexpensive, high protein and energy food for human and
livestock. It can be processed in to high-quality healthy vegetable oil for
cooking. A concentrated food from peanut has more proteins, minerals and
vitamins than beef liver, more fat than heavy cream, and more energy than
sugar. It is also a good source of vitamin A and B.
 TOP 5 MAJOR PEANUT PRODUCING REGIONS IN 2021
The top major peanut producing regions are Region I with 1 1,914.50 MT,
Region Il with 3,109.58 MT, Region X with 2,595.21 MT, Region VI with 2,295.86
MT and Region Ill with 1,716.41 MT. At 40.66%, the Ilocos Region produced
almost half of the country's total peanut production.
Market Potential
Peanuts have many uses. It can be eaten raw, used in recipes, made into solvents and
oils, medicines, textile materials, peanut butter, as well as other areas of use such as
cosmetics, nitroglycerin, plastics, dyes and paints. The potential investment options
along the peanut value chain include seeds production, fresh and raw production,
processing into butter and even oil, trading, consolidation and marketing.
The peanut produced in the Philippines in 2019 is equivalent to 29,300.78 metric tons.
However, the country in 2019 is 75.0% import dependent. Thus, PH is only 25.0% self-
sufficient indicating inadequacy of food production to cope with the demand of the
population (PSA, 2020). The shortage provides prospective investors and local peanut
producers and processors the opportunity to capture the market concentrated by foreign
sources.
Recommended Peanut Varieties
Different government breeding institutions continue to develop new high yielding
varieties of peanut. In addition, some introduced varieties are also being tested under
local agro-climatic conditions so that farmers could have options as to what peanut
varieties to plant.
Peanut varieties in the Philippines are as follows:
Variety
Agronomic Characteristics
Other features
Dry Pod Yield
(t/ha)
100-seed
weight (g)
Shelling(%) Days to
Flower
Days
to Mature
Plant Height
(cm)
DS WS DS WS DS WS DS WS DS WS DS WS
PSB Pn 1 (UPL Pn
10)
2.0 1.5
 Medium-seeded
 Two-seeded
 Moderately resis-tant to
foliar di-seases & bacte-
rial wilt
NSIC Pn 02 1.87 1.34 101 103 45 74
 Resistant to peanut rust
and Cercospora Leaf Spot
(CLS) diseases
 Moderately resis-tant to
Asper-gillus flavus
NSIC Pn 03 1.80 1.86 43.6 38.2 66 65 31 28 103 104 41 64
 Moderately resis-tant to peanut rust
and CLS
 Mostly 3-seeded; bunch type peanut
with light brown seed coat
NSIC Pn 04 1.81 2.48 61.7 51.7 68 68 26 24 101 101 64 78
 Gives high yield and better bean quality
during dry season
 Mostly 2 to 3 seeded; bunch type; with
light brown seed coat
 Moderately sus-ceptible to CLS
NSIC Pn 05 1.86 1.77 54.3 47.9 72 73 30 31 101 100 45 58
 Moderately susceptible to CLS and
peanut rust
 Recommended as regional variety in
Central Visayas particularly in Bohol
 Mostly 3 seeded; bunch type; pea-nut
with salmon pink seed coat.
NSIC Pn 06
(Biyaya 14)
1.89 1.97 55.3 51.1 66 67
 Tolerant to leaf hopper
 High yielder in wet season in light
textured soil
 Two seeded Spanish variety with plump
and oblong shape pods; shelling easy
because of thin seed coat
NSIC Pn 07 1.91 1.86 55.9 43.5 67 62 30 26 100 100 50 53
 Moderately susceptible to CLS and
peanut rust
 Can be grown in dry and wet sea-sons;
gives better bean quality in dry season
 Mostly 2 to 3 seeded; bunch type; peanut
with pinkish seed coat
 Cultivation
 Soil and Climatic Requirements
The best soil suited to peanut production is well-drained, light colored,
loose, friable, sandy loam that contains high levels of calcium, a moderate
amount of organic matter, and with moderate to slightly acidic pH ranging
from 5.8 to 6.5. Optimum peanut production can be achieved in areas
with topsoil depth of 4 to 60 centimeters, friable, with sandy loam or clay
loam subsoil.
Peanut can be grown practically in all types of climatic conditions. In the
Philippines, peanut can be grown throughout the year provided irrigation
is available. In general, dry season crop (October-January) gives higher
yields and better quality beans than the rainy season crop.
Liming
Acidic soil with pH below 5.8 is not profitable for peanut production.
This can be corrected by adjusting the pH through application of lime
as follows:
Amount of ground limestone (t/ha) needed to bring soil pH to 6.0
Initial pH Sandy Sandy Loam Loam
Silt and Clay
Loam
Clay
4.0 2.0 3.5 4.5 6.0 7.5
4.5 1.5 2.5 3.2 4.2 5.2
5.0 1.0 1.5 2.0 2.5 5.0
5.5 0.5 0.5 0.8 0.9 2.0
 Cultural Management Practices
 Land Preparation
 Peanut requires a thoroughly prepared field to provide favorable conditions
for good crop establishment as well as conditions necessary for effective weed
control and proper pod development. Plow and harrow the field 2 to 3 times at
weekly interval to allow weed seeds to germinate, and achieve good soil tilth.
Set furrows 50-60 centimeters apart to allow relative ease of weeding,
cultivation and spraying without disturbing the growing crop. If possible, rows
should run from east to west direction to allow better peanut crop light
interception. Furrow when the soil has the right moisture for planting or when
soil does not stick to the plow during the operation.
 Seed Inoculation
When inoculants are available, place the seeds in a basin big enough for
easy mixing. Moisten the seeds with water then pour or mix 100 grams of
inoculants (Bradyrhizobium spp.) to 10 kilograms of moistened shelled
peanut seeds. Mix thoroughly until all the seeds are coated with
inoculants.
 Planting
The use of shelled peanut seeds as planting materials is the standard
practice. Sow peanut seeds using hill or drill method. In hill method, plant
one seed per hill at a distance of 5-10centimeters during the dry season
and 10-15centimeters during the wet season. With drill method, plant 18-
20 seeds per linear meter during the dry season and 10-15 seeds per
linear meter during the wet season. Distribute the seeds uniformly into the
furrows. Approximately 120-150 kilograms unshelled peanut is required
per hectare in both methods.
 Fertilizer and Nutrient Management
Fertilizer requirements should be determined on the basis of soil
analysis of the area. However, in the absence of soil analysis, a general
recommendation of 30-30-30 kg NPK per hectare maybe used. Prior to
planting, apply 4 bags of complete fertilizer per hectare on furrows and
cover thinly with soil. Sidedress 2 to 6 bags of calcium nitrate, 25 to
30days after planting. Application of calcium nitrate (Ca(NO3)2) minimizes
the production of “pops” or empty peanut pods.
Initial study conducted at BPI La Granja last 2000 revealed that peanut
can also be fertilized with vermi compost, commercial organic fertilizer or
decomposed carabao manure at the rate of 3.0, 1.0, and 5.0 tons,
respectively.
 Weed Management and Cultivation
Weed control is more critical in peanut production than in other crops
because peanut grows slowly and cannot compete well with weeds during
the most part of its growth cycle. Hence, weeds should be controlled
during the first 4-8 weeks after planting.
 The following cultural practices could help control weeds:
a. Off-bar by passing a cultivator or a carabao drawn plow in between rows of
peanut 20 to 25 days after planting to eradicatethe germinating and growing
weeds.
b. Follow up off-barring by handweeding to remove remaining weeds especially
those near the base of the peanut plants. After handweeding, sidedress the
fertilizer (calcium nitrate) and immediately hill-up by passing a carabao drawn
plow between the rows of peanut to cover the applied fertilizer and likewise
improve crop anchorage.
c. In addition, it may be necessary to do spot weeding from time to time during
the growth and development period of the peanut crop particularly when weed
population is still high. However, caution must be observed not to disturb the
developing pod.
Water management
Peanut is relatively drought tolerant but like most field legumes, it needs
sufficient water during germination, flowering, and pod filling stages.
During dry season, irrigate dry soils before planting to ensure good peanut
crop germination and establishment. In addition, it is important that the soil
should have sufficient moisture during pegging and pod development stages,
thus irrigate lightly but frequently when the soil is dry. Topsoil must remain
moist at pegging stage to facilitate good penetration of pegs into the soil.
Besides affecting yield.
When peanut is planted in late dry season, 3 to 4 applications of irrigation at
40-50 millimeters per application are sufficient. Peanut requires a minimum
of 500-600 millimeters of water per cropping season.
Crop Protection
A. Common Insect Pests
1. Pod Borer (Helicoverpa armigera)
 Larvae feed on the foliage, preferably the flowers and buds. When tender leaf
buds are eaten, symmetrical holes or cuttings can be seen upon unfolding of
leaflets.
1. Aphids (Aphis craccivora)
Larvae feed on the foliage, usually the flowers and buds. Nymphs and
adults suck plant sap from tender growing shoots, flowers, causing
stunting and distortion of the foliage and stems. They excrete honeydew
on which sooty molds flow forming a black coating. Aphids are also
known to transmit peanut stripe virus and peanut rosette virus.
1. Termites (Odontotermes spp)
Termites penetrate and hollow out the tap root and stem thus kill the
plant. It bores holes into pods and damages the seed. It removes the soft
corky tissue between the veins of pods causing scarification; weakens the
shells
B.Common Diseases
1. Cercospora Leaf Spot (Cercospora arachidicola)
Disease infection usually starts in about one month after sowing with small
chlorotic spots appearing on leaflets which eventually enlarged and turned
brown to black and assumes sub-circular shape on upper leaf surface.
Lesions also appear on petioles, stems and stipules. In severe cases, several
lesions coalesce and result in premature senescence.
. Late Leaf Spot (Phaeoisariopsis personatum)
Infection starts at around 42-57 days after planting. Black and nearly
circular spots appear on the lower surface of the leaflets; lesions are rough
in appearance; and in extreme cases many lesions coalesce resulting in
premature senescence and shedding of the leaflets.

Stem Rot (Sclerotium rolfsii)
White fungal threads develop over affected plant tissue particularly the
stem; base of the plant turns yellow and then wilts down; infected peanut
seeds show a characteristic bluish-grey discoloration.
Bud Necrosis (Peanut Bud Necrosis Virus (PBNV)
This virus is transmitted by thrips. Chlorotic spots with necrotic rings
and streaks appear on young leaflets. Terminal bud necrosis occurs when
temperature is relatively high. As infected plant matures, it becomes
stunted developing short internodes; and auxiliary shoots proliferate.
 Harvesting
Peanut should be harvested at the right stage of maturity. Harvesting is
normally done by passing a carabao drawn plow between furrows
beforehand pulling or uprooting the plants,
The maturity of peanut can be determined by the following indications:
(a) gradual withering and yellowing of the leaves of majority of the plants
which are more noticeable during dry season planting; (b) expected
maturity date of varieties ranging from 90-140 days depending on the
type of the peanut variety and the planting season; (c) physiological
maturity is also indicated by hardness of most of the pods, 70-80% of
pods have prominent veins.
 Post Harvest
 Pod Picking/Stripping/Threshing
For small scale production, peanut pods are picked by hand. Pods are
immediately sun dried to prevent deterioration. Picking is done in such a way
that the peduncle (stem attached to the pod) does not go with the pod.
During wet season, farmers usually strip or thresh immediately after
harvest so that peanut pods can be immediately dried to the desired moisture
content and prevent deterioration. For dry season crops, stripping is delayed
because farmers windrow the plants in the field to reduce plant and pod
moisture content. Stripping can be done manually or with a mechanical
peanut stripper.
 Drying
It will take 2-5 days to sundry the harvested peanut crop in the field. In
general, drying is done twice within the cycle of postharvest operation: initial
drying prior to threshing, and final drying before pod shelling.
 Shelling and Sorting
For immediate marketing of peanuts, pods are shelled carefully to avoid
scratching, splitting and rupturing of the seed coat, as well as breaking of the
cotyledon. Traditionally, farmers shell peanut manually. Hand shelling is the
preferred method of obtaining peanut seeds because it protects seeds from
being broken.
REFERENCES
DA-RFO ll. Oct 2019. DA, Enrile Town Eye Agri Complex for Peanut; Mama
Sita's Needs 20 MT Monthly accessed from
http://rf002.da.gov.ph/2019/10/09/da-enrile-town-eye-agri-complex-for-peanut-
mama-sitas-needs-20-mt-monthly/
Philippine Statistics Authority OpenSTAT accessed from
https://openstat.psa.gov.ph/database
Peanut Production Guide by Bureau of Plant Industry accessed from
http://bpi.da.gov.ph/bpi/images/Production_guide/pdf/PEANUT.pdf
Philippine Statistics Authority (PSA). Oct 2020. Updated Production Costs and
Returns of Selected Agricultural Commodities. Diliman, Quezon City, Philippines.
PSA. Retrieved from https://psa/gov.ph/sites/default/files/l
pdf
Thank you

More Related Content

Similar to CS-211 Advanced Crop Production and Management legumes.pptx

Improvement in food resources
Improvement in food resourcesImprovement in food resources
Improvement in food resourcesjadeja namrataba
 
Def aim-obj-scope of ci(1)
 Def aim-obj-scope of ci(1) Def aim-obj-scope of ci(1)
Def aim-obj-scope of ci(1)Nugurusaichandan
 
Chickpea Seed Production Manual ~ icrisat.org
Chickpea Seed Production Manual ~ icrisat.orgChickpea Seed Production Manual ~ icrisat.org
Chickpea Seed Production Manual ~ icrisat.orgSeeds
 
Seed Treatment Nico Orgo Manures
Seed Treatment Nico Orgo ManuresSeed Treatment Nico Orgo Manures
Seed Treatment Nico Orgo Manureskashyap soni
 
Improvement in food resources
Improvement in food resourcesImprovement in food resources
Improvement in food resourcesShübh Sìñhã
 
Garden pea-Bismoy Mohanty
Garden pea-Bismoy MohantyGarden pea-Bismoy Mohanty
Garden pea-Bismoy MohantyBismoy Mohanty
 
Plant breeding, its objective and historical development- pre and post mendel...
Plant breeding, its objective and historical development- pre and post mendel...Plant breeding, its objective and historical development- pre and post mendel...
Plant breeding, its objective and historical development- pre and post mendel...Avinash Kumar
 
Ix science-Improvement in food resources
Ix science-Improvement in food resourcesIx science-Improvement in food resources
Ix science-Improvement in food resourcesRam Mohan
 
Presentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportancePresentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportanceDr. Kaushik Kumar Panigrahi
 
Seed unit I.pdf
Seed unit I.pdfSeed unit I.pdf
Seed unit I.pdfsivan96
 
Cropproduction 121102003715-phpapp01
Cropproduction 121102003715-phpapp01Cropproduction 121102003715-phpapp01
Cropproduction 121102003715-phpapp01Mohit Manohar
 
BAU Biofungicide-A novel biocontrol product in Bangladesh
BAU Biofungicide-A novel biocontrol product in BangladeshBAU Biofungicide-A novel biocontrol product in Bangladesh
BAU Biofungicide-A novel biocontrol product in BangladeshK. M. Golam Dastogeer
 
Agronomy lecture notes.pptx
Agronomy lecture notes.pptxAgronomy lecture notes.pptx
Agronomy lecture notes.pptxLenonTembo
 

Similar to CS-211 Advanced Crop Production and Management legumes.pptx (20)

Maize Crop cultivation steps
Maize Crop cultivation stepsMaize Crop cultivation steps
Maize Crop cultivation steps
 
Improvement in food resources
Improvement in food resourcesImprovement in food resources
Improvement in food resources
 
Def aim-obj-scope of ci(1)
 Def aim-obj-scope of ci(1) Def aim-obj-scope of ci(1)
Def aim-obj-scope of ci(1)
 
Chickpea Seed Production Manual ~ icrisat.org
Chickpea Seed Production Manual ~ icrisat.orgChickpea Seed Production Manual ~ icrisat.org
Chickpea Seed Production Manual ~ icrisat.org
 
Seed Treatment Nico Orgo Manures
Seed Treatment Nico Orgo ManuresSeed Treatment Nico Orgo Manures
Seed Treatment Nico Orgo Manures
 
Breeding field crops
Breeding field cropsBreeding field crops
Breeding field crops
 
BEAN PRODUCTION
BEAN PRODUCTIONBEAN PRODUCTION
BEAN PRODUCTION
 
Improvement in food resources
Improvement in food resourcesImprovement in food resources
Improvement in food resources
 
Garden pea-Bismoy Mohanty
Garden pea-Bismoy MohantyGarden pea-Bismoy Mohanty
Garden pea-Bismoy Mohanty
 
Plant breeding, its objective and historical development- pre and post mendel...
Plant breeding, its objective and historical development- pre and post mendel...Plant breeding, its objective and historical development- pre and post mendel...
Plant breeding, its objective and historical development- pre and post mendel...
 
Ix science-Improvement in food resources
Ix science-Improvement in food resourcesIx science-Improvement in food resources
Ix science-Improvement in food resources
 
Presentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its ImportancePresentation on Plant Breeding Objective and Its Importance
Presentation on Plant Breeding Objective and Its Importance
 
Seed unit I.pdf
Seed unit I.pdfSeed unit I.pdf
Seed unit I.pdf
 
Organic farming.pdf
Organic farming.pdfOrganic farming.pdf
Organic farming.pdf
 
CS 207 PPT..pptx
CS 207 PPT..pptxCS 207 PPT..pptx
CS 207 PPT..pptx
 
Cropproduction 121102003715-phpapp01
Cropproduction 121102003715-phpapp01Cropproduction 121102003715-phpapp01
Cropproduction 121102003715-phpapp01
 
BAU Biofungicide-A novel biocontrol product in Bangladesh
BAU Biofungicide-A novel biocontrol product in BangladeshBAU Biofungicide-A novel biocontrol product in Bangladesh
BAU Biofungicide-A novel biocontrol product in Bangladesh
 
Agronomy lecture notes.pptx
Agronomy lecture notes.pptxAgronomy lecture notes.pptx
Agronomy lecture notes.pptx
 
Integrated farming
 Integrated farming Integrated farming
Integrated farming
 
Legumes important
Legumes importantLegumes important
Legumes important
 

More from juuisha

CID_Emerging and Re-emerging Diseases of Livestock.pptx
CID_Emerging and Re-emerging Diseases of Livestock.pptxCID_Emerging and Re-emerging Diseases of Livestock.pptx
CID_Emerging and Re-emerging Diseases of Livestock.pptxjuuisha
 
1-5-emerging-and-reemerging-swine-diseases_ni.pptx
1-5-emerging-and-reemerging-swine-diseases_ni.pptx1-5-emerging-and-reemerging-swine-diseases_ni.pptx
1-5-emerging-and-reemerging-swine-diseases_ni.pptxjuuisha
 
Nutraceuticals_ cid.pptx
Nutraceuticals_ cid.pptxNutraceuticals_ cid.pptx
Nutraceuticals_ cid.pptxjuuisha
 
IPM.pptx
IPM.pptxIPM.pptx
IPM.pptxjuuisha
 
2007 Non-Human Primates_unlocked.pptx
2007 Non-Human Primates_unlocked.pptx2007 Non-Human Primates_unlocked.pptx
2007 Non-Human Primates_unlocked.pptxjuuisha
 
recentadvancesinanimalbiotechnologyconfrenceppt.pptx
recentadvancesinanimalbiotechnologyconfrenceppt.pptxrecentadvancesinanimalbiotechnologyconfrenceppt.pptx
recentadvancesinanimalbiotechnologyconfrenceppt.pptxjuuisha
 
introductionofpharmacology-141126031620-conversion-gate01.ppt
introductionofpharmacology-141126031620-conversion-gate01.pptintroductionofpharmacology-141126031620-conversion-gate01.ppt
introductionofpharmacology-141126031620-conversion-gate01.pptjuuisha
 
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdfjuuisha
 
Making-effective-power-point-presentation.pptx
Making-effective-power-point-presentation.pptxMaking-effective-power-point-presentation.pptx
Making-effective-power-point-presentation.pptxjuuisha
 
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).pptjuuisha
 
sex determination.ppt
sex determination.pptsex determination.ppt
sex determination.pptjuuisha
 
PBIO4500 Animal Genetic Engineering.ppt
PBIO4500 Animal Genetic Engineering.pptPBIO4500 Animal Genetic Engineering.ppt
PBIO4500 Animal Genetic Engineering.pptjuuisha
 
Sex Determination.ppt
Sex Determination.pptSex Determination.ppt
Sex Determination.pptjuuisha
 
linkage.ppt
linkage.pptlinkage.ppt
linkage.pptjuuisha
 
PPD SSI Denmark.pdf
PPD SSI Denmark.pdfPPD SSI Denmark.pdf
PPD SSI Denmark.pdfjuuisha
 
Administration_drugs.ppt
Administration_drugs.pptAdministration_drugs.ppt
Administration_drugs.pptjuuisha
 
Physiological factors in fertility of birds.pdf
Physiological factors in fertility of birds.pdfPhysiological factors in fertility of birds.pdf
Physiological factors in fertility of birds.pdfjuuisha
 

More from juuisha (17)

CID_Emerging and Re-emerging Diseases of Livestock.pptx
CID_Emerging and Re-emerging Diseases of Livestock.pptxCID_Emerging and Re-emerging Diseases of Livestock.pptx
CID_Emerging and Re-emerging Diseases of Livestock.pptx
 
1-5-emerging-and-reemerging-swine-diseases_ni.pptx
1-5-emerging-and-reemerging-swine-diseases_ni.pptx1-5-emerging-and-reemerging-swine-diseases_ni.pptx
1-5-emerging-and-reemerging-swine-diseases_ni.pptx
 
Nutraceuticals_ cid.pptx
Nutraceuticals_ cid.pptxNutraceuticals_ cid.pptx
Nutraceuticals_ cid.pptx
 
IPM.pptx
IPM.pptxIPM.pptx
IPM.pptx
 
2007 Non-Human Primates_unlocked.pptx
2007 Non-Human Primates_unlocked.pptx2007 Non-Human Primates_unlocked.pptx
2007 Non-Human Primates_unlocked.pptx
 
recentadvancesinanimalbiotechnologyconfrenceppt.pptx
recentadvancesinanimalbiotechnologyconfrenceppt.pptxrecentadvancesinanimalbiotechnologyconfrenceppt.pptx
recentadvancesinanimalbiotechnologyconfrenceppt.pptx
 
introductionofpharmacology-141126031620-conversion-gate01.ppt
introductionofpharmacology-141126031620-conversion-gate01.pptintroductionofpharmacology-141126031620-conversion-gate01.ppt
introductionofpharmacology-141126031620-conversion-gate01.ppt
 
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf
3.15_Drug_Formulary_for_Primates_and_Primate_Sanctuaries.pdf
 
Making-effective-power-point-presentation.pptx
Making-effective-power-point-presentation.pptxMaking-effective-power-point-presentation.pptx
Making-effective-power-point-presentation.pptx
 
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt
21_GENETIC_BASIS_OF_DEVELOPMENT_ppt (1).ppt
 
sex determination.ppt
sex determination.pptsex determination.ppt
sex determination.ppt
 
PBIO4500 Animal Genetic Engineering.ppt
PBIO4500 Animal Genetic Engineering.pptPBIO4500 Animal Genetic Engineering.ppt
PBIO4500 Animal Genetic Engineering.ppt
 
Sex Determination.ppt
Sex Determination.pptSex Determination.ppt
Sex Determination.ppt
 
linkage.ppt
linkage.pptlinkage.ppt
linkage.ppt
 
PPD SSI Denmark.pdf
PPD SSI Denmark.pdfPPD SSI Denmark.pdf
PPD SSI Denmark.pdf
 
Administration_drugs.ppt
Administration_drugs.pptAdministration_drugs.ppt
Administration_drugs.ppt
 
Physiological factors in fertility of birds.pdf
Physiological factors in fertility of birds.pdfPhysiological factors in fertility of birds.pdf
Physiological factors in fertility of birds.pdf
 

Recently uploaded

Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Booking
Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment BookingHousewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Booking
Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...narwatsonia7
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Serviceparulsinha
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Suratnarwatsonia7
 
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Me
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near MeHi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Me
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Menarwatsonia7
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 

Recently uploaded (20)

Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Booking
Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment BookingHousewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Booking
Housewife Call Girls Hoskote | 7001305949 At Low Cost Cash Payment Booking
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
Call Girls Frazer Town Just Call 7001305949 Top Class Call Girl Service Avail...
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service SuratCall Girl Surat Madhuri 7001305949 Independent Escort Service Surat
Call Girl Surat Madhuri 7001305949 Independent Escort Service Surat
 
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Me
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near MeHi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Me
Hi,Fi Call Girl In Mysore Road - 7001305949 | 24x7 Service Available Near Me
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 

CS-211 Advanced Crop Production and Management legumes.pptx

  • 3. Learning objectives  Identify legumes and its uses  Describe the soil and climatic requirement of mungbean and peanut  Explain the cultural practices of mungbean and peanut
  • 4.  Why Legumes?  Legumes are plants in the family Fabaceae (or Leguminosae). When used as a dry grain, the seed is also called a pulse. Legumes are grown agriculturally, primarily for human consumption, for livestock forage and silage, and as soil-enhancing green manure.  Beans, soybeans, peas, chickpeas, peanuts, lentils, lupins, carob, ta marind, alfalfa, and clover are the well-know Legumes.  Legumes are notable in that most of them have symbiotic nitrogen- fixing bacteria in structures called root nodules. For that reason, they play a key role in crop rotation.
  • 5. Importance of legumes  Legumes in human nutrition  Legumes for animal nutrition  Legumes for crop and soil improvement (nitrogen fixing)  Legumes can be incorporated into cereal cropping system -Green manuring -intercropping -grain-legumes rotation -leguminous shrubs
  • 6. Nitrogen fixation  Legume nitrogen fixation starts with the formation of a nodule. The rhizobia bacteria ((Rhizobiaceae and Proteobacteria) in the soil invade the root and multiply within its cortex cells and convert atmospheric nitrogen gas into a plant-useable form of nitrogen (nitrogen fixation is the process that changes nitrogen gas N2 into biologically useful ammonium NH3., NH4+).  Plants receive access to nitrogen in a form that they need for their growth and, in exchange, the bacteria receive energy to support bacterial growth in the form of carbon from plant photosynthesis as well as physical protection within the root nodules. As a result of this symbiotic process, legumes tend to be higher in nitrogen than other plant species, which can improve soil nitrogen availability, reduce (often eliminate) the need for nitrogen fertilizers, and increase the protein content of legume seeds that can be beneficial for human health.
  • 8. WHY MUNG BEAN? Mung bean (Vigna radiata L.) is one of the cheapest sources of plant protein. It is also a good source of minerals such as calcium and sodium and high in vitamins A, B & C. It is a drought-tolerant crop and requires a warm climate during its growing period. The temperature and humidity prevailing in the country is suited for optimum yields. It is a raw material in processing products such as sprout production, sotanghon manufacturing, hopia processing, and as ingredients in dishes like soups, porridge, snacks, bread, noodles and ice cream. It can be processed as starch, flour and paste and the crop itself can be used as fodder and cover crop.
  • 9. TOP 5 MAJOR MUNG BEAN PRODUCING REGIONS IN 2021 The top major mung bean producing regions are Region I with 1 3, 1 81 .32 MT, Region Il with 6,859.87 MT, Region Ill with 6,596.57 MT, Region vi with 2,952.52 MT and ARMM with 2,809.77 MT. At 36.36%, the 'locos Region produced more than one-third of the country's total mung bean production in 2021.
  • 10. MARKET POTENTIAL  Mung bean is marketable crop and demands a good price which gives farmers sustainable livelihood. Its agronomic characteristics permit to fit in various cropping systems as an intercrop, rotation and relay crop.  Most of the regions in the Philippines cannot meet their respective demand for mung bean. There are also emerging opportunities in the international market. Japan, for example, is looking for alternative suppliers. The vegetarian segment of the population is also a potential market.
  • 11. Nutritional Values Mungbean is rich in easily digestible protein (24%). It adds much-needed diversity to the cereal-based diets of the poor. The protein is easily digested and is of a high quality, making it based food preparations especially good for children, elderly people and invalids. It also contains vitamin A (94 mg), iron (7.3 mg), calcium (124 mg), zinc (3 mg) and folate (549 mg) per 100 grams dry seeds. Mungbeans are also high in vitamins B1, B2 and C and niacin.
  • 12. Mungbean Varieties Pag-asa 3- seed color is shiny yellow, seed yield of 1.15 tons/ha and contain 23.58% protein and 57.1 carbohydrate Pag-asa 7- glossy green seed, produce .6 tons/ha, 22.05% protein and 58.35% carbohydrate Pag-asa 9- shiny green seeds, seed yield 1.3 tons/ha and 15.52% protein and 37% starch
  • 13. Cultivation Soil and Climatic Requirements Mungbean is a dry season crop and can be grown best in rotation with rice or corn in an optimum temperature ranging from 20 to30oC. It needs plenty of sunlight and a daylength of 11.5 to 13.0 hours. It can be profitably grown in different types of soil with pH ranging from 5.8 to 6.5. In the Philippines, mungbean can be grown during the wet season (May-June); dry season (September-October); and late dry season (February-March). High humidity brought about by continuous rains could severely reduce the quality of harvested seeds.
  • 14. Cultural Management Practices Land Preparation Prepare the land thoroughly so that mungbean seeds can germinate uniformly, establish rapidly, and compete well with weeds. For the uplands, prepare the soil thoroughly by plowing alternated with harrowing at weekly interval. For post-rice culture, zero or minimum tillage can be practiced.
  • 15. Planting Drill the seeds along shallow furrows spaced 60 centimeters apart. Twenty (20) kgs of seeds is enough to plant a hectare. If seed inoculant is available, moisten the seeds with water, then mix the inoculant until all seeds are coated. Keep the newly inoculated seeds under shade until they are planted. At planting, sufficient soil moisture is necessary so that the seeds can germinate uniformly. For post-rice culture, flood the paddy 1-2 days before planting. Then, drain the water before broadcasting the seeds.
  • 16. Water Management Mungbean is relatively tolerant to drought. However, it needs sufficient amount of water during its critical stages of growth and development (germination, vegetative, flowering and pod-filling stages). The daily water requirement of mungbean differs, depending on intensity of solar radiation and rate of evaporation. In general, the crop requires 3.5 millimeters of water per day or about 410 millimeters per cropping season.
  • 17. Nutrient Management Mungbean obtains nitrogen through its symbiosis with the N-fixing bacteria in the roots. Excessive nitrates from applied fertilizer will restrict N fixation. In commercial production of mungbean, fertilization rate and type of applica- tion depends on the results of soil analysis. However, in the absence of such analysis and during dry season cropping, basal application of three bags (150 kgs of complete ferti- lizer (14-14-14) per hectare is recommended for heavy soils (loam to clay loam), and four bags (200 kgs) for light soils (sandy to sandy loam). You can also apply organic fertilizer if you want to produce mungbean organically as well as to improve the soil conditions. It is recommended to inoculate the seeds with appropriate Rhizobia strain ino- culant right before planting. Then apply only 20 kgs per hectare of nitrogen which can be supplied by 150 kgs of Triple14.
  • 18. Crop Protection A. Insect Pests 1. Bean fly (Melanagromyza sojae Zehntner) – the most destructive insect pest in early vegetative stage. It inserts its eggs into the cotyledonary leaves. The emerging larva tunnels from the leaves towards the stem and pupate within the stem just slightly above the soil surface, eventually causing wilting and stunting of the plants.
  • 19. 2. Aphids (Aphis glycines Matsumura) – can damage the young plants. It can also transmit deadly viruses.
  • 20. 3. Pod borer (Etiella zinckenella Treitschke) – lays its eggs on the petals or sepals. The larva feeds on the flower buds or immature seeds within the pods.
  • 21. 4. Green Soldier Bug or stinkbugs (Nezara viridula L.)- observed unusually high populations of this pest (3-4 insects/ meter row) uniformly over an entire field when pods are still green.
  • 22. 5. Bruchids (Callosobruchus maculatus) - commonly called pulse beetles or cowpea weevils. It attacks mungbean both in field and storage but greater losses occur in the latter. The nutritional quality of the grains deteriorates because of the infestation rendering making them unmarketable
  • 23. General Insect Pest Control Strategies The following are some strategies to control insect pests of mungbean: 1. Insect Pest Identification – to be able to determine what control measure you are going to employ, know what particular pest to control, its life cycle and nature of damage. 2. Cultural Control - this includes the different field operations that promote favorable growth of the crop while at the same time could effectively control insect pests by directly destroying them, or interfere with their normal biological processes and make the environment unpleasant for the insect pests such as sanitation and crop rotation. 3. Mechanical Control - involves the use of special equipment or operations. Generally, this gives immediate and tangible results. Examples: handpicking and light trapping.
  • 24. Biological Control - use of parasites, predators and pathogens to minimize or control the pest. Every pest species has one or more natural enemies which prevent their population from increasing to a disastrous level. Example: application of Trichogramma chilonis at the rate of 200 strips per hectare at weekly interval starting 20 days after germination up to flowering stage. Chemical Control – most commonly employed to control or kill pests (also known as pesticides) pesticides should only be used when necessary. It should be integrated with other forms of pest control.
  • 25. . Diseases 1. Cercospora Leaf Spot (CLS) – caused by fungus Cercospora sp., which is prevalent during wet season. The first visible symptom of infection is the appearance of water-soaked spots on the leaves. The spots then turn tan to reddish brown necrotic areas with a small gray center. The individual spots may coalesce causing large dead areas on the leaves.
  • 26. Powdery Mildew – caused by Erysiphe polygoni; develops under high relative humidity and cool nights. Its first visible symptom is the appearance of small, white, powdery spots on the upper surface of the leaf. The whitish fungal growth occupies part or the entire leaf surface. Infected leaves become yellow, then brown and finally fall off.
  • 27. Disease Management • Plant high quality, preferably certified seeds. • Use recommended seed bed preparation, planting depth, and seeding rates. • Practice crop rotation with non-legume crops. • Practice deep plowing to bury plant debris. • Plant disease resistant cultivars and varieties. • Employ appropriate crop management practices. • Disease management is best accomplished using an integrated approach. This involves incorporating as many of the principles listed above
  • 28. Weed Control Weed control is critical when mungbean grows slowly 2-3 weeks after emergence. To minimize weed growth, fifteen days after planting, off-barring should be done to loosen the soil and eradicate weeds. This will be followed by hand weeding to totally eradicate remaining weeds. Right after weeding, immediately do the hilling-up by passing a carabao-drawn plow in between the rows of mungbean crop not only to eradicate remaining weeds but also to improve plant anchorage. Harvesting  Mungbean is harvested by priming. Harvesting is done 60-70 days after planting. Mature pods turn brown and then black. Begin harvesting as soon as 75% of the pods have dried up. Pick the harvestable pods by hand. Repeat harvesting every 3 to 5 days. The number of primings (number of harvesting) depends on the available soil moisture and fertility, and on the condition of the crop.  Right after harvesting, sun-dry mungbean pods. When pods are sufficiently dry enough, thresh by placing the dried pods in sack and beating it until all seeds severed from the pods. A mechanical rice thresher may be used for large scale production. Take precaution not to damage the mungbean seeds. Clean the seeds and sundry until 12% moisture content is reached
  • 29. Post Harvest Storage  Store mungbean seeds in tight containers or in nylon/jute sack. Store them in a cool, dry place protected from rodents. Practice good sanitation to prevent storage pest infestation like weevils. You can also mix dried neem seeds or leaves, or dried hot pepper (siling labuyo) with the mungbean seeds.
  • 32. PEANUT  Description Peanut (Arachis hypogaea L.) or groundnut is an annual herbaceous plant of the Fabaceae or Legume family.
  • 33.  Production Trends Globally, peanut is the 13th most important food crop with 50% of it is used as raw material for the manufacture of peanut oil, 37% for confectionery, and 12% for seed purposes. The vegetative part of peanut is excellent hay for feeding livestock because it is rich in protein and has better palatability and digestibility than other fodders. China leads in the production of peanuts, having a share of about 41.5% of overall world production, followed by India (18.2%) and the United States of America (6.8%). In Europe, the leading producer is Greece, at roughly 2000 tons per year.
  • 34.  TOP 5 MAJOR PEANUT PRODUCING REGIONS IN 2019 The top major peanut producing regions are Region I with 1 1,914.50 MT, Region Il with 3,109.58 MT, Region X with 2,595.21 MT, Region VI with 2,295.86 MT and Region Ill with 1,716.41 MT. At 40.66%, the Ilocos Region produced almost half of the country's total peanut production.
  • 35.  WHY PEANUT? Peanut (Arachis hypogaea L.) is a popular crop in the Philippines. It can be grown throughout the year provided inputs, especially the water requirement, is adequately available. Peanut is an inexpensive, high protein and energy food for human and livestock. It can be processed in to high-quality healthy vegetable oil for cooking. A concentrated food from peanut has more proteins, minerals and vitamins than beef liver, more fat than heavy cream, and more energy than sugar. It is also a good source of vitamin A and B.
  • 36.  TOP 5 MAJOR PEANUT PRODUCING REGIONS IN 2021 The top major peanut producing regions are Region I with 1 1,914.50 MT, Region Il with 3,109.58 MT, Region X with 2,595.21 MT, Region VI with 2,295.86 MT and Region Ill with 1,716.41 MT. At 40.66%, the Ilocos Region produced almost half of the country's total peanut production.
  • 37. Market Potential Peanuts have many uses. It can be eaten raw, used in recipes, made into solvents and oils, medicines, textile materials, peanut butter, as well as other areas of use such as cosmetics, nitroglycerin, plastics, dyes and paints. The potential investment options along the peanut value chain include seeds production, fresh and raw production, processing into butter and even oil, trading, consolidation and marketing. The peanut produced in the Philippines in 2019 is equivalent to 29,300.78 metric tons. However, the country in 2019 is 75.0% import dependent. Thus, PH is only 25.0% self- sufficient indicating inadequacy of food production to cope with the demand of the population (PSA, 2020). The shortage provides prospective investors and local peanut producers and processors the opportunity to capture the market concentrated by foreign sources.
  • 38. Recommended Peanut Varieties Different government breeding institutions continue to develop new high yielding varieties of peanut. In addition, some introduced varieties are also being tested under local agro-climatic conditions so that farmers could have options as to what peanut varieties to plant. Peanut varieties in the Philippines are as follows: Variety Agronomic Characteristics Other features Dry Pod Yield (t/ha) 100-seed weight (g) Shelling(%) Days to Flower Days to Mature Plant Height (cm) DS WS DS WS DS WS DS WS DS WS DS WS PSB Pn 1 (UPL Pn 10) 2.0 1.5  Medium-seeded  Two-seeded  Moderately resis-tant to foliar di-seases & bacte- rial wilt NSIC Pn 02 1.87 1.34 101 103 45 74  Resistant to peanut rust and Cercospora Leaf Spot (CLS) diseases  Moderately resis-tant to Asper-gillus flavus
  • 39. NSIC Pn 03 1.80 1.86 43.6 38.2 66 65 31 28 103 104 41 64  Moderately resis-tant to peanut rust and CLS  Mostly 3-seeded; bunch type peanut with light brown seed coat NSIC Pn 04 1.81 2.48 61.7 51.7 68 68 26 24 101 101 64 78  Gives high yield and better bean quality during dry season  Mostly 2 to 3 seeded; bunch type; with light brown seed coat  Moderately sus-ceptible to CLS NSIC Pn 05 1.86 1.77 54.3 47.9 72 73 30 31 101 100 45 58  Moderately susceptible to CLS and peanut rust  Recommended as regional variety in Central Visayas particularly in Bohol  Mostly 3 seeded; bunch type; pea-nut with salmon pink seed coat. NSIC Pn 06 (Biyaya 14) 1.89 1.97 55.3 51.1 66 67  Tolerant to leaf hopper  High yielder in wet season in light textured soil  Two seeded Spanish variety with plump and oblong shape pods; shelling easy because of thin seed coat NSIC Pn 07 1.91 1.86 55.9 43.5 67 62 30 26 100 100 50 53  Moderately susceptible to CLS and peanut rust  Can be grown in dry and wet sea-sons; gives better bean quality in dry season  Mostly 2 to 3 seeded; bunch type; peanut with pinkish seed coat
  • 40.  Cultivation  Soil and Climatic Requirements The best soil suited to peanut production is well-drained, light colored, loose, friable, sandy loam that contains high levels of calcium, a moderate amount of organic matter, and with moderate to slightly acidic pH ranging from 5.8 to 6.5. Optimum peanut production can be achieved in areas with topsoil depth of 4 to 60 centimeters, friable, with sandy loam or clay loam subsoil. Peanut can be grown practically in all types of climatic conditions. In the Philippines, peanut can be grown throughout the year provided irrigation is available. In general, dry season crop (October-January) gives higher yields and better quality beans than the rainy season crop.
  • 41. Liming Acidic soil with pH below 5.8 is not profitable for peanut production. This can be corrected by adjusting the pH through application of lime as follows: Amount of ground limestone (t/ha) needed to bring soil pH to 6.0 Initial pH Sandy Sandy Loam Loam Silt and Clay Loam Clay 4.0 2.0 3.5 4.5 6.0 7.5 4.5 1.5 2.5 3.2 4.2 5.2 5.0 1.0 1.5 2.0 2.5 5.0 5.5 0.5 0.5 0.8 0.9 2.0
  • 42.  Cultural Management Practices  Land Preparation  Peanut requires a thoroughly prepared field to provide favorable conditions for good crop establishment as well as conditions necessary for effective weed control and proper pod development. Plow and harrow the field 2 to 3 times at weekly interval to allow weed seeds to germinate, and achieve good soil tilth. Set furrows 50-60 centimeters apart to allow relative ease of weeding, cultivation and spraying without disturbing the growing crop. If possible, rows should run from east to west direction to allow better peanut crop light interception. Furrow when the soil has the right moisture for planting or when soil does not stick to the plow during the operation.
  • 43.  Seed Inoculation When inoculants are available, place the seeds in a basin big enough for easy mixing. Moisten the seeds with water then pour or mix 100 grams of inoculants (Bradyrhizobium spp.) to 10 kilograms of moistened shelled peanut seeds. Mix thoroughly until all the seeds are coated with inoculants.
  • 44.  Planting The use of shelled peanut seeds as planting materials is the standard practice. Sow peanut seeds using hill or drill method. In hill method, plant one seed per hill at a distance of 5-10centimeters during the dry season and 10-15centimeters during the wet season. With drill method, plant 18- 20 seeds per linear meter during the dry season and 10-15 seeds per linear meter during the wet season. Distribute the seeds uniformly into the furrows. Approximately 120-150 kilograms unshelled peanut is required per hectare in both methods.
  • 45.  Fertilizer and Nutrient Management Fertilizer requirements should be determined on the basis of soil analysis of the area. However, in the absence of soil analysis, a general recommendation of 30-30-30 kg NPK per hectare maybe used. Prior to planting, apply 4 bags of complete fertilizer per hectare on furrows and cover thinly with soil. Sidedress 2 to 6 bags of calcium nitrate, 25 to 30days after planting. Application of calcium nitrate (Ca(NO3)2) minimizes the production of “pops” or empty peanut pods. Initial study conducted at BPI La Granja last 2000 revealed that peanut can also be fertilized with vermi compost, commercial organic fertilizer or decomposed carabao manure at the rate of 3.0, 1.0, and 5.0 tons, respectively.
  • 46.  Weed Management and Cultivation Weed control is more critical in peanut production than in other crops because peanut grows slowly and cannot compete well with weeds during the most part of its growth cycle. Hence, weeds should be controlled during the first 4-8 weeks after planting.
  • 47.  The following cultural practices could help control weeds: a. Off-bar by passing a cultivator or a carabao drawn plow in between rows of peanut 20 to 25 days after planting to eradicatethe germinating and growing weeds. b. Follow up off-barring by handweeding to remove remaining weeds especially those near the base of the peanut plants. After handweeding, sidedress the fertilizer (calcium nitrate) and immediately hill-up by passing a carabao drawn plow between the rows of peanut to cover the applied fertilizer and likewise improve crop anchorage. c. In addition, it may be necessary to do spot weeding from time to time during the growth and development period of the peanut crop particularly when weed population is still high. However, caution must be observed not to disturb the developing pod.
  • 48. Water management Peanut is relatively drought tolerant but like most field legumes, it needs sufficient water during germination, flowering, and pod filling stages. During dry season, irrigate dry soils before planting to ensure good peanut crop germination and establishment. In addition, it is important that the soil should have sufficient moisture during pegging and pod development stages, thus irrigate lightly but frequently when the soil is dry. Topsoil must remain moist at pegging stage to facilitate good penetration of pegs into the soil. Besides affecting yield. When peanut is planted in late dry season, 3 to 4 applications of irrigation at 40-50 millimeters per application are sufficient. Peanut requires a minimum of 500-600 millimeters of water per cropping season.
  • 49. Crop Protection A. Common Insect Pests 1. Pod Borer (Helicoverpa armigera)  Larvae feed on the foliage, preferably the flowers and buds. When tender leaf buds are eaten, symmetrical holes or cuttings can be seen upon unfolding of leaflets.
  • 50. 1. Aphids (Aphis craccivora) Larvae feed on the foliage, usually the flowers and buds. Nymphs and adults suck plant sap from tender growing shoots, flowers, causing stunting and distortion of the foliage and stems. They excrete honeydew on which sooty molds flow forming a black coating. Aphids are also known to transmit peanut stripe virus and peanut rosette virus.
  • 51. 1. Termites (Odontotermes spp) Termites penetrate and hollow out the tap root and stem thus kill the plant. It bores holes into pods and damages the seed. It removes the soft corky tissue between the veins of pods causing scarification; weakens the shells
  • 52. B.Common Diseases 1. Cercospora Leaf Spot (Cercospora arachidicola) Disease infection usually starts in about one month after sowing with small chlorotic spots appearing on leaflets which eventually enlarged and turned brown to black and assumes sub-circular shape on upper leaf surface. Lesions also appear on petioles, stems and stipules. In severe cases, several lesions coalesce and result in premature senescence.
  • 53. . Late Leaf Spot (Phaeoisariopsis personatum) Infection starts at around 42-57 days after planting. Black and nearly circular spots appear on the lower surface of the leaflets; lesions are rough in appearance; and in extreme cases many lesions coalesce resulting in premature senescence and shedding of the leaflets. 
  • 54. Stem Rot (Sclerotium rolfsii) White fungal threads develop over affected plant tissue particularly the stem; base of the plant turns yellow and then wilts down; infected peanut seeds show a characteristic bluish-grey discoloration.
  • 55. Bud Necrosis (Peanut Bud Necrosis Virus (PBNV) This virus is transmitted by thrips. Chlorotic spots with necrotic rings and streaks appear on young leaflets. Terminal bud necrosis occurs when temperature is relatively high. As infected plant matures, it becomes stunted developing short internodes; and auxiliary shoots proliferate.
  • 56.  Harvesting Peanut should be harvested at the right stage of maturity. Harvesting is normally done by passing a carabao drawn plow between furrows beforehand pulling or uprooting the plants, The maturity of peanut can be determined by the following indications: (a) gradual withering and yellowing of the leaves of majority of the plants which are more noticeable during dry season planting; (b) expected maturity date of varieties ranging from 90-140 days depending on the type of the peanut variety and the planting season; (c) physiological maturity is also indicated by hardness of most of the pods, 70-80% of pods have prominent veins.
  • 57.  Post Harvest  Pod Picking/Stripping/Threshing For small scale production, peanut pods are picked by hand. Pods are immediately sun dried to prevent deterioration. Picking is done in such a way that the peduncle (stem attached to the pod) does not go with the pod. During wet season, farmers usually strip or thresh immediately after harvest so that peanut pods can be immediately dried to the desired moisture content and prevent deterioration. For dry season crops, stripping is delayed because farmers windrow the plants in the field to reduce plant and pod moisture content. Stripping can be done manually or with a mechanical peanut stripper.
  • 58.  Drying It will take 2-5 days to sundry the harvested peanut crop in the field. In general, drying is done twice within the cycle of postharvest operation: initial drying prior to threshing, and final drying before pod shelling.  Shelling and Sorting For immediate marketing of peanuts, pods are shelled carefully to avoid scratching, splitting and rupturing of the seed coat, as well as breaking of the cotyledon. Traditionally, farmers shell peanut manually. Hand shelling is the preferred method of obtaining peanut seeds because it protects seeds from being broken.
  • 59. REFERENCES DA-RFO ll. Oct 2019. DA, Enrile Town Eye Agri Complex for Peanut; Mama Sita's Needs 20 MT Monthly accessed from http://rf002.da.gov.ph/2019/10/09/da-enrile-town-eye-agri-complex-for-peanut- mama-sitas-needs-20-mt-monthly/ Philippine Statistics Authority OpenSTAT accessed from https://openstat.psa.gov.ph/database Peanut Production Guide by Bureau of Plant Industry accessed from http://bpi.da.gov.ph/bpi/images/Production_guide/pdf/PEANUT.pdf Philippine Statistics Authority (PSA). Oct 2020. Updated Production Costs and Returns of Selected Agricultural Commodities. Diliman, Quezon City, Philippines. PSA. Retrieved from https://psa/gov.ph/sites/default/files/l pdf